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Community detection in graphs using singular value decomposition
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A spectral algorithm for community detection is presented. The algorithm consists of three stages: (1) matrix
factorization of two matrix forms, square signless Laplacian for unipartite graphs and rectangular adjacency
matrix for bipartite graphs, using singular value decompostion (SVD); (2) dimensionality reduction using an
optimal linear approximation; and (3) clustering vertices using dot products in reduced dimensional space.
The algorithm reveals communities in graphs without placing any restriction on the input network type or the
output community type. It is applicable on unipartite or bipartite unweighted or weighted networks. It places no
requirement on strict community membership and automatically reveals the number of clusters, their respective
sizes and overlaps, and hierarchical modular organization. By representing vertices as vectors in real space,
expressed as linear combinations of the orthogonal bases described by SVD, orthogonality becomes the metric
for classifying vertices into communities. Results on several test and real world networks are presented, including
cases where a mix of disjointed, overlapping, or hierarchical communities are known to exist in the network.
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I. INTRODUCTION

A well studied but open problem in complex network
research is to identify communities or modules in complex
systems [1–4]. Many complex systems show the existence of
structural modules that play significant and defined functional
roles in the system [1,5,6]. In a graph, modules are identified
as densely connected node groups with sparser between
group connections. Identifying these modules is fundamentally
important to reveal the deep structure of the entire network
and functional patterns that may be causal in forming such a
structure or result from this structure. In many other complex
systems, for example the brain [7], the structure-function
relationship is so far not well understood and the way in which
modules are defined by community detection algorithms can
have significant impact on advancing the understanding of
such systems.

There are as yet a number of poorly addressed and open
issues associated with the community detection problem [1].
These issues focus around the central observation that, in
most community detection algorithms, the definition of a what
comprises a module or a community remains method-guided,
instead of guided by the underlying structure of the data set.
For example, a method that defines a community in terms of
strictly partitioned node sets will never discover overlapping
structures if they exist naturally in the data. Specifically,
a method is needed that has the capacity to reveal all of
the following possibilities if and where any occurs in the
underlying data: (a) there is no community structure, or the
community structure is (b) strictly partitioned, (c) overlapping,
or (d) partly both. Further, we would like this method to
(1) simultaneously provide information on scale and hierarchi-
cal modular organization; (2) have representational flexibility
to work equally well on weighted or unweighted unipartite
or bipartite networks; (3) not be sensitive to specific domains
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or networks; and (4) not impose any a priori assumptions on
properties of a community such as prespecifying the number
or size of communities, strict community membership, or the
number of hierarchical levels.

To address these aims, this paper presents an algortihm
that relates the singular value decomposition (SVD) of a
graph matrix followed by clustering of a reduced space
representation to the community structure detection problem.
We present two matrix representations, the signless Laplacian
for unipartite graphs and the rectangular adjacency matrix
for bipartite graphs. Matrix factorization using SVD allows
vertices to be represented as vectors in terms of derived
orthogonal bases and singular values; a vertex vector describes
the degree of coupling of a vertex with all other vertices as a
vector point in space. Then we compute an optimal reduced
dimensional approximation of this vector representation in a
linear least-squares sense. This causes the principal coupling
patterns to be retained as “signal” and discards the rest as
“noise.” Similar to principal component analysis (PCA), this
is a variance maximizing, covariance minimizing step. Finally,
we identify communities by applying a clustering algorithm
using dot products between vectors in this reduced dimensional
space; this allows the simultaneous identification of partitions,
overlaps, and hierarchy. A key role is played by the rate of
decrease in the magnitude of the singular values. In particular,
we show how the rate of decrease acts as a powerful heuristic
to identify the optimal number of clusters and to test for the
presence of hierarchy in the network.

The major contributions of the algorithm are: (1) it correctly
identifies if a community structure does or does not exist
in the network; (2) it operates on unipartite and bipartite
graphs and unweighted and weighted graphs; (3) it detects
overlapping and/or disjointed communities simultaneously
including cases where a graph may contain a mix of these
because vertices are not restricted to membership of only one
community; (5) it simultaneously reveals hierarchical modular
organization; (6) it does not impose the number or sizes of
communities, overlaps, or the number of hierarchical levels as
externally imposed parameters. Very cricually, the algorithm
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is computationally efficient as fast algorithms for SVD exist
even for very large and sparse matrices with routines available
in most commercially available software such as MATLAB;
see [8,9] for fast SVD algorithms and running time estimates.
The algorithm requires minimal code writing time.

We begin with a review of spectral algorithms for com-
munity detection to motivate our approach. We then present
our algorithm and test it on several benchmark and real world
networks.

II. BACKGROUND

The algorithm in this paper uses a modified spectral
approach. We review two aspects of the best known spectral
approaches, the spectral graph bipartitioning algorithm [10],
and Newman’s spectral modularity maximization algorithm
[2]: (1) the matrix form that is used for spectral decomposition
and (2) the index vector or matrix form in which a community
is defined in terms of a strict partitioning of vertices into two
or more communities. We then present an alternate spectral
approach, where a reformulation of these two aspects allows
us to propose an algorithm that has the properties outlined in
the Introduction.

In general, all spectral graph partitioning approaches use the
information contained in the eigenvectors and eigenvalues of
a suitable matrix representation of a graph. We let A represent
the adjacency matrix of a graph G with n nodes, where

Aij =
{

1 if an edge exists between nodes i and j,

0 otherwise.
(1)

For an undirected graph, A is symmetric. Further, let D be
the degree matrix, where

Dij =
{
di degree of node i when i = j,

0 when i �= j.
(2)

Then, the Laplacian matrix is

L = D − A, (3)

with

Lij =

⎧⎪⎨
⎪⎩

di when i = j,

−1 when i �= j and i is adjacent to j,

0 otherwise.

(4)

Spectral approaches operate on L (or other variants) to
partition the graph recursively, each time finding an optimal
bisection [11]. The graph is first partitioned into two modules
with respect to an optimization function, followed by a
recursive reapplication of the bisection step to find more
modules. The spectral bipartitioning algorithm [10] aims to
minimize the cut size R, defined as the number of edges running
between two groups of vertices into which a cut partitions a
graph. Following [2], the minimization function that is solved
is

minimize R = 1
4 sT Ls, (5)

where L is the Laplacian matrix, and an index vector
s = {s1,s2, . . . ,sn}, with each si = +1 or −1 depending on
which of the two modules vertex i is assigned to, with
the normalization condition sT s = 1. Following a parallel

formulation, Newman’s spectral approach [2] presents a
modularity function Q that is maximized to find a partition
that optimally divides the network into two modules. This
function is

maximize Q = 1

4m
sT Bs, (6)

where m is the number of edges in the graph, and s is the
partition vector as in Eq. (5). B is the modularity matrix
that measures the difference between the actual number of
edges existing between a pair of vertices and an expected
number derived from an equivalent random graph with the
same number of vertices and the same degree distribution but
with no community structure [2].

For details of deriving these two forms [Eqs. (5) and (6)],
we refer the reader to [2], and merely note here the equivalence
between the forms of the two optimization functions in (5) and
(6). Both these approaches represent s as a linear combination
of the eigenvectors vi of the Laplacian matrix L in Eq. (5) or
the modularity matrix B in Eq. (6), as

s =
n∑

i=1

aivi . (7)

To solve the optimization problems and minimize Eq. (5) or
maximize Eq. (6), s is chosen proportional to the eigenvector
corresponding to the second smallest eigenvalue of L or the
leading eigenvector of B. However, since s is, by definition,
constrained to take on discrete +1 or −1 values, an approx-
imate solution is resorted to in both cases, with si = +1 if
the ith element of the corresponding eigenvector is positive
and −1 if negative. This corresponds to the strict partition and
bisection assumption: Vertices can belong to only one of two
communities. For more than two communities, the vector s
is replaced by an n × k matrix S with k communities, with
i = 1 to n and j = 1 to k, such that

Sij =
{

1 when vertex i belongs to community j,

0 otherwise.
(8)

The strict partitioning assumption still holds. Thus, a priori
assumptions built into the definition of a community do not
permit identification of overlapping communities, even when
the eigenvectors and eigenvalues may implicitly contain this
information. We note that forcing an approximate solution may
throw away useful information contained in the eigenvectors
and eigenvalues that can potentially be used to shed more light
onto the community structure existing in the the graph.

Further, the spectral bipartitioning algorithm [10] asks the
user to choose the number and relative sizes of communities
beforehand and always provides a solution, whether or not
a clear community structure exists in the graph. Newman’s
modified approach [2] addresses most of these limitations by
using the modularity matrix instead of the Laplacian. However,
his approach is valid for unipartite graphs only and maintains
the strict partitioning assumption. Thus, overlapping modules
are not revealed. Recent studies have also shown that that
Newman’s approach has a resolution limit problem [12]:
It cannot detect smaller hidden substructures inside larger
communities.
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Extending Newman’s approach, Barber [13] explores
modularity in bipartite networks. Other approaches [14,15]
focus on module identification in bipartite and directed
networks. However, most of these methods maintain the strict
partitioning assumption. Other recent approaches focus on
finding overlapping communities [16,17], most noticeably
the algorithm by Palla et al. [5]. A few of these look
at hierarchical organization along with overlapping module
detection [18,19], but these methods do not apply to bipartite
graphs simultaneously. To the best of our knowledge, no
single algorithm addresses all the requirements outlined in
Sec. I. Further, from a methodological point of view, it
seems natural and promising to extend and generalize the
eigenvalue decomposition based spectral approach [2,10] by
using the SVD. SVD robustly lends itself to any general
rectangular or square matrix form and makes no specific
demands on representation, making it quite suitable to handle
many different kinds of graph representations.

A recent approach by Arenas et al. [20] shows the applica-
tion of the SVD combined with dimensionality reduction for a
related objective, but different to module detection. In [20], the
aim was to characterize the interrelationships between modules
and the contribution roles played by nodes in modules for
a given defined partition. A contribution matrix is defined
as a nodes versus modules map and describes a partition
of interest. SVD and dimensionality reduction applied onto
this contribution matrix shows the extent to which each node
contributes to a module and thus the interrelationships between
the modules.

In [20], a partition of the network into modules is pre-
specified [the partition matrix S, similar in form to Eq. (8)]
and it is this partition that is studied. In drawing a parallel
comparison to the latent semantic approach [9] from statistical
natural language processing, the query “how much does a
word belong to a cluster of documents?” is analogous to “how
much does a node belong to a module?” Inherent in this idea
is to measure the participation of a node in a module, once a
partition into modules has been predefined.

The work presented in this paper differs significantly from
the approach presented in [20]. We apply the truncated SVD
onto a node versus node representation, with the main aim of
detecting partitions of interest. No a priori assumptions on the
modular organization are provided to the method. The modular
organization is instead detected in a data-driven manner. Thus,
in [20], the quality of one such partition will be revealed, but
many partitions of interest may exist. The work presented in
this paper detects multiple partitions of interest.

In [20], only the first two principal dimensions are studied in
the dimensionality reduction step. The authors do not provide
a formal reason, except that modular interrelationships are
understood through projections on a plane. In this work, a
dimensionality reduction step, through the study of decay
of singular values, reveals that other projections in all
lower-dimensional subspaces greater than 2, can also contain
meaningful information about the modular organization of
the network, multiple partitions of interest, and hierarchical
modular organization.

Underlying these differences in aim and methodology, there
are also similarities between [20] and the work presented in this
paper, namely, the way in which the mathematical properties

of the SVD are used for pattern recognition tasks. SVD and
dimensionality reduction allow the extraction of an optimal
lower-dimensional description of any data set by preserving the
principal patterns of association in the data and discarding the
rest as noise. While [20] uses this property to study a possible
node-module schema, the work in this paper uses this property
to formulate a module detection algorithm. This similarity
offers proof that SVD is a robust matrix factorization technique
to work with many different types of matrix formulations for
similar pattern recognition objectives.

Because SVD promises to be a robust, efficient, and fast
algorithm for this family of tasks, it will be interesting to
combine the method presented in this paper with that presented
in [20]: to first use truncated SVD to identify partitions of
interest (as shown in this paper) and then use the same to
study the modules and their interrelationships as suggested by
different partitions (as shown in [20]).

III. COMMUNITY DETECTION AS A DIMENSION
REDUCTION PROBLEM

By definition, a community should have the following
properties: (1) two neighbors with all common neighbors are
in the same community; (2) two vertices that are not neighbors
but share all or many common neighbors are likely to be in the
same community; (3) two vertices that are neither neighbors
nor share common neighbors are likely to be in different
communities; and, (4) a vertex with more than one neighbor
but having none or few common neighbors with any of its
neighbors is likely to fall in an overlap between communities.

In an n × n adjacency matrix, each vertex represents one
dimension. If there is community structure in the graph, then
the number of communities will always be much lower than
n dimensions. Considering the above-stated properties, the ad-
jacency matrix will have redundancy. If vertices have the same
neighbors, then there are linearly dependent rows/columns;
many common neighbors implies vertex vectors point in a
similar direction in space (mutual dot products are high); no
common neighbors implies independent rows and columns and
different directions in space.

Thus, what is the optimal number of dimensions that
can best describe this independence-redundance relation by
minimizing the redundancy? In terms of pattern recognition
theory, this is the “pattern” or “signal” we wish to detect.

IV. ALGORITHM

A. Data representation

We now consider the adjacency matrix A of a graph G
with n nodes. For weighted edges, entries Aij = wij � 0.
The adjacency matrix is a purely local measure of a vertex’s
neighbors. This local measure is, however, insufficient to
provide information on community structure as a “global”
pattern of the graph. For example, if person A knows B
and B knows C but not D, then an adjacency matrix does
not incorporate the information that the induced or implicit
coupling between A and C is higher than A with D, when
there are no existing edges A-C or A-D. Due to the sparsity
of most adjacency matrices, computing straight dot products
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between the rows columns of A will, in general, not reveal the
community structure.

We further consider an alternate matrix representation: the
weighted or unweighted signless Laplacian matrix

|L| = D + A, (9)

with

Lij =

⎧⎪⎨
⎪⎩

si when i = j,

1 or wij when i �= j and i is adjacent to j,

0 otherwise,

(10)

where si = ∑
j wij . A chief reason for using the weighted or

unweighted version of the signless Laplacian is the manner in
which the diagonal and off-diagonal entries encode connectiv-
ity: It allows us to formulate a strong measure of the relative
strength of association between nodes. As we will see later,
modularity is expressed spatially in a vector space, where each
node’s position in space is representative of its connectivity
with all other nodes. This spatial vector based measure not
only depends upon the strength of individual node to node
connections, but also on how many other nodes a particular
node is connected to. The signless Laplacian allows us to
capture this through the diagonal entries, while the standard
adjacency matrix does not.

Further, this representation allows for self-loops: If a node
is connected to itself, this will reflect as an increase in its
corresponding degree by 2 in an undirected network for each
loop. A representation that allows self-loops is important in
many domains. For example, in the brain domain [7], a typical
node in a connection matrix represents a group of neurons,
which are considered a single unit. In such a case, each node
should be considered connected to itself to account for the
internal connections between a group of neurons.

Generalizing further, a bipartite graph with m type 1 (blue)
nodes and n type 2 (yellow) nodes, can be represented as a
rectangular m by n matrix. If G is bipartite, has vertex set V

with (m + n) nodes, then by definition there are two mutually
exclusive node sets V1 with m blue nodes and V2 with n yellow
nodes. All edges connect a blue node to a yellow node, with
V1 ∩ V2 = {} and V1 ∪ V2 = V . Then an m by n matrix B
represents the m nodes in V1 and the n nodes in V2, where for
i = 1 to m and j = 1 to n

Bij =
{

1 or wij if an edge exists between i and j,

0 otherwise.
(11)

One could represent B in square form similar to the |L|
with the (m + n) × (m + n) matrix A = [0 B; BT 0]. The
corresponding degree matrix D = [D1 0; 0 D2], where D1 is
the degree matrix for nodes in V1 and D2 is the degree matrix
for nodes in V2. Then the signless Laplacian for the bipartite
case is

|L| =
[

D1 B

BT D2

]
. (12)

This representation causes a repetition of data and is therefore
computationally inefficient. The method we present in this
paper works directly with the matrix B for a bipartite graph.
In a rectangular adjacency matrix for a bipartite graph, the
diagonal element is a connectivity mapping between two

different elements. Therefore, the form captures the relative
strength of association between nodes directly even without
using the degree or strength information.

As another example of a matrix representation, the authors
have previously tried a slightly modified adjacency matrix
formulation for performing design decomposition for large,
complex engineering design systems such as aircraft engines
[21,22]. Engineering systems are spatially organized in terms
of material, energy, or information interactions. Thus, there
exist design criteria such as “component X should be closest
to component Y but must not be close to component Z.” In this
interpretation, any component is always “closest to itself.” So
the authors used a modified binary adjacency matrix with all
1’s on the diagonals. The truncated SVD approach was able
to successfully detect the subsystems in a large engineering
system with this modified matrix formulation.

Further, it has been shown that the truncated SVD approach
has been successfully applied to another matrix representation
[20], the contribution matrix, a map of the nodes versus the
modules, where the intention was to map the interrelations be-
tween modules and node contributions to individual modules.

In general, the truncated SVD approach, mainly because
of the mathematical properties of the SVD and dimension-
ality reduction, is robust enough to handle multiple matrix
formulations. In the Conclusions section, we discuss future
possibilities of experimentation with other information-rich
matrix forms.

For the rest of the paper, we work with |L| for unipartite
and B for bipartite graphs.

B. Singular value decomposition

We present an analysis for the general rectangular matrix
representation in B. The same analysis remains valid for the
square form in |L|, which is a special case of the more general
rectangular case.

In B, the ith row vector in Rn shows the neighbors of blue
vertex i, i = 1 to m. Similarly, the j th column vector in Rm

shows the neighbors of yellow vertex j , j = 1 to n. A SVD of
the matrix causes a linear transformation that diagonalizes the
matrix into an orthogonal matrix times a diagonal matrix times
an orthogonal matrix. These new left and right orthogonal
bases provide us with a very convenient way to describe each
vertex vector in terms of its coupling with all other vertices:

B = USVT . (13)

U is an m × m orthonormal basis for Rm; V is an n × n

orthonormal basis for Rn. The m × n diagonal matrix S
contains singular values that contain scaling information on
how a vector is stretched or shrunk when it goes from Rn

to Rm and are arranged in a decreasing order of magnitude.
The number of singular values is equal to the rank r of the
matrix A. If we disregard the null space, then U is an m × r

matrix, S is an r × r matrix, and VT is an r × n matrix.
Thus, U and V represent basis sets of eigenvectors for Rm

and Rn, respectively, where the original correlated vertex
coupling information is diagonalized and expressed in terms
of uncorrelated independent vectors. The local vertex-vertex
coupling information in B is decoupled: Vertex vectors can
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now be expressed as linear combinations of the derived
orthogonal bases and singular values.

In SVDâs basic action on a matrix [23] the row space
of B is r-dimensional and inside Rn, and the column space
of B is r-dimensional and inside Rm. Choosing special
orthonormal bases V = (v1, v2, . . . ,vr ) for the row space and
U = (u1, u2, . . . ,ur ) for the column space such that Bvi is in
the direction of ui , with si providing the scaling factor, we
obtain

Bvi = siui or BV = US. (14)

A row of B shows the neighbors of a blue vertex. The
left-hand side of Eq. (14) says that a dot product between
a row of B and the ith eigenvector in V is a measure of
how much a vertex vector points in the same direction as
the eigenvector dimension vi . Obviously, if two vertices share
the same neighbors, or many common neighbors, they will all
share a similar relationship with each eigenvector. Recall also
that eigenvectors form an orthogonal basis; that is, they are
perpendicular (uncorrelated) to each other. Thus, orthogonal-
ity or direction in space becomes a chief way in which a vertex
vector can be classified. Under the orthogonality condition,
all vectors with common neighbors will roughly point in the
same direction in space. The right-hand side of Eq. (14) says
that this is equal to a linear combination of a corresponding
eigenvector ui and the corresponding singular value si . The
diagonalization of the data causes a vi to be expressed in terms
of only the ith eigenvector ui and the ith singular value si .
Therefore, SVD provides for a change of basis and allows us
to represent the same matrix in the best possible diagonal form.
Similarly,

BT U = VS. (15)

Thus, the US or VS products provide a new abstract way of
describing each of the m type 1 vertices and n type 2 vertices,
respectively, as a linear combination of the corresponding
orthogonal bases and the singular values. An ith type 1
vertex is

ui1s11 + ui2s22 + · · · + uirsrr , i = 1 to m. (16)

A j th type 2 vertex is

s11v1j + s22v2j + · · · + srrvrj , j = 1 to n. (17)

The representation in Eqs. (16) and (17) allow a continuous
(and not discrete) representation of a vertex as a vector point
in space, where its position is representative of its coupling
with other vertices, in terms of its “membership” to an
eigenvector. If we consider each eigenvector as a representative
“community axis,” then each individual term in Eqs. (16) and
(17) tells us how much each node belongs to a community axis.
Highly connected groups of vertices, that is, a community,
will point to the same direction in space, owing to shared
similar relationships with the eigenvectors. Each node can
thus be expressed by representing them as linear combinations
of orthogonal bases formed by the eigenvectors and the
eigenvalues. A dot product between any two will be a measure
of how closely they are coupled in the graph, which is, in turn, a
measure of community belongingness. The more “orthogonal”

two vectors are, the lower the possibility that they belong to the
same community; the more “parallel” they are, the more likely
it is that they belong to the same community. Note also that
because the singular values are arranged in decreasing order
of magnitude, each subsequent term in Eqs. (16) and (17)
contributes less to the vertex vector representation compared
to the previous one. Thus, each eigenvector dimension does
not contribute equally to defining membership; those that
correspond to larger singular values have a larger contribution
to defining community membership.

This continuous measure allows us to address the over-
lapping community detection problem: A node with multiple
neighbors but no or few common neighbors with any of them
shows equally high or positive cosines with nodes in separate
communities, or correspondingly with multiple eigenvector
dimensions, and is therefore placed in an overlap between
communities.

In the case of a unipartite undirected graph, the matrix |L|
will be symmetric, and the SU and SV products will collapse
into one. In the case of a directed one-mode graph, the matrix
is not symmetric. We discuss the possible extension of this
method for directed graphs as future work in the Conclusions
section.

C. Dimension reduction

We can have, therefore, a continuous measure of community
membership that considers orthogonality, or more generally
direction in space, as the main index by which vertices can
be classified, with a secondary index of how important an
orthogonal dimension is for classification (by the magnitude
of the singular values).

We now come back to the dimension question. Not all
dimensions are important or needed for making the classifica-
tion. By definition, the number of communities will always be
lower than the number of vertices. We let each eigenvector
dimension correspond to one community or module: the
number of modules theoretically varies from 1 (all vertices
in one module) and n (each vertex in its own module).

Now, consider the relation between the number of vertices,
the number of communities, and the rank r of the matrix B. If
two vertices share the same set of neighbors, then there will
be dependent rows and columns in B. Therefore, in case of
such data redundancy, a lower number of dimensions will be
sufficient to capture that these two vertices should belong to
the same community. Then the rank r is lower than n and there
are at most r modules.

To appeal to physical intuition, refer to Fig. 1. Consider
two extreme versions of a bipartite graph G with m type 1
vertices and n type 2 vertices. In the first extreme case, let the
number of edges be exactly pairwise; that is, the number of
pairs is equal to the lesser of m and n, with one blue vertex
connected to exactly one yellow vertex and some remaining
unpaired vertices. Each pair is a separate community; the
number of communities will be equal to the number of pairs.
The matrix representation is diagonal with the same numerical
weight/degree along the diagonal and some rows/columns with
0 entries.

SVD will show that all the singular vectors and values
are needed to detect the exact number of communities: All
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A = [1  0  0  0
        0  1  0  0
        0  0  1  0]

svd(A) =
U = [1  0  0
        0  1  0
        0  0  1]

S = [1  0  0  0
        0  1  0  0
        0  0  1  0]

V = [1  0  0  0
        0  1  0  0
        0  0  1  0
        0  0  0  1]

A = [1 1 1 1
        1 1 1 1
        1 1 1 1]

svd(A) =
U = [-0.5774    0.8165         0
        -0.5774   -0.4082   -0.7071
        -0.5774   -0.4082    0.7071]

S = [3.4641      0         0         0
            0           0         0         0
            0           0         0         0]

V = [-0.5000    0.8660        0              0
        -0.5000   -0.2887    0.8165         0
        -0.5000   -0.2887   -0.4082   -0.7071
        -0.5000   -0.2887   -0.4082    0.7071]

FIG. 1. Two extreme cases for the method.

columns in B are independent of each other; no dimensionality
reduction is possible without loss of information. Each pair is
represented by one dimension that is orthogonal to any other.
All the m or n singular values are equally important. Thus, the
solution says that there are r distinct communities, where r is
the rank of the matrix, with one vertex pair belonging to each
community.

As the other extreme case, consider a graph with all
vertices connected to all the others. Obviously, the number
of communities is exactly equal to 1. Correspondingly, SVD
shows that only one singular vector and value is needed to
detect the exact number of communities: All the columns in
the original matrix are fully dependent (the same). Due to this
data redundancy, only one dimension is enough to detect the
exact solution. The rank of the matrix is 1. This is the fully
“parallel” case, where all the vertices are represented only
by one dimension. This case represents the other extreme for
making a decision based on orthogonality.

Therefore, the number of communities will always be lower
than or equal to the rank of the matrix.

Next we show the stronger condition that the number of
communities will always be much lower than the rank r and
depends on the k largest singular values and their rate of decay.
The reduced dimensional approximations of B play a crucial
role in identifying these. As discussed previously, if the graph
has a community structure, the intrinsic dimensionality of the
data is lower than the m or n features, because there are many
vertices that are part of the same community by virtue of
commonly shared neighbors. We are looking for an optimal
lower dimensional description of the original data set that can
reveal these communities by exercising this redundancy in the
data set.

A well-known theorem in linear algebra [23] states that
an optimal k-rank least squares approximation of the original
matrix B is given by retaining the first k largest singular vectors
and values:

Breduced = UkSkVT
k . (18)

SVD can be viewed in terms of r rank 1 matrices [23]: The
optimal rank k approximation to B is u1s1vT

1 + u2s2vT
2 + · · · +

ukskvT
k . Instead of using all the r eigenvectors and singular

values to describe the vertices of the original matrix, we
now use only the first k. To represent the vertices in reduced

dimensional space, we use only the first k terms of Eqs. (16)
and (17).

A reduced rank approximation is a “best guess” on how
strongly coupled two vertices are: It minimizes the square of
the error in reconstructing the original data; that is, it gives the
best optimal linear least squares approximation to the original
data. In a principal components analysis (PCA) sense, it will
treat the k largest singular vectors and values as “pattern” and
remove the r − k singular vectors and values as “noise.”

D. Relationship to principal component analysis

Consider the matrices BBT and BT B. They measure the
dot products between the blue vertices and yellow vertices,
respectively. Therefore, while the diagonal entries in these
matrices are a measure of the variance of the data set. A dot
product of a vertex vector with itself becomes a measure of
vertex degree, or correlation with itself. The off-diagonal terms
are a measure of the covariance, as a dot product of a vertex
vector with another vertex vector is a measure of common
neighbors, or correlation with each other. The off-diagonal
entries therefore represent redundancy in the data set by way of
correlation: A large and positive value of covariance indicates
that two vertices share many common neighbors and are well
correlated. A zero value indicates no shared neighbors.

To discover the community structure, the minimum number
of reduced dimensions that optimally describes this redun-
dancy is equivalent to choosing a basis to express the vertex
vectors in which the first largest singular vector and value
accounts for the dimension of largest variance, the second
singular vector and value accounts for the dimension of
second largest variance, orthogonal to the first, and so on.
Recall that singular values are arranged in decreasing order of
magnitude. An implicit assumption here is that the magnitude
of each singular value captures the relative importance of each
orthogonal dimension for classification and that the variance
along a small number of principal components will be an
optimal least squares characterization of the “pattern” in the
data, that is, the community structure.

We can show that U and V contain the eigenvectors
or principal components of the matrices BBT and BT B,
respectively, with the squares of the singular values as their
common eigenvalues. Taking the SVD of B and BT shows:

BBT = USST UT , BT B = VST SVT . (19)

Thus, in a reduced rank approximation dot products between
vertices sharing many common neighbors will increase and
that between vertices that do not share common neighbors will
be decreased, as the membership of each vertex with the r − k

least important eigenvector dimensions is discarded as “noise.”
Vertices that share many common neighbors will be oriented
further in the same direction in space and their dot products
will increase. This will remain true even if two vertices do
not explicitly share an edge. Equivalently, vertices that do not
share common neighbors will be oriented such that their dot
products go lower or negative. Thus, a lower dimensionality
approximation is crucial to reveal the community structure.
The examples in the Results section demonstrate that if all
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the r dimensions are considered, then this does not reveal the
community structure.

E. Identifying the communities

The final step of actually detecting the communities is
trivial. The k-reduced vector representations of the US and
VS products are plotted as vector points in the reduced
k-dimensional space. The higher the cosine between two
vector representations of vertices, the higher is the suggestion
that they belong to the same community. We run a K-means
clustering algorithm [24] with the distance type set to “cosine”
to locate the communities. The K-means algorithm produces
disjointed clusters and requires the user to choose the number
of clusters as a parameter.

Since we would like the method to automatically reveal
the number of clusters and identify overlapping clusters, if
any, we have developed an alternate approach. Computing
cosine values between all the pairs of vertices generates an
m × m (cosines between type 1 blue vertices), n × n (cosines
between type 2 yellow vertices), or m × n (cosines between
type 1 blue and type 2 yellow vertices) cosine matrix. We
then reorder the rows and columns by means of a simple
matrix reordering algorithm that orders cosines in decreasing
order of magnitude simultaneously across the rows and the
columns. This reveals the communities as block matrices with
high cosine values, ordered along the main diagonal. Using
both the cosine matrix reordering method and the K-means
clustering method produces similar results, as expected.

However, the cosine matrix reordering method does not
place any restrictions on the disjointedness of the clusters and
does not require the user to choose the number of clusters. In
cases where communities overlap, the block matrices overlap,
too, with the vertices that fall in the overlap belonging to all
the respective clusters. We have developed a matrix reordering
algorithm (Fig. 2) for visualizing the block matrices that reveal
the clusters by ordering all similar cosine values together,
but any reordering algorithm that orders similar values to
cluster together in a matrix will produce the same results.
Alternatively, using a fuzzy or soft K-means algorithm will
show similar results too.

Figure 3(a) shows a very simple example: Node 4 is
obviously part of both clusters. Figures 3(b), 3(c), and 3(d)
show the original matrix, the k = 2 reduced matrix, and the
cosine matrix at k = 2. Note that both A13 and A15 entries

function REORDER-MATRIX (Cosine-Matrix)
returns Reordered Cosine Matrix X

A = Cosine-Matrix
[r, c] = size(Cosine-Matrix)
   loop for i = 1 to c
       index = sortrows-descending(Cosine-Matrix, i)
       reorder rows and columns of Cosine-Matrix based on index
       INDEX = update (index)
       remove row and column i from Cosine-Matrix
   end

A = reorder rows and columns of A based on INDEX
return A

FIG. 2. Cosine matrix reordering algorithm.

12

3 4
5

67

A 1 2 3 4 5 6 7
1 2 1 0 1 0 0 0
2 1 2 1 0 0 0 0
3 0 1 2 1 0 0 0
4 1 0 1 4 1 0 1
5 0 0 0 1 2 1 0
6 0 0 0 0 1 2 1
7 0 0 0 1 0 1 2

Ared, k=2 1 2 3 4 5 6 7

1 0.8536 0.8536 0.8536 1.2071 0.0000 -0.3536 0.0000
2 0.8536 1.0000 0.8536 0.7071 -0.3536 -0.7071 -0.3536
3 0.8536 0.8536 0.8536 1.2071 0.0000 -0.3536 0.0000
4 1.2071 0.7071 1.2071 3.4142 1.2071 0.7071 1.2071
5 0.0000 -0.3536 0.0000 1.2071 0.8536 0.8536 0.8536
6 -0.3536 -0.7071 -0.3536 0.7071 0.8536 1.0000 0.8536
7 0.0000 -0.3536 0.0000 1.2071 0.8536 0.8536 0.8536

Acosine 1 3 2 4 5 7 6

1 1.0000 1.0000 0.9135 0.7831 0.2265 0.2265 -0.1892
3 1.0000 1.0000 0.9135 0.7831 0.2265 0.2265 -0.1892
2 0.9135 0.9135 1.0000 0.4625 -0.1892 -0.1892 -0.5722
4 0.7831 0.7831 0.4625 1.0000 0.7831 0.7831 0.4625
5 0.2265 0.2265 -0.1892 0.7831 1.0000 1.0000 0.9135
7 0.2265 0.2265 -0.1892 0.7831 1.0000 1.0000 0.9135
6 -0.1892 -0.1892 -0.5722 0.4625 0.9135 0.9135 1.0000

)b()a(
(c)

(d)

FIG. 3. Dimension reduction demonstration. (a) An example
graph, node 4 is part of both modules; (b) the signless Laplacian for
the graph in (a); (c) k = 2 approximation to (b); (d) cosines between
vertex vectors in k = 2 reduced space. The gray block matrices show
the two modules with node 4 in the overlap.

are 0 in the original matrix, that is, no edge. In the reduced
dimension matrix, however, while coupling between nodes 1
and 3, A13, goes up to 0.8536, coupling between nodes 1
and 5, A15, remains at 0. The cosine matrix corroborates
this observation. In the original matrix, dot product between
vertex vectors A1 and A3 is 0.3333, and that between A1 and
A5 is 0.1667 (both low). In the reduced representation, these
become 1.000 (high) and 0.2265 (low), respectively, showing
that nodes 1 and 3 are classified as part of the same cluster,
while node 5 is not part of this cluster. Note also that node
4 is correctly identified as part of both clusters, that is, as an
overlapping node between the two communities.

F. Choosing the optimal number of modules

We now come to an important question: How does one
choose the optimal number of modules? Choosing the value
of the parameter k corresponds to choosing k clusters. We
consider approximations k = 1 to r , where an r-dimensional
approximation means considering the original matrix B. The
singular values and their rate of decay plotted as a scree
chart provides us with a heuristic to choose this value as the
number of leading eigenvector dimensions and singular values
that captures most of the “pattern” in the data set. These are
preserved to compute a reduced dimensional representation.

The scree plot shows three definite features, which we
discuss here and demonstrate in Sec. V. Figure 4(a) shows in a
scree plot the decay of singular values for a typical 128-node
Newman-Girvan type test network [2]. First, there is either
a pronounced or gradual “elbow” in all scree charts, with
the magnitude of singular values sharply falling for the first
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FIG. 4. (Color online) (a) Scree plot for decay of singular
values shows the characteristic “elbow” corresponding to the largest
difference in magnitude at k = 4 in a Newman-Girvan type network.
(b) Scree plot for a typical scale-free hierarchical network from [4]
shows levels, with highest differences at k = 2, 4, 16, and 64.

few values and becoming gradual thereafter; in all cases, the
number of modules increases up to this characteristic k value
and remains constant thereafter. This characteristic k value
gives us the optimal number of modules.

Second, this is easily located by charting the differences
between successive singular values. There is a peak difference,
as shown in Fig. 4(a) that corresponds to the optimal number
of modules.

Third, for networks with no hierarchy but only modular
structure, such as a typical test Newman-Girvan type network,
there is only one such peak [Fig. 4(a)]. For networks with
hierarchy, such as a typical scale-free one from [4], the singular
values are clustered in levels, and the scree plot takes on a
stepped form with the decay occurring in steps: There are
clusters of closely spaced singular values with small decreases
then a large decrease, then another cluster, and so on. As a
useful first order approximation, we believe that the number
of such levels shows the number of hierarchical levels in
the network. If the differences between singular values are
arranged in descending order, then choosing the largest ones
(corresponding to each stepped level) gives us the hierarchical
organization at that level. Although this matches well with
the idea of stable states in [25], the relationship between this
method and [25] should be formally examined.

For example, for a typical 64-node scale-free hierarchical
network of [4] we obtain the largest differences at k = 2, 4, 16,
and 64, which represents the true hierarchical organization in
the network. We show the clustering results at these values in
Sec. V. In contrast, no matter how much the k value is increased
in a Newman-Girvan type “flat” network, no hierarchical
structure is revealed, as increasing the k value to more than the
number of modules does not show the larger modules breaking
up into smaller ones. The singular values plot shows one large
elbow and no stepped decay pattern. Increasing the k value is
like viewing a network based on its principal patterns of node
association, from a coarse-grained (lowest k) to a fine-grained
view (highest k).

A class of multiresolution methods exist [1] that address
the problem of hierarchy and scales of modular organization
in networks. Most of these methods have a freely tunable
parameter, which can be changed by a user to discover
hierarchy and scales, if any exist in the network. The
k parameter can be considered to be such a parameter, which
the user can change in order to reveal multiple feasible
partitions of the network.

The authors have found that for very tightly defined
networks with a clear community structure, the k value has
a one-to-one correspondence with the number of clusters. For
example, the benchmark networks of Newman and Girvan [6]
(see Sec. V) show a very symmetric structure: 4 modules
corresponded to preserving 4 singular values. In a convergence
test, if more singular values are retained, say 5 or 6 or
k = r , the same 4 modules appear in the cosine matrix. In
other words, the convergence test shows that the number of
clusters increases with the k value to a certain threshold point.
After this threshold point, if the number of singular values
or k is increased, no increase in the number of clusters is
visible. Thus, for example, for a 128-node Newman-Girvan
type test network with 4 modules of 32 nodes each, retaining
any number of k values from 4 to 128 will still show only
4 clusters.

This one-to-one relationship does not always hold when
we come to messy real world networks with modules having
different numbers of nodes, heterogenous node degrees, etc.
For the real world cases, the convergence test, as described
above, is a valuable tool: The k value gives a good hint
of the number of modules; the number of modules roughly
corresponds to the k value to a certain threshold point, after
which the number of modules stabilizes. For example, as we
see in the Sec. V B, in the Zachary example [26], at k = 2,
the two main modules emerge that correspond to the actual
split in the group. At k = 4, 4 submodules are seen. Beyond
k = 4, however, the number of modules stabilizes, and we
continue to see the 4 modules: The number of modules does
not increase as the k value increases. However, the elbow
in the scree plot appears at k = 6, and the results show that
the 4 submodules are not clearly disjointed but have multiple
overlaps.

V. RESULTS

We have applied the method to several benchmark and
test networks and present the results in this section. To show
the communities detected, we use the network itself, as well
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as the cosine matrix form showing the block matrices that
correspond to clusters as in Fig. 3. Throughout, we use
MATLAB-generated grayscale images of the reordered cosine
matrix to show the modules detected. Block matrices along
the main diagonal show the modules. Off-diagonal colored
patches show couplings that exist between the main modules.

We worked on a Dell Precision M6400 with 8GB RAM and
programed the algorithm in MATLAB 2010. One thousand-node
networks ran in 15–20 s. The smaller networks ran in negligible
time.

A. Benchmark test networks

We generated regular, random, and networks with known
community structure following [2], [27], and [4], respectively,
to test the performance of the algorithm. Regular and random
networks show no community structure. Figure 5(a) shows a
regular network with 64 nodes, a regular ring lattice in which
each node has a degree of 18. The application of the method
shows that no modules or clusters are identified. Instead, a
thick middle spine and two small triangular parts echo back
the original ring lattice structure of the network. Figure 5(b)
shows the application of the method on a 64-node random
network with an average degree sequence of 18 at the same k

value. The results show no modular structure along the block
diagonal, but a random pattern.

Figure 5(c) shows the application of the method onto a
128-node Newman-Girvan type network with 4 communi-
ties of 32 vertices each. The mixing parameter m = 0.9;
that is 90% of the edges fall between communities, with

(b)(a)

(d)(c)

FIG. 5. Test network results. (a) Regular network with 64 nodes;
(b) random network with 64 nodes and similar average degree; (c),(d)
Newman-Girvan type network with 128 nodes. Mixing ratio: 0.9
and 0.6.

10% edges falling between communities. The results show
a perfect block diagonal structure with very high cosines
(0.9–1.0) identifying the 4 clusters along the main diagonal,
with sharp distinctions between cosines. That is, there are no
shades of gray in the plot. This implies that within the modules
identified, all the nodes share very high cosines with each other.
Conversely, these nodes share very low cosines with the nodes
of other communities. We increased the mixing parameter,
gradually decreasing number of intracommunity edges and
increasing the number of intercommunity edges. The method
proved robust to this increasing noise: Figure 5(d) shows the
results for a similar 128-node network but with m = 0.6. The
method is able to identify the clusters, but shades of gray
have started to appear. As m is increased further, distinctions
between modules become more and more noisy from m = 0.5
onward, until no more modules are detected when roughly
each vertex connects to as many vertices inside as outside its
own community.

Further, we used the software provided by [27] to generate
Newman-Girvan like networks, but with overlapping nodes.
Figure 6(a) shows one example of a 128-node network with 5
communities, different community sizes, with 32 overlapping
nodes being shared by at least 2 communities. The results
match exactly with the known structure, and the algorithm
was able to identify the overlapping nodes correctly. Note that
the large clusters along the diagonal in the figure show the 5
main modules, the smaller clusters along the diagonal show the
overlapping modules. The off-diagonal light gray areas show
to which main modules each overlapping set of nodes belongs
with.

Further, we have experimented with 1000-node
Lancichinetti-Fortunato type networks with heterogenous
node degrees and both nonoverlapping and overlapping nodes.
In all cases the method proved robust and performed well in
identifying the known clusters. Figure 6(b) shows an example
of a 500-node network where all the 7 modules were exactly
identified by the algorithm.

We also tested scale-free hierarchical test networks using
the Ravasz et al. model [4]. These hierarchical scale-free
networks have a known community structure with 4 densely
connected nodes forming the basic module, with 1 internal and
3 external nodes. Four of these come together to form a 16-node
two-level network, again one internal and three surrounding
4-node clusters. Sixteen of these then come together to form
a three-level 64-node network, with one internal and three
surrounding 16-node clusters. At each level the external nodes
of the 4-node module are attached to the central node of
the oldest 4-node module. Figure 7(a) shows an original
64-node network. Refer to the discussion in Sec. IV F that
shows peak differences in singular values at k = 2, 4, and 16.
Figures 7(b), 7(c), 7(d), and 7(e) show the results at these k

values: 2, 4, and 16. At k = 2, we can see two clusters: The
first central 16-node cluster and the surrounding three clusters.
At k = 4, we can see the four 16-node clusters with the gray
areas showing the first one’s relationship to the other three. At
k = 16, we can see all the 16 four-node clusters with the gray
areas showing the secondary level relationships. Thus, we see
that increasing the k value captures the most major patterns
of association first, with the k values increasingly capturing
more and more detail in the structure. Ravasz et al. mention
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(b)

(a)

FIG. 6. (Color online) Test network results. (a) Newman-Girvan
type network with 128 nodes, generated using software by [27];
the big white clusters are the 5 main modules, the smaller white
clusters lie in between main clusters and show the overlapping
nodes, the light gray areas show which two main modules each
overlap cluster belongs with (b) Lancichinetti-Fortunato type test
network with 500 nodes, heterogenous node degree sequences;
results match perfectly with the known community clusters in all
cases.

that most clustering algorithms fail to detect this hierarchical
modular arrangement, while the application of our method
easily reveals the entire structure.

B. Unipartite Zachary network

We also applied the method onto several real world
networks that are frequently used to test the performance of
community detection algorithms.

Our first example is the well-known study of the Zachary
Karate Club network [26] where a group of people in a karate

(b)(a)

(d)(c)

FIG. 7. Scale-free Hierarchical network results. (a) Original 64-
node network, and results at (b) k = 2, (c) k = 4, and (d) k = 16. The
white blocks show the modules detected.

club split into two following a rift between the two main
leaders of the group. Figure 8(a) shows the results at k = 2
using a cosine threshold of 0.7, matching exactly with the
original rift in the group. Figure 8(b) shows a scree plot:
a plot of the decay of the singular values. These appear
grouped: the first two, followed by a large “eigen”-gap, then
the next three and a large gap, followed by the tail, and hints
at a hierarchical structure with two levels. As discussed in
Sec. IV F, interesting modular structure can be observed when
these gaps are considered. Figure 8(c) shows the original
matrix. Figure 8(d) shows the cosine matrix at k = 2, showing
the split of the group into two modules. The results, when
visualized in the cosine matrix show not only the two major
clusters, but also provide an idea on which vertices fall in
the “overlap” region, that is, members who share roughly
high coupling strength with both groups. Vertices 3, 9, 14,
and 20, for example, fall in this region. From k = 4, the two
modules divide into 4 submodules. Figure 8(e) shows the
cosine matrix at k = 6, where roughly 4 main submodules
can be seen within the two larger groups, with overlap
regions. However, one could also interpret a higher number
of smaller 6 modules. This shows that the division of the main
modules into submodules is not clear and many nodes share
overlaps with one or more submodules. The largest eigengaps
appeared at k = 2, 6, 13, and 20. The 4 boxes in Fig. 8(e)
show the results from the K-means clustering algorithm at
k = 20 superimposed onto the k = 6 matrix that corresponds
to the solution of a partition into 4 modules found by
many researchers and reported in [1]. Beyond k = 6, roughly
4 modules continue to appear. Figure 8(e) shows the cosine
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(c) (d) (e)

)b()a(

(f)

FIG. 8. (Color online) (a) The Zachary club network with the solution given by the algorithm: Gray and black nodes show the two groups
into which the club broke at cosine threshold 0.7, k = 2. (b) Singular values decay plot. (c) Original matrix. Cosine matrices at (d) k = 2, (e)
k = 6, and (f) k = 34.

matrix at k = 34, that is, the original matrix. It is obvious that
considering the full rank matrix does not show any solutions.
This corresponds to 34 modules, with each node in its own
cluster.

The results echo “natural” patterns of organization in the
data set, at least as much as they can be captured with a linearity
assumption: whether there is no inherent modular structure
[Figs. 5(a) and 5(b)], whether there is a clear modular structure
with disjoint modules [Figs. 5(c), 5(d), and 6(b)], whether
there is an overlapping structure with no heirarchy [Fig. 6(a)],
whether there is a hierarchical structure but with no overlaps
(Fig. 7), or whether there is an overlapping structure with
heirarchy [Figs. 8(c) and 8(d)]. The overlap is revealed in
terms of overlaps in the block matrices. The hierarchy is seen
in the gradual breaking up of block matrices as k values are
increased from 2 onward.

C. Unipartite dolphin social network

The dolphin social network [28,29] is another example
well cited in the community detection literature. A group
of dolphins was observed over a period of time after which
the group split into two following the disappearance of a
few members that were on the boundary of the group. The
application of the method onto the dolphin social network
shows an interesting hierarchical modularity structure that
corresponds to known community partitions, but also other
subcommunity partitions and overlaps in the community

structure at a second hierarchical level. As seen in Fig. 9(a),
the group is divided into two main groups (detected at
k = 2, shown as squares and circles), and the larger one is
further divided into three or four more overlapping clusters.
Figure 9(b) shows the singular values scree plot. Figures 9(c)
and 9(d) show the original matrix, and a reordered matrix using
the results at k = 5. The results at k = 5 have been used to
reveal the original matrix in block diagonal form. Figures 9(e)
and 9(f) show the cosine matrices with solutions at k = 3 and
k = 5. At k = 3, already visible are three subcommunities in
cluster 1 and a separate cluster 2. At k = 5, the structure of the
three (or four) subcommunities within cluster 1 have become
clearer, while cluster 2 continues to appear completely separate
from these three. The three subcommunities share significant
overlaps as shown by the gray off-diagonal patches, while
the main clusters 1 and 2 do not share overlaps, as no gray
patches can be observed between the two clearly disjoint main
clusters. Lusseau and Newman [29] report similar results,
but their algorithm forces vertices to belong to only one
group, thereby losing the interaction information held by
individuals that lie on the boundaries of groups. Our results
match with their results with a few differences. The decision
on 3 subcommunities lies roughly according to the three main
clusters shown in the k = 5 panel and could easily be 4 in
a finer view. There are some individuals who could belong
to 2 subcommunities, as they share an interaction equally
with both groups. For example, while Lusseau and Newman
place Kringel, Thumper, Whitetip, SN63, Hook, and TR99
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(b)

(c) (d)
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FIG. 9. (Color online) (a) The dolphin social network results. Squares and circles show the two main modules, the dark gray, light gray,
and white circles show three submodules in the main module. (b) Singular values decay plot. (c) Original matrix. (d) Reordered matrix using
results at k = 5 reveals block diagonal form. Cosine matrix at (e) k = 3 and (f) k = 5.

as part of one subcommunity (along with the first one in our
analysis), they could easily form a part of both the first or the
third subcommunity. The analysis provides insight into which
individuals fall on boundaries of groups versus which ones
were more centrally placed in the community. This example
also shows that our algorithm is able to reveal communities
and subcommunities in real world networks that may contain
a mix of clearly disjointed (as in cluster 2) and overlapping
communities (as in cluster 1).

D. Bipartite Southern Women Club Network

The Southern Women Club Network [30] is an example
of a bipartite social network that maps the participation of 18
women in 14 social events. An edge exists between a woman
and an event if she attended the event. The network was created
in order to study class and race issues. The application of

the method onto the Southern Women network shows a clear
community structure. The network has been described as “... a
touchstone for comparing analytic methods in social network
analysis” [13], but, for our method, turned out to be quite
simple to analyze. Figure 10 shows the results in graph form
as well as matrix form. We consider the results at k = 2 and
k = 3 since these two are shown to be the most important
ones from the scree plot. The rows and columns represent the
18 women and 14 events, respectively. At k = 2 [Fig. 10(b)]
we can clearly see two communities with a very clear overlap
between these two communities. Events 7, 8, and 9 fall in
the overlap as they are attended in equal measure by women
from both communities. Ruth falls in the overlap, and the
original study shows that she is the only woman that is a
member of both groups. At k = 2, one other woman, Pearl,
also falls in the overlap. At k = 3 [Fig. 10(c)], Ruth becomes
the only woman that is shown as a member of both groups.
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[] k=2 1 3 4 2 5 6 7 8 9 12 10 11 13 14
'Evelyn' 1 0.973 0.975 0.978 0.986 0.988 0.999 0.883 0.849 0.566 0.173 0.141 0.136 0.131 0.131
'Laura' 2 0.985 0.986 0.988 0.994 0.995 0.996 0.855 0.818 0.519 0.118 0.085 0.081 0.075 0.075
'Brenda' 4 0.986 0.988 0.990 0.995 0.996 0.995 0.849 0.812 0.510 0.108 0.075 0.070 0.065 0.065
'Frances' 6 0.988 0.989 0.991 0.996 0.997 0.994 0.845 0.807 0.503 0.099 0.066 0.062 0.056 0.056

5 0.999 0.999 1.000 1.000 0.999 0.974 0.778 0.733 0.400 -0.016 -0.049 -0.054 -0.059 -0.059
'Theresa' 3 0.946 0.949 0.953 0.965 0.968 0.998 0.924 0.896 0.644 0.269 0.237 0.233 0.227 0.227
'Eleanor' 7 0.936 0.939 0.944 0.956 0.960 0.996 0.935 0.909 0.666 0.297 0.265 0.261 0.256 0.256
'Ruth' 9 0.779 0.784 0.793 0.817 0.824 0.918 0.999 0.994 0.867 0.582 0.554 0.551 0.546 0.546
'Pearl' 8 0.713 0.719 0.729 0.756 0.764 0.874 0.998 1.000 0.912 0.659 0.634 0.630 0.626 0.626
'Verne' 10 0.387 0.394 0.408 0.444 0.455 0.619 0.899 0.927 1.000 0.898 0.883 0.881 0.879 0.879
'Nora' 14 0.135 0.143 0.158 0.197 0.209 0.394 0.756 0.798 0.973 0.981 0.975 0.974 0.972 0.972
'Sylvia' 13 0.132 0.139 0.154 0.193 0.205 0.391 0.753 0.796 0.972 0.982 0.975 0.974 0.973 0.973
'Myrna' 11 0.131 0.139 0.153 0.193 0.205 0.390 0.753 0.796 0.972 0.982 0.975 0.975 0.973 0.973
'Dorothy' 16 0.131 0.139 0.153 0.193 0.205 0.390 0.753 0.796 0.972 0.982 0.975 0.975 0.973 0.973
'Helen' 15 0.082 0.089 0.104 0.144 0.156 0.344 0.719 0.764 0.959 0.990 0.985 0.985 0.983 0.983
'Olivia' 17 0.063 0.071 0.086 0.125 0.138 0.327 0.706 0.752 0.953 0.993 0.988 0.988 0.987 0.987
'Flora' 18 0.063 0.071 0.086 0.125 0.138 0.327 0.706 0.752 0.953 0.993 0.988 0.988 0.987 0.987
'Katherine 12 0.019 0.027 0.042 0.081 0.094 0.285 0.674 0.723 0.939 0.997 0.994 0.994 0.993 0.993

[] k=3 1 4 3 5 6 2 8 7 9 12 10 11 13 14
'Evelyn' 1 0.921 0.921 0.904 0.918 0.956 0.982 0.851 0.629 0.612 0.160 0.110 0.040 -0.012 -0.012
'Theresa' 3 0.937 0.942 0.931 0.951 0.993 0.961 0.895 0.778 0.603 0.265 0.226 0.192 0.161 0.161
'Frances' 6 0.985 0.987 0.981 0.989 0.993 0.983 0.800 0.739 0.452 0.098 0.063 0.049 0.035 0.035
'Laura' 2 0.979 0.984 0.984 0.993 0.985 0.934 0.768 0.824 0.367 0.120 0.097 0.122 0.134 0.134
'Brenda' 4 0.974 0.979 0.982 0.990 0.975 0.918 0.747 0.834 0.332 0.110 0.090 0.126 0.145 0.145
'Eleanor' 7 0.922 0.932 0.933 0.952 0.973 0.873 0.834 0.914 0.452 0.295 0.277 0.309 0.321 0.321

5 0.912 0.919 0.933 0.931 0.875 0.793 0.567 0.822 0.087 -0.004 -0.005 0.087 0.148 0.148
'Ruth' 9 0.758 0.768 0.750 0.790 0.902 0.823 0.994 0.797 0.828 0.568 0.527 0.463 0.403 0.403
'Pearl' 8 0.547 0.550 0.517 0.556 0.697 0.709 0.895 0.447 0.932 0.515 0.454 0.304 0.189 0.189
'Verne' 10 0.368 0.385 0.362 0.423 0.602 0.467 0.929 0.686 0.954 0.872 0.840 0.756 0.675 0.675
'Myrna' 11 0.101 0.114 0.085 0.146 0.350 0.253 0.784 0.417 0.974 0.879 0.842 0.714 0.604 0.604
'Dorothy' 16 0.101 0.114 0.085 0.146 0.350 0.253 0.784 0.417 0.974 0.879 0.842 0.714 0.604 0.604
'Olivia' 17 0.022 0.030 -0.005 0.049 0.249 0.216 0.685 0.204 0.956 0.755 0.707 0.541 0.409 0.409
'Flora' 18 0.022 0.030 -0.005 0.049 0.249 0.216 0.685 0.204 0.956 0.755 0.707 0.541 0.409 0.409
'Katherine 12 0.016 0.038 0.020 0.087 0.284 0.092 0.721 0.572 0.844 0.993 0.982 0.927 0.862 0.862
'Sylvia' 13 0.136 0.160 0.151 0.215 0.388 0.161 0.751 0.729 0.763 0.975 0.974 0.963 0.927 0.927
'Nora' 14 0.142 0.167 0.164 0.226 0.379 0.129 0.699 0.777 0.658 0.945 0.954 0.976 0.964 0.964
'Helen' 15 0.092 0.118 0.122 0.180 0.311 0.041 0.594 0.776 0.518 0.895 0.917 0.974 0.987 0.987
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FIG. 10. (Color online) (a) The Southern Women Club Network. Circles represent women, squares represent events, black and white
represent the two groups (colors have no relation to race). Cosine matrices at (b) k = 2 and (c) k = 3; gray represents the overlap between the
two groups. (d) Singular values decay plot.

Events 7, 8, and 9 are still shown as the events in the overlap
region. Figure 10(a) shows the solution obtained at k = 3 with
squares representing events, circles representing women, black
and white representing the two groups (colors do not represent
or refer to race and have been chosen for presentation purpose
only), and gray representing the overlaps.

While this network has been studied in some detail,
most studies analyze it by projecting it as a one-mode
network of either events or women which causes information
loss. One study [13] investigates it in original form as a
bipartite network. Barber’s algorithm is a modified version of
Newman’s algorithm developed for bipartite networks. This
social network presents an example where overlaps clearly
exist. Hence, Barber’s method, which does not cater for
overlaps, forces the vertices to fall in one of the three commu-
nities he presents as his best solution. Especially, his solution
forces some nodes, most especially Ruth, with group 1.
This does not fit well with the actual social observation that
Ruth is a member of both groups. Further, his method is not

able to reveal that events 7, 8, and 9 were commonly attended
by many women from both groups.

E. Bipartite Scotland Corporate Interlocks Network

We applied the method onto the bipartite data set of
corporate interlocks in Scotland in 1904–1905 [31]. The full
data set contains disconnected components, and we have
considered the largest component comprising 131 directors
and 86 firms. Barber [13] reports his best solution as iden-
tifying 20 community groups, which is considerably lower
than 131 directors or 86 firms. However, he does not present
a detailed report on the possible community structure of the
network.

Figure 11 shows the results of the method applied to the
network. The first observation is that the singular values decay
gradually and there is no sharp dip obtained. In all our studies,
we have found this to be a good heuristic; plotting the singular
values provides a good idea of whether the graph may be
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FIG. 11. (Color online) (a) The Scotland Interlocked Directorates Network matrix. Rows represent firms; columns represent directors.
(b) Firm-director cosine matrix at k = 5; white areas represent the modules found in the bipartite network. (c),(d) Firm only and director only
cosine matrices at k = 5. (e),(f) Firm only and director only cosine matrix at k = 7. (g) Singular values decay plot. (h) Details of one small
module of 10 directors and 10 firms that sits clearly disjointed from the rest of the network.

partitioned into clear disjointed communities with minimal
overlaps or whether there are significant overlaps that may
exist between communities. If there is a sharp dip, as in
the Newman-Girvan type network [Fig. 5(c)] or the Southern
Womens’ network case [Fig. 10(d)], it is usually possible to
partition the graph, with no, or very few and clear, overlaps.
However, in cases such as this directorate network, where the
singular values decay more gradually, network structure turns
out to be more complex.

In the case of the Scotland corporate interlocks network, we
studied results from k = 2 to k = 10. The largest component
(131 directors and 86 firms) seems divided into two main
components, a smaller one that clearly sits as a very tight-
knit community and a much larger one with shows many
overlapping communities. The smaller one is shown in graph

form in Fig. 11(h) with the 10 firms in gray and the 10 directors
in black. Figure 11(a) shows the original matrix. The rows
represent the 86 firms; the columns represent the 131 directors.
Figure 11(b) shows the bipartite firm-director cosine matrix at
k = 5. Clearly visible are about 6 communities in the larger
group with significant overlaps between them and 1 separate
smaller community on the bottom left [as shown in Fig. 11(h)].
Further, Figs. 11(c)–11(f) show firm-only and director-only
cosine matrices at k = 5 and 7.

Results obtained here are very different from the 20
communities reported by [13]. However, it is difficult to
compare as Barber does not present a detailed report on what
the detailed structure of these 20 communities in terms of
firm-director groupings. In our method, by k = 9 and k = 10
the larger groups break apart into smaller groups, but it is
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difficult to identify many important relationships that are
captured at lower k values of 5 or 6. Beyond k = 10 it is only
possible to observe the smallest cliques, but no significant
information can be obtained about the large-scale structure
of the network, as it is visible till k = 5 or 6. Therefore, our
results suggest 1 cluster that sits clearly disconnected from
the rest of the network, and about 5–6 overlapping clusters of
firms and directors.

The application of the method on this example clearly
demonstrates and provides further evidence that while the
lowest k values provide insight into the large-scale structure
of the network, increasing the k values is like increasing the
“zoom” view of the network: Progressively increasing k values
to a certain threshold value reveals smaller subcommunities
that lie nested in the larger ones. Therefore, the method
is able to provide insight into the hierarchical structures of
communities that sit inside networks. Further, as is seen from
this example, the method works well for real world graphs that
may be a mix of disjointed and overlapping communities. As
seen in the Scotland case and in the dolphin case, the smaller
community clearly sits apart from the larger one that itself is
a mix of several overlapping communities.

One other advantage provided by this method is both one-
mode and bipartite clustering can be observed simultaneously
using the same set of computations. If a clustering of both types
of elements is desired, then the cosine matrix is an m × n

matrix and each entry in the matrix computes the cosine
between an m-type and an n-type element. If a clustering
of only one type is desired (based on the full information
nonetheless), then the cosine matrix can simply be an m × m

or an n × n matrix. For example, for this case, it is also possible
to identify communities of only directors or only firms which
derive from the bipartite information nonetheless.

VI. DISCUSSION

We have shown that SVD, combined with dimensionality
reduction and unsupervised clustering can effectively reveal
community structures of unweighted or weighted, unipartite
or bipartite graphs in a computationally efficient manner.
We tested the performance of the algorithm on various
families of test benchmark networks and real world networks.
In both artificially generated and real world networks, the
algorithm performs successfully, and extracts the known
community structure. We have shown that it outperforms
other algorithms by being able to simultaneously address the
issues of overlaps in community structure, the existence of
hierarchy, and submodule structure within the main modules
in both unipartite and bipartite networks. We have shown that it
therefore provides for a powerful generalization. In addition, it
is conceptually simple to implement and computationally fast.
Minimal code needs to be written.

The method is defined by two main features: (1) It
presents a spectral approach using SVD, which allows it
to simultaneously work with unipartite as well as bipartite
weighted or unweighted networks; and (2) it relaxes the strict
partition assumption that is assumed in previous spectral
approaches and replaces it with a continuous definition of
vertex membership to multiple communities. The spectral
method has been employed for solving community detection

as an optimization problem. The approach presented in this
paper shows that there are significant advantages if the spectral
method is employed for solving community detection as a di-
mensionality reduction and unsupervised pattern classification
problem.

One main contribution of the algorithm is that it can suc-
cessfully reveal strict partitions and overlaps simultaneously
in any unipartite or bipartite network. For real world large
and complex data sets with a mixture of strict partitions and
overlapping communities simultaneously present in the data
set, this algorithm can serve as a useful tool to detect the
“naturally occurring” communities.

The other main contribution of the algorithm is that it
is simultaneously able to reveal that modules in large networks
can be hierarchically organized with embedded sub-structures
and can detect the smallest of these substructures. Networks
with hierarchy show a singular values decay pattern with
clustered singular values in levels, resulting in a “stepped”
plot. We have shown that dimensionality reduction allows for
successively revealing the finer structure in the network by
increasing the k value. By considering the largest differences
between successive singular values, corresponding to the
number of “stepped levels” in the scree plot, one can find
the modular decomposition at each hierarchical level. Each of
these k values provides for one solution, with a “coarser” view
of the network being revealed by the lower k approximations,
and a “finer” view being revealed by the higher ones. Heuristics
for deciding how many and which k values to explore for
studying the network structure, and the likelihoods that a
community structure is present at all, and if present, whether
it is a flat one or a hierarchical one, have been thus presented.

Many ways of extending this work into the future exist.
First, the method can be immediately extended for directed
networks, as well as weighted networks with negative weights.
Second, an existing limitation of our algorithm is that the
relationship between the discovery of overlaps and hierarchical
module and submodular organization is based on heuristics.
Therefore, in the future, it will be interesting to extend the
method and formalize a way in which a direct relationship
can be established between the number and sizes of mod-
ules and submodules and the singular values and vectors.
Third, while the community detection problem has mostly
been studied as an optimization problem, we presented an
unsupervised pattern classification and linear dimensionality
reduction based interpretation. This opens up the community
detection problem to a whole family of other statistical pattern
classification approaches, including nonlinear (kernel based)
methods. Fourth, as we have shown, the data-driven approach
can work with a number of matrix forms. A good opportunity
for future research could be to analyze the results from
using the same method but other varied matrix formulations
that capture more or different information about modules,
such as a matrix of topological distances, or a matrix that
captures similarity measures between nodes, etc. A theoretical
comparison between different forms such as the adjacency
or the signless Laplacian or other modified matrices of
information using the same method is also possible. The
method is data-driven, network-independent, and information-
independent. Therefore, it can be applied successfully to many
different matrix formulations that contain different kinds of
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data on the nodes and links, with the final objective of
studying the modular organization of the system. Finally,
the method presented here and previous spectral approaches
use the information contained in the eigenvalues and the
eigenvectors in different ways. While Newman’s modularity
method is based on a comparison of a graph with its similar
random counterpart, the method presented here makes no such
comparison necessary and extracts the community information
directly from the data. It will be interesting to study the
relationship between the two methods, and the relationship
of this method to the formal definition of modularity as given
by Girvan and Newman.

Previously, we have studied system decomposition and
modularity-integration for large scale engineering design
problems using this approach [21,22]. In this paper, we
translated our work into the domain of detecting communities
in complex networks. We note here that the disciplines of

genetic microarray data analysis [32,33], data compression
tasks in digital image processing [34,35], statistical natural
language processing tasks on large text corpora to reveal
“latent” semantic meaning in the syntax of language [9,36],
and ranking of web-page algorithms [23,37] also use the
SVD in similar ways. Therefore, we may expect a generalized
family of methods and matrix representations deriving from
this approach to study patterns of regularity, modularity, and
hierarchy in complex networks.
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