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Deterministic ripple-spreading model for complex networks
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This paper proposes a deterministic complex network model, which is inspired by the natural ripple-spreading
phenomenon. The motivations and main advantages of the model are the following: (i) The establishment of
many real-world networks is a dynamic process, where it is often observed that the influence of a few local events
spreads out through nodes, and then largely determines the final network topology. Obviously, this dynamic
process involves many spatial and temporal factors. By simulating the natural ripple-spreading process, this
paper reports a very natural way to set up a spatial and temporal model for such complex networks. (ii) Existing
relevant network models are all stochastic models, i.e., with a given input, they cannot output a unique topology.
Differently, the proposed ripple-spreading model can uniquely determine the final network topology, and at the
same time, the stochastic feature of complex networks is captured by randomly initializing ripple-spreading
related parameters. (iii) The proposed model can use an easily manageable number of ripple-spreading related
parameters to precisely describe a network topology, which is more memory efficient when compared with
traditional adjacency matrix or similar memory-expensive data structures. (iv) The ripple-spreading model has a
very good potential for both extensions and applications.
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I. INTRODUCTION

Complex networks, i.e., networks whose structure is
irregular and dynamically evolving in time, describe a wide
range of systems in nature and society, and are all around
us in our daily life [1–6]. In the past few decades many
efforts have been made to model and analyze various complex
networks [1,2]. Most network models can be classified as
stochastic, because they have a typical feature in common:
A stochastic model abstracts one or a few network properties
or parameters in order to capture in quantitative terms the
underlying organizing principles of complex networks, and
these network properties or parameters can estimate what the
network looks like, but cannot guarantee an exact or unique
topology. In other words, different network topologies may
have exactly the same values for the specified properties or
parameters. For instance, in the classic random graph theory
[7], the connection probability is the core parameter of the
network model. In the generalized random graph model [8], the
degree distribution following a power law is used as the input
in order to be able to describe the scale-free character of real
networks that the classic random graph model cannot capture.
In the theory of evolving networks [9], the parameter, so-called
preferential attachment, is often used to model scale-free real
networks. In a recently reported spatially embedded random
network model [10], the connection probability is formulated
as a function of distance between nodes. In either of the
above network models, even if the input is fixed, e.g., the
connection probability, power law for degree distribution, or
preferential attachment is fixed, the output of the model is
enormous, and what the output topology exactly looks like is
largely determined by chance. Therefore, they are all stochastic
models. Except those network properties which explicitly

depend on the input parameters, the output topology of the
models is largely unpredictable or uncertain in terms of other
network properties. As a result, it is difficult to apply these
models in network design, such as the topology optimization
problem.

In this paper we will propose a deterministic complex
network model inspired by the natural ripple-spreading
phenomenon. The model is hereafter called the ripple-
spreading network model (RSNM). In this model, some
ripple-spreading related parameters (RSRPs) are defined as
input. Unlike stochastic models, once the values of input
are fixed, the output network topology will also be fixed
and unique in the model. Therefore, we can adjust these
RSRPs in order to improve the network topology in terms
of concerned network properties. Furthermore, there is great
freedom and flexibility to modify and extend the RSNM. For
instance, the proposed RSNM can easily be extended to a
semideterministic version and a stochastic version. Another
big advantage of the proposed RSNM is, compared with
conventionally adjacent matrix or other memory-expensive
data structures, the RSNM can actually use a handful of
parameters to record the topology of a complex network,
no matter the network scale. The memory efficiency of
RSNM makes it very friendly to population-based optimiza-
tion algorithms in the optimization of large-scale network
topology.

The remainder of this paper is organized as follows. Sec-
tion. II explains the details of the proposed RSNM. Section. III
analyzes some important properties of the model. Section. IV
discusses some potential modifications and extensions of the
proposed model, and Sec. V gives some simulation results. The
paper ends with some conclusions and discussions on future
work in Sec. VI.

046123-11539-3755/2011/83(4)/046123(14) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.046123


HU, WANG, LEESON, HINES, AND DI PAOLO PHYSICAL REVIEW E 83, 046123 (2011)

II. BASIC RIPPLE-SPREADING NETWORK
MODEL (RSNM)

A. Basic idea of RSNM

The basic natural ripple-spreading phenomenon is as
follows. Suppose a bunch of stakes are randomly distributed
in a quiet pond. Then suddenly a stone is thrown into the pond,
and an initial ripple is generated from the point where the stone
hits the quiet water. When the ripple reaches a near stake, a
new ripple is generated around the stake due to the reflection
effect. Hereafter, for the sake of consistency, we call such a
new ripple as a responding ripple, and the ripple which triggers
the responding ripple as a stimulating ripple. A responding
ripple may trigger new responding ripples around other stakes.
As the initial stimulating ripple spreads out, more and more
responding ripples are stimulated around stakes. However,
since the point energy on the stimulating ripples decays as
the ripples spread out, those responding ripples triggered at a
late phase could hardly be noticed.

Now, we replace the stakes with a set of wireless vibration
sensors. Each sensor can detect and measure the point energy
when a stimulating ripple reaches the sensor. If the point energy
is above a preset threshold, then the sensor will generate a
responding ripple, whose initial energy is a function of the
point energy of the stimulating ripple, e.g., multiplying the
point energy by an amplifying factor. If the stimulating ripple
comes from another sensor, then the current sensor will com-
pare the point energy against another preset threshold, once
above which a permanent communication will be established
between the two sensors. Obviously, the amplifying function
of a sensor makes it possible for the information associated
with the stone hitting the quiet pond to propagate through the
whole wireless sensor network, even though the point energy
of the initial stimulating ripple may decrease quickly below the
threshold. Suppose each sensor can generate no more than one
responding ripple, in other words, each sensor can be activated
no more than once. Then, after all ripples decay, we will get
a network according to those permanent communications, i.e.
links, established between wireless sensors, i.e., nodes. Clearly
there are some factors affecting the final network topology:
for instance, how many stones hit the pond to generate initial
stimulating ripples, where do they hit the pond, what is the
mass of each stone (will determine the initial energy of the
associated stimulating ripple), what are the preset values for
the thresholds, and what is the amplifying factor of each
sensor? By mathematically formulating these factors and the
relationships between them, we can get a deterministic model
for complex networks. The mechanism of this ripple-spreading
model is intuitively illustrated in Fig. 1.

B. Ripple-spreading related parameters (RSRPs)

Here we give the mathematical descriptions of those factors
discussed above, which hereafter we call ripple-spreading
related parameters (RSRPs).

The first group of RSRPs are associated with the epicenters
of initial stimulating ripples (EISRs). Suppose NEISR stones
of different mass hit the pond in different points at different
time instants, i.e., there are NEISR EISRs, EISR i, i = 1, . . . ,

NEISR, has an initial point energy of EEISR(i), its coordinates

are [xEISR(i),yEISR(i)], and it is not active until time instant
TEISR(i).

The second group of parameters is related to the nodes
which are to be connected in order to generate a network.
For the sake of simplicity but without losing generality, we
suppose all nodes are distributed in a limited two-dimentional
space in this paper. It is also assumed that the total number
of nodes, NN, and their locations, [xN(i),yN(i)], are already
given and fixed. To get different topologies from this fixed set
of nodes, we introduce three RSRPs to each node, α(i), βR(i),
and βL(i), which are the amplifying factor, the threshold to
generate a responding ripple, and the threshold to establish a
link, for node i, i = 1, . . . ,NN, respectively.

With the above RSRPs, the proposed complex network
modeling process can be mathematically described as follows.

Step 1. Initialize the current time instant, i.e., t = 0. Initialize
the current point energy of each EISR as

eEISR(i,t) = EEISR(i), i= 1, . . . ,NEISR, (1)

Since each node has no initial energy, i.e., EN(i) = 0,
therefore its current point energy is

eN(i,t) = EN(i) = 0, i = 1, . . . ,NN. (2)

Assume each EISR or node has a ripple with a current radius
of 0, i.e., rEISR(i,t) = 0 or rN(i,t) = 0.

Step 2. If the stopping criteria is not satisfied, do:
Step 2.1. Let t = t + 1.
Step 2.2. Check t against TEISR(i). If t > TEISR(i), then

update the current radius and point energy of EISR i as follows:

rEISR(i,t) = rEISR(i,t − 1) + s, (3)

eEISR(i,t) = fdecay[EEISR(i),rEISR(i,t),t], (4)

where s is the spreading speed of ripples, i.e., the change in
the radius of a ripple during one time instant, and fdecay is a
function defining how the point energy decays as the ripple
spreads out. A typical decaying function may be

fdecay[EEISR(i),rEISR(i,t),t] = η
EEISR(i)

2πrEISR(i,t)
, (5)

where η is a coefficient and π is the mathematical constant.
Clearly η has an important influence on the decaying speed of
ripples, and will therefore affect the final network topology.

Step 2.3. Check which new nodes are reached by the ripples
of EISRs. Suppose DEISR(i,j ) is the distance between EISR
i and node j. If EN(j ) = 0 and DEISR(i,j ) � rEISR(i,t), then
node j is reached by the ripple associated with EISR i. If
eEISR(i,t) � βR(j ), then node j is activated by EISR i, and
generates a responding ripple with

EN(j ) = α(j )eEISR(i,t), (6)

and eN(j,t) = EN(j ).
Step 2.4. If eN(i,t − 1) > 0, i = 1, . . . ,NN, then update the

current radius and point energy of the ripple starting from node
i in a similar way to EISRs, i.e.,

rN(i,t) = rN(i,t − 1) + s, (7)

eN(i,t) = fdecay[EN(i),rN(i,t),t]. (8)
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(a)

(b)

time

(c)

(d)

Activated

Epicenter of initial stimulating ripple (EISR) Normal node Link

Point energy ≥ Threshold?Yes No

Link node Activate node Link and activate node Leave node alone Calculate probabilities

Which threshold is reached?

Link threshold Both thresholdsActivation threshold

Allow random links?

No Yes

FIG. 1. Mechanism of using ripple-spreading method to model networks: (a) The point energy of a stimulating ripple decays as it spreads
(the strength of point energy is reflected as the thickness of the ripple). (b) At least one threshold needs to be specified, against which the point
energy of a stimulating ripple is compared to determine whether or not a node should be linked and/or activated, or to calculate the probability
of a node being linked and/or activated. (c) A point-energy amplifying factor needs to be set up, so that when a node is activated by a stimulating
ripple, the starting point energy of the responding ripple is determined by multiplying the point energy of the stimulating ripple by the factor.
(d) Due to the decaying point energy, the threshold, and the amplifying factor, the location of an EISR will affect the network topology (in the
first case, no link, while in the second case, linked).

Basically, Eqs. (3)–(8) show that, no matter where the
ripples originate, they should have the same spreading speed
and the same decaying function, just as in the nature world.
However, this may be amendable in order to get a more
complicated artificial model.

Step 2.5. Check which new nodes are reached by the ripples
of other nodes. Suppose DN(i,j ) is the distance between node i
and node j. If EN(j ) = 0 and DN(i,j ) � rN(i,t), then node j is

reached by the ripple generated by node i. If eN(i,t) � βR(j ),
then node j is activated by node i, and generates a responding
ripple with

EN(j ) = α(j )eN(i,t), (9)

and eN(j,t) = EN(j ). If eN(i,t) � βL(j ), then a connection
between node i and node j is established, i.e.,

A(i,j ) = A(j,i) = 1, (10)
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(a) (b)

Epicenter of stimulating ripple

Stimulating ripple Responding ripple

Epicenter of responding ripple

(c) (d)

FIG. 2. Two behaviors and four combinations: (a) Not linked and
not activated; (b) linked but not activated; (c) not linked but activated;
(d) linked and activated.

where A is the adjacency matrix which records the network
topology.

Different stopping criteria may be used in step 2. For
instance, the current time instance is beyond a specific time
window, no EISR or node has a current point energy above
any threshold, or the upper bound for the number of total links
is reached.

From the above network modeling process, one can see
there are two basic behaviors for each node: being activated
and being connected. The evolving of a complex network is
based on these two behaviors, which are mainly determined by
two thresholds, βR(i) and βL(i). These two behaviors may have
four combinations, as illustrated in Fig. 2, which contribute to
the complex evolving behavior of a random network.

Also from the modeling process proposed above, one can
see that the network topology is largely determined by the
RSRPs. Actually, every given set of values for the RSRPs
will result in a unique topology, and given different values
for the parameters, different topologies will be generated.
Figure 3 gives four simple examples about how the values of
the RSRPs affect the output topologies. In the four networks
in Fig. 3, all other RSRPs have the same values, but the
locations of four EISRs are different. As a result, there are
four different topologies. It should be pointed out that the
feature that every given set of values for the model parameters
will lead to a unique topology is distinct from other models
of random networks, where the model parameters (e.g., the

connection probability in the classic random graph theory and
the preferential attachment in the theory of evolving networks)
cannot uniquely determine network topology. Because of this
deterministic feature, we call the proposed model a determin-
istic model of random networks. Despite the deterministic
feature of the proposed model, random network properties
may be captured by the random setup of the RSRPs, as will be
analyzed in the next section.

With these RSRPs, the proposed RSNM can easily and
naturally capture and/or reflect spatial and temporal features
in many real-world complex networks. For instance, the impact
of earthquakes through a risk chain and the breakout of
plagues in a community can be described as evolving networks
triggered by a few initial simulating ripples; the threshold of
nodes is related to the vulnerability of infrastructure and the
immunity of individuals, and the amplifying factor of nodes
to connectivity of infrastructure and the social activeness of
individuals.

III. FURTHER ANALYSIS ON PROPERTIES OF RSNM

In this section, we aim to analyze some properties of the
proposed RSNM. In particular, we will give some conditions
under which the proposed model will generate a network
topology with certain properties.

For a network with NN nodes, the number of total potential
edges between nodes is

NPE = NN(NN − 1)/2. (11)

For each pair of nodes (i, j), let DN(i,j ) denote the length
of the potential edge between node i and node j, i.e., the direct
distance between node i and node j, regardless of whether there
is an actual connection between the pair of nodes. Since all
nodes are distributed in a limited space, we can assume LU

and LL are the maximal and minimal length in all potential
edges, respectively. For the sake of simplicity, unless specified
otherwise, we assume all ripples have the same spreading
speed s and the same point-energy decaying function fdecay

as given by Eq. (5), and all nodes have the same activating
threshold βR, the same connecting threshold βL, and the same
amplifying factor α.

A. Completely connected graph

We have the following conditions under which the proposed
RSNM will generate a completely connected graph, where all
potential edges between nodes are established.

Condition 1. If the inequality

η
αβR

2πLU
� max(βR,βL) (12)

holds, then once a node is activated by any initial stimulating
ripple, the RSNM will generate a completely connected graph.
For proof, see Appendix A.

Clearly, if βR � βL, then Condition 1 can be simplified as
follows.

Condition 2. If the inequality

ηα � 2πLU (13)
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FIG. 3. (Color) An illustration regarding how the distribution of EISRs affects network topology: EEISR = 18850.0, βR = βL = 5.0, α =
1036.7, and the coordinates (x,y) of four EISRs are (194.6, 397.9), (−194.9, −281.1), (−865.0, −329.3), and (222.4, 672.6) in (a), (692.6,
−652.8), (−969.9, −521.3), (766.0, 588.9), and (304.2, −755.3) in (b), (891.0, −488.7), (−276.9, 853.9), (−660.1, 4.9), and (736.3, 508.) in
(c), and (−865.0, −329.3), (222.4, 672.6), (653.8, −863.3), and (−123.3, 886.3) in (d), respectively. J is an objective function defined as the
sum of the power of the node degree deviation from the desirable average degree.

holds, then once a node is activated by any initial stimulating
ripple, the RSNM will generate a completely connected graph.

Since the distribution of nodes is fixed, LU is then fixed.
From the above two conditions, one can see that the RSRPs
βR,βL, α, and η play a crucial role in generating a completely
connected graph.

It should be noted that even if the above conditions are
not satisfied, the RSNM could still generate a completely
connected graph, as long as the initial stimulating ripples have
a huge enough initial energy, such as satisfying the following
condition.

Condition 3. For an initial stimulating ripple i, i = 1, . . . ,

NEISR, if

EEISR(i)

maxj=1,...,NN DEISR(i,j )
� max

(
2πβR

η
,
4π2LUβL

αη2

)
,

(14)

then the RSNM will generate a completely connected graph.
For proof, see Appendix B.

B. Connecting all nodes

Real-world networks are almost always not completely
connected, and usually a small portion of potential edges
are actually established. Therefore, compared with how to
generate a completely connected graph, people are more
interested in how to generate a graph where all nodes are
connected.

Before we give some conditions for the proposed RSNM to
connect all nodes, we need to introduce a unique definition
of the distance between nodes: maximum TSP (traveling
salesman problem) edge length, denoted as DTSP. Suppose
we can find the shortest open TSP route to connect all nodes,
then DTSP is the length of the longest edge in this shortest open
TSP route.
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Condition 4. If the inequality

η
αβR

2πDTSP
� max(βR,βL) (15)

or

ηα � 2πDTSP and βR � βL (16)

holds, then once a node is activated by any initial stimulating
ripple, the RSNM will generate a graph where all nodes are
connected. For proof, see Appendix C.

Actually, we can replace DTSP with some other appro-
priately defined distances in order to connect all nodes. For
instance, suppose we know every open TSP route. Each open
TSP route has its own longest edge. Then we find and use
the minimal one in such longest edges, which is obviously no
larger than DTSP. This will ease Condition 4. However, it is very
difficult, if not impossible, to find the minimal longest edge
in all open TSP routes. Actually, it is already very difficult
and time consuming to find DTSP, particular in the case of
a large NN. Therefore, from a practical point of view, it is
necessary to replace DTSP with a distance which is easy to
calculate, particularly in the case of large-scale networks. To
this end, we can construct an open TSP route efficiently as
follows: (i) Start with a randomly chosen node, and connect
this node to its nearest node; (ii) connect the newly connected
node to its own nearest unconnected node, until all nodes are
connected. Then we can use the longest edge in this open TSP
route to replace DTSP in Condition 4. So far, Condition 4 can
guarantee that the graph generated by the RSNM will include
at least one chain connecting all nodes [the definition of the
chain is illustrated in Fig. 4(a)]. If we use close TSP routes
rather than open TSP routes, then Condition 4 can guarantee
that the graph generated by the RSNM will include at least
one loop connecting all nodes [the definition of the loop is
illustrated in Fig. 4(b)].

The influence of initial stimulating ripples can be partially
reflected in the following condition.

Condition 5. For an initial stimulating ripple i, i = 1, . . .

,NEISR, if

EEISR(i)

minj=1,...,NN DEISR(i,j )
� max

(
2πβR

η
,
4π2LUβL

αη2

)
(17)

holds, then the RSNM will generate a graph where all nodes
are connected. For proof, see Appendix D.

By easing Condition 4, we can derive another very useful
condition, which cannot guarantee that all nodes will be
connected, but can guarantee that all nodes will be activated.

Condition 6. If the inequality

ηα � 2πDTSP (18)

holds, then once a node is activated by any initial stimulating
ripple, then every other node will be activated under the
RSNM. For proof, see Appendix E.

C. Cluster

A cluster is a subgraph where every node connects to all
other nodes within it. Conditions 1 and 2 will be very useful to
estimate clusters in the resulting graph. For given NN nodes,
once the values of the RSRPs, such as βR,βL, α, and η, are
set up, then with Conditions 1 and 2 we can estimate whether
a certain subset of the NN nodes will form a cluster under
the RSNM. First, we need to check what is the distance
of the longest potential edge between the subset of nodes.
Then, we replace the LU with this distance in Conditions 1
and 2 to see if a cluster will be formed. Usually, less nodes
included in the subset means a smaller distance of the longest
potential edge in the subset, and once βR,βL, α, and η are
given and fixed, this implies that Conditions 1 and 2 are more
likely to be satisfied, and therefore a cluster is more likely
to form. Actually, once βR,βL, α, and η are given and fixed,
then according to Conditions 1 and 2, we can work out two
threshold values. Then for any subset of nodes with its longest
potential edge shorter than the threshold values, as long as one
node within this subset is activated (such as if Condition 6 is
satisfied), we know for sure that this subset of nodes will form
a cluster. It should be noted that all the above conditions, i.e.,
Conditions 1–6, are sufficient conditions. Therefore, even if a
subset of nodes has its longest potential edge larger than the
threshold values calculated according to Conditions 1 and 2,
it does not means this subset of nodes will not form a cluster
under the given values for βR,βL, α, and η. Actually, many
other factors, such as the initial stimulating ripples, also have
an important influence on the forming of clusters. So, a cluster
may still form even though Conditions 1 and 2 are not satisfied.

D. Degree distribution

The degree distribution of a graph generated by the RSNM
is a function of the spatial distribution of NN nodes and
the RSRPs. We can roughly estimate the degree distribution
according to the following condition.

Proposition 1. Suppose every node is activated under a
given set of values for βR,βL, α, and η (such as when Condition
6 is satisfied). Let DDD be the value of (ηαβR)/(2πβL), i.e.,

DDD = ηαβR

2πβL
. (19)

Then, in the graph generated by the RSNM, the number of
nodes whose degree is at least k is no smaller than the number

(a) (b)1

2 3 4 n

(c) 1

2 3 4 n

1

2 3 4 n

FIG. 4. Network structural motifs corresponding to Conditions 4 and 5: (a) Chain; (b) loop; (c) fan.
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of nodes, each of which has k other nodes to which the distance
is no larger than DDD.

Degree distribution is an important statistic measure for
describing a random network. Obviously, Proposition 1 shows
that some spatial factors, such as the distribution of the NN

nodes, play an important role in determining the topology of
resulting networks. This echoes the fact that many real-world
networks are formed at least partially according to some spatial
factors. For example, people make friends largely with those
who live spatially close to them (although they may move
far away from each other after they have become friends).
Another example is that things such as the behavior of people,
the function of organizations, and the culture of countries are
relatively easy to be influenced by those spatially around them.
A third example is that the spreading of infective diseases
usually has a distinguishable spatial pattern. In these examples,
small-world features appear and spatial factors are the main
cause of such small-world features. Based on Proposition 1,
one can see that the RSNM proposed in this paper can well
capture such spatial small-world features in real-world random
networks.

E. Scale-free network topology

As is now well known, many real-world complex networks
are scale free [1,2]. Simply speaking, a scale-free network
has a power-law degree distribution, or put in an intuitive
way, most nodes only have one or a few links to other nodes
while there are a very few nodes, each of which may connect
many other nodes. Here, assuming that the nodes may have
different thresholds and amplifying factors, we will give some
conditions which may cause the RSNM to generate scale-free
topologies.

Proposition 2. Suppose all nodes will be activated, and the
following inequalities hold: for node n,

η
α(i)βR(i)

2πDN(i,n)
� βL(n), i = 1, . . . ,NN and

i �= , or η
mini=1,...,NN α(i) mini=1,...,NN βR(i)

2πLU
� βL(n),

(20)

ηk (maxi=1,...,NN
α(i))k−1 maxi=1,...,NEISR EEISR(i)

(2π )k(LL)k−1 mini=1,...,NEISR;j=1,...,NN DEISR(i,j )

< min
i=1,...,NN;i �=n

βL(i), k = 1, . . . ,NN. (21)

Then node n will connect to all other nodes, while there
will be no connection between other nodes. In other words, a
winner-takes-all network, or a pure fan with node n as the hub,
will be generated. For proof, see Appendix F.

Proposition 3. Suppose the following inequalities hold: for
node n,

η
α(n)βR(n)

2πDN(n,i)
� βL(i), i = 1, . . . ,NN and i �= , or

η
α(n)βR(n)

2πLU
� max

i=1,...,NN

βL(i), (22)

η
maxi=1,...,NEISR EEISR(i)

2π mini=1,...,NEISR;j=1,...,NN DEISR(i,j )
< min

i=1,...,NN;i �=n
βR(i),

(23)

η2 α(n)

4π2LL
max

i=1,...,NEISR

(
EEISR(i)

DEISR(i,n)

)
< min

i=1,...,NN

βR(i). (24)

Then once node n is activated, a winner-takes-all network
with node n as the hub will be established. For proof, see
Appendix G.

Basically, from Propositions 2 and 3, one can see that,
if a node has a very small link threshold and/or very large
amplifying factor, while all other nodes have a very large link
threshold, ripple threshold, and/or a very small amplifying
factor, then a winner-takes-all network, which is an extreme
case of a scale-free network, is likely to be generated by the
proposed RSNM. If only a subset of nodes, not all NN nodes in
the network, satisfy the conditions in Propositions 2 or 3, then
a winner-takes-all pattern will appear in the subset. Suppose
a very few subsets, which may vary in size and overlap each
other, exist satisfying the conditions in Propositions 2 or 3, and
together they cover all nodes in the network. Then it is likely
a scale-free network topology will be generated, where a few
hub nodes have connections to most other nodes.

However, one may say that either Proposition 2 or 3 fails
to give an explicit relationship between the RSRPs and a
general power law. As will be further discussed in Sec. IV, the
proposed RSNM is a rather complex and flexible model, and
many RSRPs as well as the spatial distribution of nodes work
together to determine the output network topology. Compared
with using a simple power law to model scale-free networks,
the complexity and flexibility of RSNM may be more helpful
to disclose why a power law exhibits in a particular real-world
complex network. For instance, allowing different βR,βL,
and α for the nodes actually reflects the diversity between
real-world individuals represented by nodes. In the study of
cultures, a country with a rich history may be more resistant
to the influence of external cultures, therefore, we may apply
larger βR and βL to the associated node in the network; in
the study of airline route networks, a hub airport is usually
associated with a major economic city, so we may set up
α and βL according to, say, the population and the gross
domestic product (GDP) of the associated city. By adjusting the
RSRPs and comparing the output topology with the real-world
network under consideration, e.g., a hub-and-spoke airline
route network [11–13], we can then study the influence of
different real-world factors by analyzing the values of the
RSRPs.

IV. MODIFICATION AND EXTENSION OF RSNM

It should be emphasized that this paper aims to introduce the
RSNM, a unique idea to model complex networks. Sections II
and III have only described a very basic model of RSNM.
Therefore, it is necessary here to give some discussions
regarding the full potentials of the proposed RSNM.

A. Flexibility in modification

At first glance, the RSNM proposed in this paper seems
much more complicated than those existing models for
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complex networks such as discussed in Refs. [7–10]. The good
news is, because of the complexity of the RSNM, there is great
freedom and flexibility to modify the basic RSNM described
in Secs. II and III in order to change and/or improve certain
properties of RSNM, or to study certain networks in a specific
problem.

As discussed in Sec. III E, allowing different thresholds and
amplifying factor for nodes may lead to scale-free networks.
Another way to make the RSNM to generate power-law degree
distribution is to introduce energy feedback behavior. Let us
suppose that when the ripple of a node activates another node
and establishes a link between the two nodes, some energy
will feedback from the newly activated node to the stimulating
ripple, in other words, the point energy of a node will be
increased every time when its ripple activates and connects
another node. This phenomenon is common in many social
networks. For example, the reputation and/or influence of a
person will increase when he or she has won trust from more
other persons. It is easy to see that the effect of energy feedback
behavior is similar to the effect of preferential attachment in
Ref. [9]. Therefore, this energy feedback behavior can also
contribute to the generation of scale-free topologies.

According to Proposition 1, a node in the basic RSNM
will connect to and only to those nodes which are within the
distance range estimated by DDD. However, in a real-world
random network, a node may not link to a spatially close
node but to a further away node. Therefore, we need to
modify the basic RSNM to allow more random connections.
Actually, this job can be done easily. For instance, we can use
different thresholds and amplifying factor for nodes. In many
real-world networks, nodes often have different characteristics,
e.g., people are different in terms of physical fitness and
immunity in the study of the breakout of plagues. Therefore,
we can randomly assign to nodes different thresholds and
amplifying factors according to the relevant statistic study,
say, a survey on people’s physical fitness level and immunity.
In this case, it is possible that a node may connect to another
further away node rather than some nearby nodes. These kinds
of connections will be random in some sense because the
characteristics of nodes are generated in a random manner.
Another way to achieve random connections to further away
nodes is to allow energy feedback behavior. Let us assume that
a node may be activated when and only when it is reached by
a ripple in the current time instant. In other words, if a node
is reached but not activated by a ripple, then this node will
never be activated by this ripple even if the ripple’s energy is
enhanced later through energy feedback. In this way, even if all
nodes have the same characteristics, a node may not connect
to nearby nodes, but it could link to some further away nodes.

Actually, there are many other possibilities to modify the
basic RSNM. In particular, it is very easy to modify the basic
RSNM in order to develop a unique model for the study of a
specific problem. For instance, the impact of earthquakes may
not spread as a circle, so we may redefine the shape of ripples
accordingly; in the study of the breakout of plagues, a person
may be reinfected after he or she has recovered from previous
infection, so we can allow nodes to be activated for multiple
times; we can even allow a node to generate several ripples
of different speeds and amplitudes at one time, in order to
simulate, say, the comprehensive international influence of a

country (obviously, the military power, economy, and culture
of a country may have different influencing behaviors and
patterns). These possible modifications make the proposed
RSNM highly suitable for the study of various real-world
complex network systems.

B. Extension to pure stochastic model

As emphasized in Sec. II, the proposed RSNM is a
deterministic model of random networks, i.e., a random
network is described by a few RSRPs, and once the values
of the parameters are given, the network topology will be
uniquely determined. The deterministic feature of the RSNM
is achieved by the ripple-spreading process proposed above,
and the random features of networks are reflected by the
random setup of RSRPs. However, it should be noted that
the deterministic model is just one submodel achievable by
the idea of using ripple-spreading processes to model random
networks. Actually, by slightly modifying some parts in the
deterministic model, one can get a semideterministic model
and a stochastic model with exactly the same ripple-spreading
concept.

Steps 2.3 and 2.5 in the network modeling process in Sec. II
define the details of the two behaviors of each node. In the
deterministic model, if and only if a threshold is reached, the
associated behavior will occur. Therefore, once the distribution
of nodes is given and fixed, the network topology is thoroughly
determined by the RSRPs, as illustrated in Fig. 5(a).

Based on the deterministic model, one can easily introduce
some stochastic features as following. In Step 2.3 or 2.5,
suppose a node is newly reached by a ripple. If the current
point energy of the stimulating ripple is above a threshold of
this node, then the node behaves as described in Step 2.3 or
2.5. In the case where no threshold of the node is reached, no
action is defined for the node in the deterministic model, while
in the semideterministic model, the node may still be activated
or connected according to a certain probability function. For
instance, when no threshold is reached, i.e.,

βR(i) > eEISR(j,t) or βR(i) > eN(j,t), (25)
βL(i) > eEISR(j,t) or βL(i) > eN(j,t), (26)

node i, the node which is newly reached by a ripple, will
generate a responding ripple at a probability of pR(i),

pR(i) = 2ωR(1− βR(i)
eEISR(j,t) ) or pR(i) = 2ωR(1− βR(i)

eN(j,t) )
, (27)

and/or establish a connection at a probability of pL(i),

pL(i) = 2ωL(1− βL(i)
eN(j,t) )

, (28)

where ωR > 0 and ωL > 0 are tail-off coefficients. The
probability functions defined by Eqs. (27) and (28) imply that
with less point energy, the smaller the probability of being
activated or connected, as illustrated in Fig. 5(b). Obviously,
in a final network topology of the semideterministic model,
some connections are thoroughly determined by the RSRPs,
just as in the deterministic model, while the other connections
are largely established in a random manner.

The third submodel is a stochastic model, where all con-
nections in a final network topology are determined partially
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(a)

Epicenter of initial stimulating ripple (EISR)

Normal node, i.e., potential epicenter of responding ripple

(b)

(c)

Link totally determined by EISRs Link determined by chance

FIG. 5. Three ripple-spreading submodels of random networks.
(a) Deterministic model: Whether or not a node will be linked totally
depends on the point energy of the stimulating ripple. In other words,
the node will be linked if and only if the point energy is above a
specific threshold value. Therefore, for a given set of nodes, once
the threshold value and the energy amplifying factor are set up,
the network topology is completely determined by EISRs, i.e., the
number, the distribution, and the energy of EISRs. Following are two
examples, where different locations for the EISR result in different
networks. (b) Semideterministic model: A node will be linked if the
point energy of the stimulating ripple is above a specific threshold
value. Otherwise, the probability of the node being linked is a function
of the threshold value and the point energy. Therefore, for a given
set of nodes, once the threshold value and the energy amplifying
factor are set up, some links are completely determined by EISRs,
while other links are generated somehow by chance, as illustrated
in the following. (c) Stochastic model: The probability of a node
being linked is a function of the threshold value and the point energy.
Therefore, for a given set of nodes, once the threshold value and the
energy amplifying factor are set up, all links are determined partially
by EISRs, and partially by chance, as illustrated in the following.

by the RSRPs, e.g., the distribution of EISRs, and partially by
chance, i.e., according to certain probability functions such as

pR(i) = 2ωR(1− Emax
eEISR(j,t) ) or pR(i) = 2ωR(1− Emax

eN(j,t) )
, (29)

pL(i) = 2ωL(1− Emax
eEISR(j,t) ) or pL(i) = 2ωL(1− Emax

eN(j,t) )
, (30)

where

Emax = max [α(j )EEISR(i)] , i = 1, . . . ,NEISR,

j = 1, . . . ,NN. (31)

Clearly, Eq. (31) guarantees no probability is larger than 1.

From the three submodels discussed above, one can see
that, although the RSNM originally aims to provide a deter-
ministic method to describe random networks, it is completely
compatible to the stochastic features of random networks.
The stochastic features can be introduced on two levels.
One level is composed of the RSRPs. By assigning random
values to these parameters, one can get random topologies,
even in the deterministic model. The other level includes the
probability functions such as given by Eqs. (27)–(30). These
probability functions allow stochastic features even for a set
of fixed RSRPs, just as in the semideterministic model and the
stochastic model.

Similar to the deterministic model, there is also great free-
dom and flexibility to modify the semideterministic model and
the stochastic model. For instance, the probability functions
given in Eqs. (27)–(30) are just some examples, and may be
changed according to the specific problem under considera-
tion. Besides continuous and monotonic probability functions
as Eqs. (27)–(30), piecewise and U-shaped probability func-
tions could also be the options in the study of certain problems.

C. Combination with population-based algorithms

The proposed RSNM makes it possible to design highly
efficient algorithms to resolve the network topology optimiza-
tion problem. As is well known, the optimization of network
topology is a NP-hard (non-deterministic polynomial-time
hard) problem. Population-based algorithms, such as genetic
algorithms (GAs), have the potential to resolve this problem
[14–16], but the widely used data structures, such as adja-
cency matrix and list of edges, to record network topologies
may usually jeopardize the scalability and practicability of
population-based algorithms. Basically, the adjacency matrix
is memory expensive and therefore can be used hardly by
population-based algorithms to optimize large-scale networks.
List of edges is not friendly to some important evolutionary
operations such as crossover in GAs. If list of edges is adopted
in GAs, then additional computationally expensive measures
have to be introduced, otherwise crossover will become
destructive rather than effective to find good topologies. For
instance, direct crossover of two lists of edges may cause
the same edge to appear in a chromosome twice, which is
infeasible; it is difficult to identify common edges shared by
two lists of edges [16,17]. Thanks to the RSNM reported
in this paper, a population-based algorithm may only need
to evolve some RSRPs, regardless of the network scale, in
order to optimize the network topology. For example, suppose
we want to generate evenly distributed connections between
nodes in Fig. 3, where the desirable average degree is 6, and
then the objective function J may be the sum of the power of
the node degree deviation from the desirable average degree.
From Fig. 3 one can see that, even by simply evolving the
location of EISRs, the value of the objective function J may be
reduced significantly, e.g., from 8404 in Fig. 3(a) to 2063 in
Fig. 3(d). Figure 6 gives a simple example to illustrate different
data structures that GAs may use to construct chromosomes
for the optimization of network topologies. Based on RSRPs
rather than the adjacency matrix or list of edges, population-
based algorithms will have better scalability and higher
computational efficiency in the optimization of large-scale
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FIG. 6. Chromosome structures: (a) Label nodes and links. (b) An actual network. (c) Corresponding vector representation [each gene
records the serial number of an actual connection, i.e., a gene C(j) = i>0 means link i is deployed, C(j) = 0 has no meaning. The length of a
chromosome is the upper bound for actual connections, LUB, which is no more than N(N−1)/2]. (d) Corresponding matrix representation [a
gene C(i,j) = 1 means node i and node j are linked. The size of a chromosome is N2. For undirected networks, the matrix may be simplified
into a vector of N(N−1)/2 genes]. (e) Binary representation based on the RSNM (the binary string records the values in binary format of
ripple-spreading related parameters, such as coordinates and energy of EISR, thresholds, and amplifying factor; chromosome size depends on
the required minimal sampling steps).

networks. In particular, the proposed RSNM combined with
population-based algorithms is suitable for describing and op-
timizing spatially embedded networks, which have a solid real-
world application background. For instance, communications
networks may involve range-dependent links; social networks
may involve distance-limited interactions between agents
existing in some (possibly abstract) space; transport networks
have an obvious spatial embedding; certain spatial patterns
often exist in breakout of infectious diseases while, more
generally, technological and commercial networks frequently
feature some cost-per-distance constraint on connectivity.
Developing such applications is out of the scope of this paper,
but is definitely an important direction for future research work
on the proposed RSNM.

V. SOME SIMULATION RESULTS

In this section simulations will be conducted to study some
basic properties of the proposed RSNM. The aim here is not to
provide a comprehensive experimental analysis of the model,
but to help readers to better understand the concept introduced
in this paper. To this end, three existing network models are
used for comparative purposes, and they are: (i) the random
graph model reported by Erdös and Rényi [7], denoted as
RGM, (ii) the grown graph model reported by Barabási and
Albert [18], denoted as GGM, and (iii) the spatially embedded
random network model reported by Barnett et al. [10], denoted
as SERNM. Basically, in the RGM, edges are placed at
random between a given set of nodes, in the GGM, both
edges and vertices are added, and one end of each edge is
added with linear preferential attachment, and in the SERNM,
edges are added with a probability which is a function of
the distance between the associated nodes. In the experiment,
some of the most commonly used network properties will be
calculated for the networks generated by each model, and then
a necessary comparative analysis will be conducted. These
network properties are the average path length (APL) between
connected nodes, the average distance of established edges
(ADEE), the clustering coefficient (CC), the assortativity
(ASSO), and the degree distribution (DD).

The design and the setup of the experiment are described
as following. In each test, 100 nodes are randomly distributed

in the rectangular area defined by two points: (−1000,−1000)
and (1000,1000). Based on these 100 nodes, the RSNM is
first applied to generate a random network, and the established
edges in the new generated network are counted. Then the
other three models are applied to the same set of nodes and
three networks are generated, and every network should have
the same number of established edges as the RSNM network.
Then the properties of these four networks generated in this test
are calculated and saved. Another new test is then carried out
starting with another 100 randomly generated nodes. In total,
100 random tests are conducted. Then we calculate the average
network properties for each model based on the 100 networks
it has generated during the 100 tests. Regarding the setup of
model parameters, for the sake of simplicity, the RSNM only
allows EISRs to change randomly, while all other RSRPs are
given and fixed during the experiment. These fixed RSRPs are
given as EEISR = 18850.0, βR = βL = 5.0, and α=1036.7. In
the RGM, the probability for random connection is set as 0.15.
In the GGM, the probability for linear preferential attachment
is formulated as min[1,0.05+0.01 × (the degree of a node)2].
In the SERNM, the probability for connection is formulated
as a distance-dependent piecewise function: If the distance
between two randomly chosen nodes is within [0,424.3], the
probability varies between [1,0.8] as a linear function of
distance; If the distance is within [424.3,509.1], the probability
varies between [0.8,0.1]; Otherwise, the probability varies
between [0.1,0]. It should be noted that the above setup of
the model parameters is rather random (see Refs. [7–10],
and [18]).

The simulation results are given in Table I and Fig. 7, from
which one may have the following observations.

(1) The RGM and the GGM have the smallest APLs,
followed by the SERNM, and the RSNM proposed in this
paper has the largest APL. This is largely because, in the
RGM and the GGM, there are many random connections
between spatially far-away nodes, and these connections make
them more likely to travel between any pair of nodes through
just one intermedium node. In the SERNM, there are fewer
long connections because more edges are established between
nearby nodes. In the RSNM, it is almost impossible to establish
an edge between two nodes where the distance between them
is larger than a certain threshold. Therefore, in the RSNM
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TABLE I. Comparative results between different network models.

Average path length (APL) Average distance of established edges (ADEE) Assortativity (ASSO) Clustering coefficient (CC)

RGM 2.0311 1015.0 0.0152 0.1346
GGM 2.0451 1006.6 0.0190 0.1723
SERNM 2.1920 605.7 0.0647 0.2039
RSNM 2.7106 366.5 0.2668 0.6897

network, if a pair of nodes is far away from each other, then
many intermedium nodes have to be passed in order to travel
from one node to the other. This is why the RSNM has the
largest APL.

(2) In terms of ADEE, the conclusion is the reverse of that
of APL, i.e., the RSNM has the smallest ADEE, while the
RGM and the GGM have the largest. This is understandable
for the same reason as in the case of APL: The RGM and the
GGM have many long connections between spatially far-away
nodes, while the RSNM establishes its most edges between
close nodes.

(3) When multiplying APL with ADEE, one can get an in-
teresting conclusion: In terms of traveling distance, the RSNM

proposed in this paper delivers the most efficient traveling
route networks (the average traveling distance between any
two nodes is just ∼1000), while the RGM and the GGM give
the worst (the average traveling distance between any two
nodes is over 2000). This implies that the RSNM may be very
useful in the topology design of many real-world networks,
such as transportation networks and power grids, where the
minimization of the overall traveling costs is often the major
concern.

(4) Regarding the ASSO, the RGM and the GGM are very
close to 0, which is the theoretical value for these two models
[19]. This means there is no obvious preference for a network’s
node to attach to others that are similar or different in any way
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FIG. 7. Degree distributions of different network models: (a) RGM; (b) GGM; (c) SERNM; (d) RSNM.

046123-11



HU, WANG, LEESON, HINES, AND DI PAOLO PHYSICAL REVIEW E 83, 046123 (2011)

in these two random network models. The RSNM has the
largest ASSO. This is probably because, given that all nodes
have the same values for the RSRPs, two close nodes between
which an edge has been established are likely to be activated
by the same stimulating ripple, then they may have a similar
initial point energy, and as a result, they may have a similar
impact on their neighborhoods.

(5) Regarding the CC, the RSNM has the largest value,
which means that, when compared with other random network
models, clusters are more likely to be present in the RSNM
networks. Referring to the discussion in Sec. III C, one can
see that the mechanism of the RSNM makes it more likely for
a subset of spatially close nodes to form a cluster.

(6) In Fig. 7, the gray lines are the degree distributions of
all networks in each model, and the black line is the average
degree distribution of the associated model. In this experiment,
one can see that the RGM has a Poisson distribution with 15
as the center. This is because the probability is set as 0.15 for
the RGM, and then for 100 nodes, the average degree should
be 15. For the GGM, due to the preferential attachment, a few
nodes have very high degrees, while most other nodes have
a relatively small degree, ∼10. For the reason discussed in
Ref. [10], the SERNM also has a Poisson distribution. In the
RSNM, the degree distribution is similar to that of GGM. This
is understandable: Those nodes close to the EISRs will usually
be activated with a high initial point energy, and therefore
they are capable of connecting more nodes than most other
nodes which are far away from the EISRs. In other words,
most nodes which are far away from the EISRs only have
small degrees, but those nodes close to the EISRs (the number
of such nodes is relatively much smaller) will have much
larger degrees. From Fig. 7(d), one may see intuitively that
the RSNM is capable of matching preferential attachment,
and therefore has the potential of generating scale-free
networks.

(7) One may notice that, in Fig. 7(d), sometimes there
are some nodes whose degree is 0, which means they are
not connected to the network. This is because, due to the
randomness in the generation of 100 nodes, it is likely that
the RSRPs and the DTSP do not satisfy either Condition 4 or
5. Allowing some nodes to remain unconnected is common
in many real-world network systems. For instance, in the
breakout of plagues, people living in isolated rural areas are
not likely to be influenced.

(8) It should be emphasized that this section of simulation
results is mainly used to help to demonstrate the concept of
the proposed RSNM within a limited space. Although some
observations have been made as given above, they still need
to be investigated in more depth in future work. For instance,
all RSRPs should be allowed to change randomly, so that
their roles in the model can be studied and fully understood;
a wide range of nodes rather than just 100 nodes should be
used to conduct tests; in particular, some purpose-designed
experiments will be important in the application of the RSNM
to simulate a specific real-world complex system.

VI. CONCLUSIONS AND FUTURE WORK

Inspired by the natural ripple-spreading phenomenon, this
paper reports a deterministic method to model complex

networks, which is called the ripple-spreading network model
(RSNM). A ripple-spreading process defined by some ripple-
spreading related parameters (RSRPs) is the central piece of
the model. Basically, assuming that the nodes of networks are
distributed in a space (real or artificial) and the distribution
of the nodes is fixed, then some initial ripples are randomly
generated in the space. As an initial ripple spreads out in
the space, its point energy decays gradually, and it reaches
every node one by one sooner or later. By comparing the point
energy of an incoming ripple with some preset thresholds
for a node, it can be determined whether this node will be
activated by the incoming ripple to generate a new ripple,
and whether this node will be connected to the node where
the incoming ripple originates. When a node is activated to
generate a new ripple, the initial energy of the new ripple will
be a function of the point energy of the incoming ripple. New
ripples are also able not only to activate other nodes to generate
more ripples, but also to establish new connections between
nodes, as long as their point energy is above the relevant
thresholds. As this ripple-spreading process goes on for a
while, a network topology will appear. Actually, the output
topology will be fully determined by the values of RSRPs,
such as the locations of the epicenters for initial ripples, the
thresholds to tell whether a node will be activated or connected,
the energy amplifying factor, and the coefficients to define the
point-energy decaying rate. Once the values for these RSRPs
are given and fixed, then the output topology will be unique.

Compared with existing models for random networks, the
RSNM proposed in this paper has some distinguishing advan-
tages: (i) The ripple-spreading process embedded in the model
can naturally capture many spatial and temporal characteristics
of many real-world complex networks, where the development
of network topology is largely and/or partially based on
the spreading out of the influence of some initial trigger
events. (ii) There is great flexibility and freedom to modify
and extend the deterministic RSNM, e.g., to develop more
stochastic versions of the model such as semideterministic
RSNM and stochastic RSNM. (iii) The proposed RSNM is
very friendly and compatible to population-based algorithms,
which makes it possible to develop highly efficient population-
based algorithms to optimize the topology of large-scale
networks.

It should be pointed out that major objective of this paper
is not to discuss all details of the proposed RSNM, but to
introduce the concept of RSNM. Therefore, extensive efforts,
both theoretical and practical, are still required in future
research, in order to obtain a comprehensive understanding
of the RSNM and also to fulfill the full potential of the
RSNM in extensions and applications. Some directions for
future research include the following: (i) Conduct a full-
scale theoretical study and statistical analysis of the RSNM
in terms of complex network properties, and develop new
conditions and theories. (ii) Based on some real-world sys-
tems, develop some problem-specific submodels by increasing
the complexity of the embedded ripple-spreading process.
(iii) Test the RSNM on some real-world networks and
systems and compare with other models. (iv) Develop new
population-based algorithms based on the RSNM, in order
to optimize the topology of some real-world networks and
systems.
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APPENDIX A: PROOF OF CONDITION 1

First we prove that all nodes will be activated once a node is
triggered by an initial stimulating ripple. For any node which is
first reached and then activated by an initial stimulating ripple,
one always has that the initial energy of the ripple of the node
satisfies

EN(i) � αβR. (A1)

If node j has not been activated by any initial stimulating
ripple, then assume it is first reached by the ripple of node i.
Then one has the point energy of the ripple of node i when it
reaches node j,

eN [i,DN(i,j )] = η
EN(i)

2πDN(i,j )
� η

αβR

2πLU
� max(βR,βL),

(A2)

which means node j will be activated by the ripple of node i.
Therefore once a node is activated by an initial stimulating

ripple, all other nodes will be activated either by initial
stimulating ripples or by the ripples of nodes.

Now we prove all potential edges between nodes will be
established. According to Eq. (A2), one can see that node i
will connect any node that its ripple reaches within distance
LU. Since LU � DN(i,j ) for j = 1, . . . , NN, node i will
connect all other nodes. Since every node will be activated
and have its own ripple satisfying Eq. (A2), every node will
connect all other nodes. Therefore, all potential edges between
nodes will be established to form a completely connected
graph. �

APPENDIX B: PROOF OF CONDITION 3

Due to limited space, we skip the details of this proof, which
is similar to the proof of Condition 1. One can easily see that

Eq. (14) is equivalent to

η
EEISR(i)

2π maxj=1,...,NN DEISR(i,j )
� βR, (B1)

η2 αEEISR(i)

4π2LU maxj=1,...,NN DEISR(i,j )
� βL. (B2)

Equation (B1) guarantees that all nodes will be activated,
and Eq. (B2) guarantees that every node will connect all other
nodes. �

APPENDIX C: PROOF OF CONDITION 4

Equations (15) or (16) can guarantee that at least all edges
included in the shortest open TSP route will be established.
Therefore, all nodes will be connected. �

APPENDIX D: PROOF OF CONDITION 5

Similar to the proof of Condition 3, it is easy to see that
Eq. (17) can guarantee that at least a fan that connects all
nodes will be formed [the definition of a fan is illustrated
in Fig. 4(c)]. �

APPENDIX E: PROOF OF CONDITION 6

Equation (18) can guarantee that, starting from the first
node activated by an initial stimulating ripple, every node will
be activated at least by the ripple of its neighbor node along
the open TSP route. �

APPENDIX F: PROOF OF PROPOSITION 2

Proof: Equation (20) guarantees node n will be connected
by all other nodes. The second inequality in Eq. (20) is much
easier to check. Equation (21) makes sure no links between
other nodes will be established. �

APPENDIX G: PROOF OF PROPOSITION 3

Proof: Equation (22) guarantees that, once node n is
activated, it will connect to all other nodes. The second
inequality in Eq. (22) is much easier to check. Equations
(23) and (24) make sure no other nodes will be activated
to generate ripples, and therefore no connection will be
established between these nodes. �
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