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Vertex centralities in input-output networks reveal the structure of modern economies
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Input-output tables describe the flows of goods and services between the sectors of an economy. These tables
can be interpreted as weighted directed networks. At the usual level of aggregation, they contain nodes with
strong self-loops and are almost completely connected. We derive two measures of node centrality that are
well suited for such networks. Both are based on random walks and have interpretations as the propagation of
supply shocks through the economy. Random walk centrality reveals the vertices most immediately affected by
a shock. Counting betweenness identifies the nodes where a shock lingers longest. The two measures differ in
how they treat self-loops. We apply both to data from a wide set of countries and uncover salient characteristics
of the structures of these national economies. We further validate our indices by clustering according to sectors’
centralities. This analysis reveals geographical proximity and similar developmental status.
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I. INTRODUCTION

Within a few weeks of the onset of the financial crisis
in 2008, the world economy had plunged into a severe
global recession. The volume of international trade contracted
sharply, and the world economy did not grow in 2009 for the
first time since World War II. Many governments reacted with
programs to mitigate the effects of the global downturn on
their local economies. The United States spent $3 billion on
the Car Allowance Rebate System. Germany spent an even
larger fraction of its national economy (1.5 billion) for a car
scrappage program. What effect did these programs have? How
did the supply of new cars work its way through the rest of the
local economy?

Input-output analysis was designed to explore this kind
of effect [1,2]. An input-output table is the matrix of the
sales of goods and services between the different sectors of
an economy. A sector is a fairly coarse level of aggregation;
an industry is composed of many firms making an identical
product, and a sector is composed of several industries making
similar products. “Agriculture” and “Pharmaceuticals” are two
typical sectors.

The techniques of input-output analysis have had ready
applications in economic planning. It is alleged that Leontief
[2] developed aspects of input-output analysis during the
Second World War partly as an attempt to help identify
strategic weaknesses in the German economy. Ranking the
influences of single sectors on national economic activity
allows the identification of “key” sectors. For example, there
has been much discussion about firms that are “too big to fail,”
and there was an implicit understanding that the bailout of
General Motors was necessary because of the importance of
the automotive sector in the American economy.

To formalize these intuitive ideas, a deeper understanding
of the structures of national economies seems to be warranted.
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Any national economy is a complex system in which many
agents of different sizes interact by buying and selling
goods and services. Schweitzer et al. [3] suggest that an
understanding of these interactions on a systemic level may
be achieved by analyzing the underlying complex networks.
During the last decade, network analysis has been applied
successfully in physics, biology, and the social sciences [4–7].

The literature on economic networks is growing rapidly.
Several authors have studied international trade networks.
The early work used binary approaches [8,9], but it soon
became evident that trade ought to be analyzed as weighted
graph [10–12]. Interpreting the gross domestic product (GDP)
as a country’s fitness, Garlaschelli and Loffredo [13] proposed
a model reproducing the topology of bilateral trade. A gravity
model has been used to understand weighted trade networks
[10]. Furthermore, innovation networks [14], the “product
space” [15], ownership networks [16], and connections be-
tween banks [17] have been studied. Recently, Battistion
et al. [18] analyzed investment stocks, both at the level of
firms and aggregated to the level of regions. Lorenz et al.
[19] developed a general model to understand systemic risk;
they investigated cascading failures within systems of many
interacting (networked) agents like firms, banks, and funds.
Finally, Grassi [20] studied information flow across board
members of different firms; she focused on node centralities.

In fact, it is natural to interpret an input-output table
as a network. Each sector corresponds to a vertex, and
the flow of economic activity from one sector to another
constitutes a weighted directed edge. In complex network
theory, identifying key sectors and ranking the sectors’ roles
in an economy is the task of applying an appropriate measure
of node centrality to this input-output graph.

Vertex centrality measures have been studied extensively
for quite some time. Freeman introduced the notion of
centrality in a graph [21]; he defined the betweenness centrality
of a node as the average number of shortest paths between
pairs of other nodes that pass through it. Flow betweenness
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is based on the maximum capacity of flows between nodes. It
also includes contributions from some nongeodesic paths [22].
Another approach, closeness centrality, is commonly defined
as the inverse of the mean geodesic distance from all nodes
to a given one [23]. All these measures require flows in the
network to know an ideal route from each source to each
target, either order to find a shortest path or to maximize flow.
Addressing this potential deficiency, Newman defined random
walk betweenness [24]. He averages effective visits over all
possible random walks in a network.

Three properties of input-output graphs make it hard to
apply current centrality measures. First, at the usual level
of aggregation, these networks are dense, typically almost
completely connected. Thus applying measures based on
shortest paths makes little sense. As the topology is nearly
trivial, one needs to analyze edge weights. Second, they
are directed; for example, in the United States in 2000,
$13.5 billion of rubber and plastic products was used in the
production of motor vehicles, but only $53 million of the
output of the motor vehicle sector was used in the production
of rubber and plastic products. Third, self-loops play a central
role; in the same case, more than 60% of the total output of the
cars sector was used as its own input. Some authors, including
White and Borgatti [25], have extended centrality concepts to
the directed case, but to the best of our knowledge, no one until
now has examined node centralities that incorporate self-loops.
We derive two measures that are suited for such networks.
Both rely on random walks and each has an economic
interpretation.

The rest of the paper is structured as follows. The next
section provides the basic concepts. Section III derives two
centrality measures and shows their relation to economic
theory. We contrast our two approaches using a small example.
Section IV shows our empirical results using input-output data
from a wide range of countries. The proposed measures reveal
important aspects of different national economies. Moreover,
the consistency of the data allows us to compare nodes’
centralities across countries in an intuitive way. Finally, we
present some brief conclusions and suggestions for future
research. Implementations of the measures, the data, and the
results are available at http://hmgu.de/cmb/ionetworks.

II. BASIC CONCEPTS

A graph G = (V,E) consists of a set of vertices V and a
set of edges E ⊂ V × V . In our case, each edge (i,j ) ∈ E

is directed and assigned a non-negative real weight aij . By
definition, the graph may contain self-loops. The number
of vertices is denoted n. We consider strongly connected
graphs only; for any pair of nodes, there exists a directed
path connecting them.

The graph can be represented by its n × n adjacency matrix
A = (aij ), where the element (i,j ) represents the weight aij

of the edge from node i to node j . To keep notation simple,
we name the vertices by natural numbers, and we can identify
them with according indices in the adjacency matrix. Missing
edges correspond to zero weights in the adjacency matrix.
Then, the out strength of node i is ki = ∑n

j=1 aij . We denote
the set of out neighbors of i N (i) = {j |(i,j ) ∈ E}.

A. Input-output networks

An input-output table A is an adjacency matrix of a network
whose vertices are the sectors of an economy. Its edges
quantify the flow of economic activity between sectors. We
focus on the table of intermediate inputs. It records only sales
of goods and services by firms to other firms that are directly
consumed or used up as inputs in the production process. It is
not a closed system; the row and column sums are not equal.
In national accounts, the total value of the gross output of
a sector also includes sales for final demand: consumption,
investment, government purchases, and net exports. The total
value of gross inputs into a sector also includes payments to the
factors of production: gross operating surplus, compensation
to employees, and indirect business taxes [1].

B. Random walks

The movement of goods between the sectors of an economy
is best modeled as a random walk [26]. In graph theory, a
random walker starts out at a given position and repeatedly
chooses an edge incident to the current position [27]. These
choices are made according to a probability distribution
determined by the edge weights. The random walker proceeds
for an arbitrarily long time or until a prescribed goal is
reached.

An input-output table keeps track of the goods circulating
through an economy, consisting of the outputs of a large
number of firms in each sector. Hence, each entry is the
statistical aggregation of many individual sales. We are
interested in the transition probabilities of outputs produced by
a sector. These can be obtained by normalizing the input-output
matrix by its row sums. Hence in the following we work with
the transition matrix

M = K−1A, (1)

where K is the diagonal matrix of the out strengths ki .

III. TWO CENTRALITY MEASURES

This section derives two centrality measures that are suited
for weighted directed networks with self-loops. First, we
explain their economic foundations. Second, we discuss the
difference between divisible and indivisible shocks. Third,
we define and then relate our measures to others com-
monly used. Fourth, we give a small example that contrasts
them.

A. Economic intuition

Following the ideas of Fischer Black [28], we design both
our centrality measures to quantify the response of sectors
to an economic shock. Such a shock is a change in an
exogenous variable that has repercussions on the endogenous
variables under analysis [1]. In input-output accounts, prices,
technologies, firms, the distribution of profits, government
policy, and vector of final demands are exogenous, and the
flows of commodities and corresponding payments between
sectors are endogenous. Fischer Black hypothesized that the
business cycle might arise because of the propagation of such
shocks between the sectors of an economy [28]. Long and
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Plosser developed an elegant analysis of the US economy
based on this idea [29].

We trace supply shocks as they flow as intermediate
inputs through the business sectors of an economy. Their
random journeys end at the sector from which the extra
output eventually satisfies final demand, which we interpret
as the target of some random walk. Consider an extra dollar
of production in the car sector—perhaps as a result of a
government program—and the target “food products.” The
initial output will be sold randomly to another sector, according
to the pattern of sales in the input-output table. The original
dollar of extra revenue will be paid to capital, labor, or indirect
business taxes in “motor vehicles.” The supply shock becomes
an input into some sector, and it will increase economic activity
there by $1, akin to the conservation of current in a circuit.
The new output, again, will be sold to some sector. Eventually
this process will hit the target “food products,”where the extra
dollar of output exits the system to satisfy the final demand.
Averaging over all initial shocks or over all pairs of shocks and
targets, we define a node’s centrality by how quickly or how
frequently it is visited during this process. We employ these
two different measures, as we will see later that they allow us
to emphasize quite different economic aspects.

Every economic transaction consists of a real and a
monetary counterpart; thus when keeping track of the flow
of goods and services from a source to a destination, at the
same time we monitor the flow of a dollar in payments from
the destination back to the source.

B. Divisible and indivisible shocks

We have intentionally used the metaphor of a single dollar
traveling in the network because both our measures rely on
the properties of random walks of indivisible supply shocks.
We impose this restriction for two reasons. First, the economic
assumptions inherent in input-output accounting require that
the shocks are “not too large.” A large shock would change
the very structure of a national economy. Leontief accounting
assumes fixed proportions of all inputs into any productive
process; input-output tables change only very slowly across
time, and they are benchmarked only about once each decade.
Thus a small shock corresponds to a change in supply that
can be accommodated by the current structure of the national
economy. If the shock is sufficiently small, then it is also
natural to postulate that its effects are indivisible (or, at least,
not freely divisible).

Second, centrality measures, as reviewed in Sec. I, arise
from two quite different structural intuitions. First, one may
view a node as important in a network if it is close to all
other nodes. In this sense, a shock arrives quickly and easily
at a central node. Second, a node’s centrality can be based on
the degree to which it lies between other nodes; this concept
shows how the node mediates between all others. Focusing on
how quickly or how frequently a node is visited during the
random walk of an indivisible shock allows us to explore two
measures that naturally arise from both these graph-theoretic
intuitions and apply them readily to our sectoral data on
national economies.

Let us now discuss briefly the case of divisible shocks.
First, one would have to specify exactly how a shock splits

up for each transaction. A generic approach is to divide the
remaining fraction of the shock at each node according to the
probabilities inherent in the transition matrix M. In this case,
studying average properties of walks over source-target pairs
makes little sense, since the shock smears out immediately over
the whole graph in a densely connected input-output network.
Instead, one could analyze the following effect. Suppose a
supply shock starts at some sector. Then each transaction splits
it up, and its fractional effects accumulate at all sectors of the
economy. After some time, these will reach a steady state, since
the system conserves the absolute size of the shock. In the long
run, this distribution is independent of the initial shock. The
proportion of the shock present at any sector in the steady state
is therefore also an adequate measure of its centrality. But then
the proportion of a divisible shock in a particular sector is the
same as the likelihood of finding an indivisible shock there.
The frequencies that nodes are visited by an indivisible shock
can therefore be understood as a proxy for the steady-state
distribution of a divisible one. However, due to the immediate
smearing-out over the whole network, divisible shocks do not
provide us with a centrality measure arising from the intuition
of closeness to other nodes.

C. Random walk centrality

Freeman’s closeness centrality [23] is widely used in social
network analysis. It is commonly defined as the inverse of
the mean geodesic distance from all nodes to a given one.
Again, the shortest paths make little sense in densely connected
networks like input-output graphs. Moreover, they completely
ignore self-loops.

To generalize the concept of closeness, the distance between
nodes has to be measured in a different way. We propose
using the mean first-passage time (MFPT). This distance is the
measure of choice when dealing with random walk processes
[27]. The MFPT H (s,t) from node s to node t is the expected
number of steps a random walker who starts at s needs to reach
t for the first time:

H (s,t) :=
∞∑

r=1

r · P (s
r→ t). (2)

Here P (s
r→ t) is the probability that it takes exactly r

steps before the first arrival at t . Note that H (t,t) = 0 since
P (t

r→ t) = 0 for r � 1. The MFPT is not symmetric, even
for undirected graphs. This property reflects the fact that it is
much more probable to travel from the periphery to the central
nodes of a graph than to go the other way around.

We are interested in the first visit of the target node t . For
calculations we can consider an absorbing random walk that,
by definition, never leaves node t once it is reached. It is thus
appropriate to modify the transition matrix M by deleting
its t th row and column. This (n − 1) × (n − 1) matrix we
denote M−t .

The element (s,i) of the matrix (M−t )r−1 gives the proba-
bility of starting at s and being at i in r − 1 steps, without ever
having passed through the target node t . Consider a walk of
exactly r steps from s that first arrives at t . Its probability is

P (s
r→ t) =

∑

i �=t

((M−t )
r−1)simit .
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Plugging this into Eq. (2), we find

H (s,t) =
∞∑

r=1

r
∑

i �=t

((M−t )
r−1)simit .

The infinite sum over r is essentially the sum of the geometric
series for matrices

∞∑

r=1

r(M−t )
r−1 = (I − M−t )

−2, (3)

where I is the n − 1-dimensional identity matrix. Making this
inversion is the reason for having deleted one row and column
from the original transition matrix M . Lovasz [30] shows that
(I − M−t ) is invertible as long as there are no absorbing states,
whereas (I − M) is not. So

H (s,t) =
∑

i �=t

((I − M−t )
−2)simit .

For fast calculation, this can be easily vectorized as
H (.,t) = (I − M−t )−2m−t . Here H (.,t) is the vector of MF-
PTs for a walk that ends at target t and m−t = (m1t , . . . ,mt−1,t ,

mt+1,t , . . . ,mnt )′ is the t th column of M with the element mtt

deleted. Further, let e be an n − 1-dimensional vector of 1s.
Then m−t = (I − M−t )e. Hence

H (.,t) = (I − M−t )
−1e. (4)

This equation allows calculation of the MFPT matrix row by
row with basic matrix operations only. Using the Sherman-
Morrison formula [31], we can speed up the n matrix inversions
further.

Using the natural analogy with closeness centrality, we
define random walk centrality as the inverse of the average
MFPT to a given node:

Crw(i) = n∑
j∈V H (j,i)

. (5)

This measure is essentially proposed in Ref. [32]. Random
walk centrality incorporates self-loops indirectly because they
slow down the traffic between other nodes.

The economic interpretation of this measure is straight-
forward. Consider a supply shock that occurs with equal
probability in any sector. Then a high random walk centrality
of a sector means that it is very sensitive to supply conditions
anywhere in the economy. Hence, if one could predict sectoral
shocks accurately, one would short equity in a central sector
and go long on equity in a remote sector during an economic
downturn.

D. Counting betweenness

Our second approach is inspired by Newman’s random
walk betweenness [24]. We modify his concept slightly
and generalize it to directed networks with self-loops. The
proposed measure, denoted as counting betweenness, keeps
track of how often a given node is visited on first-passage
walks, averaged over all source-target pairs.

For source node s and target t �= s, the probability of being
at node i �= t after r steps is ((M−t )r )si . Then the probability

of going from i to j is mij . So the probability that a walker
uses the edge (i,j ) immediately after r steps is ((M−t )r )sjmij .
Summing over r , we can calculate how often the walker is
expected to use this edge:

Nst
ij : =

∑

r

((M−t )
r )simij = mij

∑

r

((M−t )
r )si

= mij ((I − M−t )
−1)si .

Note that a walker never uses an edge (i,j ) if j is not a neighbor
of i, since the according transition probability is 0. The total
number of times we go from i to j and back to i is Nst

ij +
Nst

ji . Here we differ from Ref. [24], which excludes walks
that oscillate and thus counts only the net number of visits.
On any walk from s to t , we enter node i �= s,t as often as
we leave it. Hence, on a path from s to t , vertex i is visted∑

j �=t (N
st
ij + Nst

ji )/2 times. For source s, target t , and vertex
i �= s,t , we define

Nst (i) =
∑

j �=t

(
Nst

ij + Nst
ji

)/
2. (6)

We allow for self-loops, hence a random walker may follow
the edge (i,i), in which case the vertex i is visited twice
consecutively. Since it is possible that i = j �= t , we have
to divide by 2 in all cases.

There are two special cases. If i = s, then the walker visits
node s one extra time when it starts

Nst (s) =
∑

j �=t

(
Nst

sj + Nst
js

)/
2 + 1.

Also, if i = t , then the walker is absorbed by vertex t the first
time it arrives there, and

Nst (t) = 1. (7)

We define the counting betweenness of node i as the average
of this quantity across all source-target pairs:

Cc(i) =
∑

s∈V

∑
t∈(V −{s}) N

st (i)

n(n − 1)
. (8)

Counting betweenness can be used as a microfoundation
for the velocity of money. Consider a dollar of final demand
that is spent with equal probability on the output of any sector,
and assume that all transactions must be paid for with cash,
not credit. Then the counting betweenness of sector i is the
expected number of periods that this dollar will spend there. If
it is a high number, then that sector requires many transactions
before the money is eventually returned to the household sector
as a payment to some factor of production. If each transaction
takes a fixed amount of time, then a sector with a high
counting betweenness is a drag on the velocity of money in the
economy.

E. Illustrative examples

Before applying our measures to actual data, we
demonstrate their behavior in small artificial examples.
Figure 1(b) shows a graph introduced by Newman
[24] to illustrate different concepts of centrality. Here,
all useful measures should obviously rank nodes of type b most
central. While concepts based on shortest paths do not account
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a

b

c

(a)

(b)

a b c

Shortest-path betweenness 0.2 0.64 0.2
Newman’s betweenness 0.27 0.67 0.33

Random walk centrality Crw 0.048 0.094 0.044
Counting betweenness Cc 1.93 2.80 1.03

FIG. 1. (a) This network is taken from Ref. [24]. (b) We contrast
centrality measures calculated for selected nodes. Even though c is
topologically central, our measures do not rank it highly, in contrast
to Newman’s betweenness. Instead, they focus on how quickly or
how frequently traffic within the network reaches a node. In a graph
with two completely connected subcomponents, a slightly remote
bridge-like node is not crossed over frequently.

for the topologically central position of node c, Newman’s
betweenness gives a high centrality to c. In contrast, our
measures both rank nodes of type a higher than node c. A
random walk spends a lot of time within the fully connected
subgraph on the left and seldom crosses over the bridge-like
node c. The former is why counting betweenness ranks node
a highly, and the latter is why random walk centrality gives it
a high ranking.

Figure 2(a) shows a small network that illustrates the
differences between our two measures. It emphasizes the
role of a self-loop. Depending on the self-loop weight a44

attached to node 4, either node 3 or node 4 has the highest
counting betweenness. In contrast, random walk centrality
ranks node 3 highest, no matter what the value of a44 is.
Counting betweenness strongly emphasizes the importance

0 1 2 3 4
−2

−1

0

1

2

self−loop weight a
44

 d
iff

er
en

ce
: C

(4
) 

−
 C

(3
)  random walk centrality

 counting betweenness

(a)                                (b)

a44

1

2

3 4

FIG. 2. (a) This small network illustrates the importance of a
self-loop. (b) The difference between the centrality of node 4 and
that of node 3 as a function of the self-loop weight a44. All other
links have unit weight. Random walk centrality always ranks node 3
highest. Counting betweenness ranks node 4 higher when a44 exceeds
a threshold near 1.6. If the self-loop has a large weight, it takes a long
time before a random walk leaves node 4 and enters the rest of the
network.

of self-loops, which are considered only indirectly by random
walk centrality.

IV. CENTRAL SECTORS IN MODERN ECONOMIES

Our data are the input-output accounts from the
STAN database at the Organization for Economic Co-
operation and Development (OECD), which are available
at http://www.oecd.org/sti/inputoutput/. They consist of 47
sectors and are benchmarked for 37 countries near the year
2000. Each country’s input-output table is one input-output
graph. These countries account for more than 85% of the
world’s GDP.

The data are consistent on three important dimensions.
First, they are designed to be consistent across countries.
Second, they are consistent with macroeconomic accounts;
indeed, they maintain the national income accounting identi-
ties. Third, they are consistent across time; so we can compare
Germany and the United States to themselves in two different
benchmark years. The input-output accounts are reported in
local currencies, but we have no need to use exchange rates or
GDP deflators because we are only considering the unit-free
transition matrices.

Some countries have sectors with no input or output. These
arise because of data limitations in the local national accounts.
The most serious case is the Russian Federation, where the
OECD records output in only 22 sectors. Such sectors hinder
the matrix inversion in Eq. (3). We therefore assign zero
centrality to these nodes and remove them from the adjacency
matrix.

A. Results for individual countries

Table I reports each country’s most central sector with re-
spect to our two measures. The complete results are available at
http://hmgu.de/cmb/ionetworks. It is striking that “wholesale
and retail trade” is most frequently the sector with the highest
random walk centrality. In many economies, this sector has
the highest share of final demand. Still, it is noteworthy that
our normalization does not depend on this fact. For example,
in Germany in 2000, this sector accounts for 12% of the final
demand. “Real estate activities” is the second most important
sector, accounting for 9.6% of the final demand, but its random
walk centrality is ranked only eighth.

Counting betweenness reveals the importance of Nokia in
Finland and the “motor vehicles” sector in several advanced
industrialized economies. Textiles play an important role in
China, Indonesia, and Turkey, showing the significance of that
manufacturing sector in countries with low wages. “Finance
and insurance” is most central for Luxembourg. Finally, we
note that “public administration, defense, and compulsory
social security” is most central in Israel, South Africa, and
the United States in 2000.

B. Comparison of different countries

The consistency of the data across countries allows us to
immediately compare the centralities of sectors over different
countries. We use a clustering technique to visualize our
results. A clustering assigns a set of objects into groups
according to some measure of similarity. The adjacency
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TABLE I. The most central sectors in the economies benchmarked by the OECD.

Country Random walk centrality Counting betweenness

Argentina Food products Health and social work
Australia Wholesale and retail trade Wholesale and retail trade
Austria Wholesale and retail trade Wholesale and retail trade
Belgium Wholesale and retail trade Motor vehicles
Brazil Wholesale and retail trade Food products
Canada Wholesale and retail trade Motor vehicles
China Construction Textiles
Czech Republic Wholesale and retail trade Construction
Denmark Wholesale and retail trade Food products
Finland Wholesale and retail trade Communication equipment
France Construction Motor vehicles
Germany 1995 Wholesale and retail trade Motor vehicles
Germany 2000 Wholesale and retail trade Motor vehicles
Great Britain Wholesale and retail trade Health and social work
Greece Wholesale and retail trade Wholesale and retail trade
Hungary Wholesale and retail trade Motor vehicles
Indonesia Wholesale and retail trade Textiles
India Land transport Food products
Ireland Construction Office machinery
Israel Public administration and defense, social security Health and social work
Italy Wholesale and retail trade Wholesale and retail trade
Japan Other business activities Motor vehicles
Korea Construction Motor vehicles
Luxembourg Finance and insurance Finance and insurance
Netherlands Wholesale and retail trade Food products
Norway Wholesale and retail trade Food products
New Zealand Wholesale and retail trade Food products
Poland Wholesale and retail trade Wholesale and retail trade
Portugal Wholesale and retail trade Health and social work
Russia Wholesale and retail trade Food products
Slovakia Wholesale and retail trade Motor vehicles
South Africa Public administration and defense, social security Public administration and defense, social security
Spain Wholesale and retail trade Construction
Sweden Other business activities Motor vehicles
Switzerland Wholesale and retail trade Chemicals
Turkey Food products Textiles
Taiwan Wholesale and retail trade Office machinery
USA 1995 Wholesale and retail trade Health and social work
USA 2000 Public administration and defense, social security Public administration and defense, social security

matrices are of dimension 2209 = 47 × 47, but our focus
on centrality reduces each economy to a vector of length
47. Reducing the complex networks to a list of centrality
values, we compress y the relevant information dramatically.
Moreover, we do not want to attach too much importance to
the actual centrality numbers themselves, since we removed
sectors without output in some countries. Instead, we are
concerned with rankings. Thus, for us two economies are
similar if their Spearman rank correlation of centralities across
the sectors is high.

An easy and commonly used clustering technique is
hierarchical clustering; Hastie [33] gives a good introduction.
This iterative algorithm groups economies starting with the
closest pair. In Fig. 3(a), Belgium and Spain are the two
most similar countries; hence, they are on the lowest-linked
branches. Again, by similar, we mean that the Spearman rank
correlation of centralities across the sectors is high. We use

complete linkage clustering to complete the dendrogram. This
method defines the distance between two sets X and Y as
the maximum of the distances between any element in X

and any element in Y . The clustering algorithm proceeds
iteratively by identifying nearest neighbors and showing the
distance between them using branch heights. When all the
initial singletons are linked, the algorithm stops.

Cutting the tree at a predefined threshold gives a clustering
at the selected precision. At the threshold 0.65, we find
three clusters in Fig. 3(a): (1) a group of advanced industrial
economies ranging from Belgium through the United States;
(2) a mixed group of countries where agriculture may be
important; and (3) a group of rapidly emerging economies
ranging from China through Russia.

Figure 3(b) shows a clustering of economies based on
the similarity according to counting betweenness. Note that
Taiwan is grouped quite differently in the two dendrograms.
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FIG. 3. (a) A hierarchical clustering of countries according to
random walk centrality. Gray-scale colors indicate the three important
clusters: (1) the industrial countries from Belgium through the United
States (black); (2) a mixed group from Argentina through Indonesia,
where agriculture and primary products are important (dark gray);
and (3) a group of emerging economies from China through Russia
(light gray). (b) Clusterings according to counting betweenness. The
clusterings according to the two measures are largely stable.

According to random walk centrality, it is in the middle of the
advanced industrial economies. But in the clustering according
to counting betweenness, it is a close neighbor of Korea, in
the “Asian Tigers” subgroup of the emerging economies. An
important reason for this difference is that Korea and Taiwan
have food products and textiles sectors, both of which have
strong self-loops. The clusterings capture the remnants of the
historical development process in which both economies were
based on manufacturing sectors just one generation ago.

TABLE II. Two advanced economies that are similar in their
nodes’ rankings according to random walk centrality.

Rank Sector in Belgium Sector in Spain

1 Wholesale and retail trade Wholesale and retail trade
2 Construction Construction
3 Other business activities Hotels and restaurants
4 Food products Other business activities
5 Chemicals Food products
6 Hotels and restaurants Real estate activities
7 Travel agencies Travel agencies
8 Motor vehicles Other social services
9 Agriculture Motor vehicles
10 Health and social work Agriculture

It is reassuring that the clusterings are, in large part,
stable across the two measures. The groupings are natural;
it is appropriate that the American and German economies,
each sampled 5 years apart, are most closely related to their
former selves. Leontief argued that the stability of input-output
relations across time was a good empirical justification for
using a fixed-coefficients technology in his original work [2].
These clusterings support his assertion.

C. Two detailed comparisons

Focusing on random walk centrality, we turn briefly to a
detailed study of two different pairs of similar economies.
Tables II and III examine the details inherent in the sector’s
rankings that arise from that measure.

The two nearest neighbors in Fig. 3(a) are Belgium and
Spain. Both are advanced economies. Table II reports the 10
most central sectors in each country. There is a remarkable
similarity between the flow of intermediate inputs in these
economies. The most central sectors in both countries are
“retail trade” and “construction.” These sectors are notoriously
procyclical, and random walk centrality shows that fact clearly.

India and Turkey are two developing countries that cluster
together. This pair is somewhat less similar than Belgium and
Spain; in Fig. 3(b), the length of the branch that brings them
together is twice as high as that for Belgium and Spain. “Food
products,”“construction,”and “hotels and restaurants” all have
high centrality rankings. These rankings seem to indicate

TABLE III. Two emerging economies that are similar in their
nodes’ rankings according to random walk centrality.

Rank Sector in India Sector in Turkey

1 Land transport Food products
2 Food products Wholesale and retail trade
3 Agriculture Construction
4 Construction Hotels and restaurants
5 Hotels and restaurants Agriculture
6 Textiles Finance and insurance
7 Health and social work Textiles
8 Wholesale and retail trade Land transport
9 Chemicals Travel agencies
10 Production Machinery and equipment
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that the sectoral composition of business cycles is somewhat
different in an emerging economy.

V. CONCLUSION

We have described two vertex centrality measures that are
based on random walks. A node’s random walk centrality is
the inverse of the mean number of steps it takes to reach
it, averaged over all starting nodes. Counting betweenness
measures the expected number of times that a random walk
passes a certain node before it reaches its target, averaged
over all pairs of sources and targets. Both measures allow
the analysis of weighted directed networks with self-loops.
The need for such measures arises from interpreting economic
questions within a graph-theoretic framework. We expect that
our techniques will be useful for analyzing payment networks
and other financial systems. Moreover, any coarsely grained
network—such as one describing clubs or teams, not just
individuals themselves—will have important self-loops. Our
measures will serve well to describe this kind of network
architecture. We agree with Estrada et al. [34] that there is no
best measure of centrality, and we followed their advice and
developed two measures that are based on economic theory. We
verified our approaches with the application to real complex
networks.

We have directed our attention to the flow of economic
activity as intermediate inputs before they exited the system

for use in final demand. Our measures identify a central node
as a sector that is affected most immediately or most strongly
by a random supply shock.

Applying these measures to OECD data has revealed
important aspects of different national economies. We have
taken full advantage of the consistency of the data across
countries and given hierarchical clusterings of the nodes’
rankings in these networks. The clusterings were intuitive,
grouping countries with similar levels of development.

There is a lot more work to be done in this area. The theory
of networks has flourished in the last decade, and consistent
international data have also become widely available during
this time. These data have a time dimension, and one may
begin to study the temporal evolution of economic networks.
This may well enable researchers to connect generative models
of networks with observations from the real world.
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