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Effect of state-dependent delay on a weakly damped nonlinear oscillator
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We consider a weakly damped nonlinear oscillator with state-dependent delay, which has applications in
models for lasers, epidemics, and microparasites. More generally, the delay-differential equations considered
are a predator-prey system where the delayed term is linear and represents the proliferation of the predator. We
determine the critical value of the delay that causes the steady state to become unstable to periodic oscillations
via a Hopf bifurcation. Using asymptotic averaging, we determine how the system’s behavior is influenced by the
functional form of the state-dependent delay. Specifically, we determine whether the branch of periodic solutions
will be either sub- or supercritical as well as an accurate estimation of the amplitude. Finally, we choose a few
examples of state-dependent delay to test our analytical results by comparing them to numerical continuation.
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I. INTRODUCTION

Delays are used in numerous mathematical models over a
wide variety of applications. Examples of constant delays are
found in lasers [1,2], machine-tool vibrations [3,4], blood-
cell production [5,6], population dynamics [7–9], malarial
microparasites [10–13], and many others. In some cases,
the effect of a delay is negligible, while in other cases the
delay can significantly influence the dynamics, including
stability of equilibria and nonlinear effects. Some models
incorporate state-dependent delays with the assumption that
they describe the physical situation more realistically than
their constant-delay predecessors [14–17]. While the methods
and theory for constant delay-differential equations (DDEs)
are well established [18,19], those for state-dependent delay-
differential equations (SDDEs) comprise a growing field
of study [20–23]. In this paper we consider a nonlinear
oscillator that includes a state-dependent delay. By applying
the asymptotic method of averaging, we are able to describe
how the functional form of the delay determines the nature of
a Hopf bifurcation to persistent oscillations.

The SDDEs we consider are given by Eq. (1), where the
constant-delay version has applications in lasers [1,2,24–26],
population epidemics [8,9], and malaria infection [10,11].
More generally, we interpret these equations as a predator-prey
system with the predator x regulated by a delayed version of
the prey population y. The nondimensionalized version of the
application-specific model is

ẋ = y|τ − ax,
(1)

ẏ = −x(1 + y),

where yτ = y(t − τ ) is the delay, and x and y represent
deviations from some nonzero steady state. For example, in
disease populations [8,9], the original variables are fractions of
susceptible and infectious individuals such that (x,y) = (0,0)
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represents the nontrivial endemic state. The parameter a rep-
resents the weak dissipation of the system such that a � 1 and
the trajectories spiral toward the origin as t → ∞. In this way
for τ = 0 Eq. (1) form a weakly damped nonlinear oscillator.
More specifically, for a = 0 and τ = 0 the undamped system
of ordinary differential equations (ODEs) is conservative with
energy given by

E(x,y) = 1
2x2 + y − ln |1 + y|. (2)

In Fig. 1 we show periodic orbits in the phase plane where
each orbit corresponds to a different energy. We note that one
cycle of trajectory (a) consists of a sharp pulse for y followed
by a longer latency period when y is near but slightly greater
than −1; in the original physical variables (not presented) this
corresponds to the prey population being near zero. During the
pulsation for y, the predator population x increases quickly,
followed by a slow decay during the latent period. As stated
above, when a > 0 the oscillations are damped and the system
spirals to the steady state. For sufficiently large τ , oscillations
become excited and self-sustained via a Hopf bifurcation.

We are interested in the case where the delay is dependent on
one the state variables, which can occur in a number of different
ways. In the case of machine-tool vibrations, nonconstant
delays can be the result of uneven drilling [14,27,28]. These
models typically exhibit implicitly defined delays, and their
study relies on numerical computation. However, explicitly
defined delays can also be incorporated into mathematical
models. In a model for the economics of fishing, the delay
representing a fisherman’s reaction time to fluctuations in
economic rent can exhibit linear and even nonlinear dependen-
cies on harvesting efforts and population size [7]. As another
example, in Ref. [15] a biological model for erythropoiesis
incorporates a nonmonotonic state-dependent (SD) delay as a
state variable representing the lifespan of mature erythrocytes.

In this paper, we consider the delay in Eq. (1) to be a
function of y such that τ = τ (y) for the following hypothetical
arguments. In Ref. [10], y represents parasite load for a
malarial infection and causes the host’s immune effectors,
represented by x, to respond to the parasite. In this context,
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FIG. 1. (Color online) The phase plane (left) and time series
(right) for the undamped (a = 0) and instantaneous (τ = 0) system
given by Eq. (1) are numerically computed with initial conditions (a)
y(0) = 0 and x(0) = 3 (thick curve) and (b) y(0) = 0 and x(0) = 1/2
(thin curve). Large-amplitude oscillations (a) exhibit a pulsating
solution and correspond to high energy defined by Eq. (2), while
small-amplitude oscillations (b) are sinusoidal.

the delay in Eq. (1) represents a time lag in production of
immune effectors, which we consider to be influenced by the
parasite load. Alternatively, in an SI-epidemic model [8,9]
y is the infectious class, x is the susceptible class, and there is
an infectious-load dependent delay in the contact process that
removes individuals from the susceptible class. Concerning
the functional form of τ (y), we consider certain restrictions
to be appropriate for applications of the model, namely, that
it remain a smooth positive function in a neighborhood near
the steady-state value y = 0. We do not, however, restrict the
slope or shape of τ (y), which might limit its application.

In the next section, we begin by analyzing the linear
stability of the zero steady state and find the size of delay
necessary to cause an instability via a Hopf bifurcation. For
small damping, the delay required to produce a limit cycle is
also small. We use averaging to determine how the amplitude
and frequency of the limit-cycle solutions depend on the size
and functional form of the state-dependent delay. We find that
the branch of delay-induced periodic solutions can be either
supercritical or subcritical depending on the functional form
of the delay. Finally, we consider different examples of τ (y)
and examine properties that influence the branch of periodic
solutions and compare our results to those generated from
numerical continuation [29]. We conclude with a discussion
of the paper’s results.

II. LINEAR STABILITY

In this section we examine the stability of the zero steady
state by linearizing Eq. (1) and deriving the characteristic
equation for the growth rates. A fundamental problem in
the stability analysis of SDDEs is how to properly treat the
state-dependent delay. In particular, differentiability of the
dependent variable is an issue, so any expansions involving
derivatives become questionable. Nevertheless, we will use
the heuristic approach of evaluating the delay at the desired
steady state to obtain a constant delay and then linearize.
For the case where the delay is an explicit function of the
state and, roughly speaking, the function is continuously
differentiable, this approach has been shown to generate the

correct approximating system [21]. In the next section we
use a Taylor-series approximation for the delay evaluated
near the steady state and, thus, require τ (y) to be formally
smooth. Because y = 0 is the steady state under consideration,
the delay takes the constant value τ (0) = τ0, which yields
y|τ ≈ y|τ0 . Then the linear system is

ẋ = y|τ0 − ax,
(3)

ẏ = −x,

which has a characteristic equation given by

F (λ,τ ) = λ2 + aλ + e−λτ0 = 0. (4)

In the case that τ = 0 and for a � 1, the zero steady state
is a stable focus with complex-conjugate eigenvalues given by

λ = −a

2
±

√(a

2

)2
− 1 ∼ −a

2
± i

(
1 − a2

8

)
. (5)

We now consider nonzero delay τ (0) = τ0 �= 0 and note
that Eq. (4) contains the exponential term exp(−λτ0). We look
for a Hopf bifurcation by substituting λ = iω into Eq. (4) and
obtain

0 = −ω2 + cos(ωτ0),
(6)

0 = aω − sin(ωτ0).

After some algebra we find that the steady state bifurcates to
a branch of delay-induced periodic solutions with frequency
and delay satisfying

ω = ωh ≡

√√√√−a2

2
+

√(
a2

2

)2

+ 1 ∼ 1 − a2

4
,

(7)

τ0 = τh ≡ 1

ωh

arctan

(
a

ωh

)
∼ a.

We note that the middle portions of Eq. (7) are exact expres-
sions while the right-hand sides are asymptotic approximations
when a � 1. The latter indicates that the delay required to
excite persistent oscillations is of the same order of magnitude
as the weak damping and that the frequency of the oscillations
is less than when the delay is zero, as shown in Eq. (5).

III. BIFURCATION EQUATION

In this section we use averaging, in the formal sense, to
derive a bifurcation equation that indicates how the amplitude
of periodic oscillations that appear at the Hopf bifurcation
depend upon the parameters. Averaging [30,31] requires that
the system flow has some degree of differentiability, and this
is not a priori guaranteed for SDDEs [21]. Nevertheless, we
forge ahead with our heuristic approach and, in the end, find
that we have excellent fit between the results of our analysis
and those generated from numerical simulations. Our approach
follows closely that which has been done for ODE and DDE
versions of Eq. (1), which uses the system’s energy as the new
dependent variable of interest [24,32].

We begin by imposing small damping such that a = εã with
ε � 1. From the linear-stability analysis in Sec. II, we have
determined that the critical delay time at the Hopf bifurcation is
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O(ε). Thus, we let τ (y) = ετ̃ (y) so that y[t − τ (y)] = y[t −
ετ̃ (y)]. For ε = 0 we have the conservative, nonlinear ODEs:

ẋ0 = y0,
(8)

ẏ0 = −x0(1 + y0),

which we will refer to as the unperturbed system. The
conserved energy of the unperturbed system is given by Eq. (2),
which we reproduce here:

E(x,y) = 1
2x2

0 + y0 − ln |1 + y0|. (9)

For ε = 0 it is a simple matter to check that dE/dt = 0. For
ε �= 0 the damping and the delay cause the energy to evolve
in time. The basic idea of averaging is to evaluate the result
for dE/dt , ε �= 0, using the unperturbed system with x = x0

and y = y0 from Eq. (8), and to integrate (average) over one
period (P ) of oscillation. The result is

dE

dt
= 1

P

∫ P

0
{[y0(t − ετ̃ ) − y0(t)] − εãx0(t)2} dt, (10)

where we have implicitly assumed that |y0(t − ετ̃ ) − y0(t)| =
O(ε). Periodic solutions exist if, after one period, the change
in energy is zero (dE/dt = 0) so that we have the bifurcation
equation

0 = 1

P

∫ P

0
([y0{t − ετ̃ (y0)] − y0(t)} − εãx0(t)2) dt. (11)

Before we continue, we formally evaluate the delay term.
Specifically, we let

y0[t − ετ̃ (y0)] = y0(t) − ετ̃ (y0)ẏ0(t) + O(ε2). (12)

After substituting for ẏ0 from Eq. (8) and keeping only the
O(ε) terms, we have

0 = 1

P

∫ P

0

[
τ (y0)x2

0 (1 + y0) − ax2
0

]
dt, (13)

where we have reabsorbed the ε into the definitions for τ

and a.
The challenge at this point is to evaluate the integral.

Because explicit solutions to Eq. (8) cannot be obtained, we use
Linstedt’s method [32] to find small-amplitude approximations
given by

x0 = R cos ωt − 1

6
R2 sin 2ωt − 1

32
R3 cos 3ωt + O(R4),

y0 = −ωR sin ωt − 1

3
R2 cos 2ωt + 3

32
R3 sin 3ωt + O(R4),

(14)

ω = 1 − R2

24
+ O(R4),

where R ∼ xmax. Under the assumption that y0 is of small
amplitude, we then expand the state-dependent delay term as

τ (y0) = τ0 + τyy0 + 1

2
τyyy

2
0 + O

(
y3

0

)
. (15)

The expressions τ0, τy , and τyy represent the delay, its
derivative, and second derivative, respectively, where each
is evaluated at the steady-state solution, y = 0. We find that

keeping the O(y2
0 ) terms is sufficient to obtain good fit with

numerical simulations. We then substitute Eqs. (14) and (15)
into Eq. (13), integrate over one period [0,2π ], and the
result is

0 = 1
2 (τ0 − a) + 1

8R2 (
τy + 1

2τyy

) + O(R4). (16)

Finally, we solve for R to obtain

R = 2

√
− τ0 − a

τy + 1
2τyy

. (17)

We note that a is the leading-order approximation to the
value of the delay at the Hopf bifurcation [see Eq. (7)] and that
R is the amplitude of x. Thus, we write that

xmax = 2

√
−τ0 − τh

ψ
, (18)

where

ψ = τy + 1
2τyy. (19)

The expression under the radical in Eq. (18) must be nonneg-
ative. Thus, if τ0 − τh > 0 (<0), then we require ψ < 0 (>0).
From the linear stability analysis we know that when τ0 − τh >

0 the steady state is unstable. This suggests that if ψ < 0 such
that the branch of periodic solutions continues for τ0 − τh > 0,
then those periodic solutions will be stable corresponding to
a supercritical bifurcation. Similarly, if ψ > 0, the branch of
periodic solutions that continue for τ0 − τh < 0 is expected to
be unstable corresponding to a subcritical bifurcation. In the
next section, we will choose a few examples of state-dependent
delay and demonstrate the validity of Eqs. (18) and (19), as
well as confirm that the stability of the periodic solutions is
consistent with the above discussion.

We note that ψ depends only on the first and second
derivatives for τ (y) because the higher-order derivatives have
been neglected in Eq. (15) under the assumption that for
small-amplitude oscillations they are small. It should also be
noted that when ψ = 0 Eq. (18) is singular and corresponds to
losing the amplitude-dependent term in Eq. (16). This requires
that the perturbation analysis be continued to higher order to
obtain the O(R4) term. We discuss this further in the next
section when we consider the case of constant delay.

IV. EXAMPLES

In this section, we consider various definitions of the
state-dependent delay and examine how the properties of each
influence the branch of periodic solutions stemming from
the Hopf bifurcation. In addition, we demonstrate how the
bifurcation results of the previous section accurately predict
nonlinear behavior for Eq. (1) with state-dependent delay. In
each case, we use τ0 > 0 as the bifurcation parameter because
it measures the strength of the delay. In other words, we define
the state-dependent delay such that τ0 is the delay where y is
at its steady state (y = 0). The parameter ρ will be used as a
free parameter to change the slope or shape of each example
function. We note that the linear stability of the trivial steady
state is identical for each definition of τ (y) in this section. In
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FIG. 2. (Color online) The constant delay yields a supercritical
branch of periodic solutions with damping given by (a) a = 0.1 and
(b) a = 0.4. Numerical continuation (solid) is compared to our results
given by Eq. (20) (dashed). We note that the scaling for τ0 in (a) is
much smaller than that for τ0 in Figs. 3–5, indicating that the curve
here is relatively steep or nearly vertical.

other words, the Hopf bifurcation occurs at the same delay
given by Eq. (7).

A. Constant delay

We begin by considering a constant time lag τ (y) = τ0 as a
reference to compare against when we discuss examples with
state-dependent delay. Because τy = τyy = 0, we note that ψ

is zero such that Eq. (18) is singular. In general, this indicates
that the perturbation method must be carried out to higher order
in the small parameter. Unfortunately, higher-order averaging
would be very difficult for the present problem. However, we
have previously analyzed the constant delay case for a very
similar model as Eq. (1) in Ref. [10]. More specifically, we
look for small-amplitude solutions from the outset and look
for solutions of the form x = ηx1 + η2x2 + · · ·, η � 1, focus
near the Hopf bifurcation with τ = τh + η2τ2, and introduce
an additional slow time η2t . By continuing the perturbation
method to O(η2) we obtain a solvability condition, which we
analyze to obtain

xmax ∼ 2

√
3(τ0 − τh)

2a3
, (20)

indicating that the branch of periodic solutions is supercritical.
The denominator of Eq. (20) is proportional to a3 such that
for small damping the amplitude is very large. In general, we
will see that the bifurcation curve for the constant-delay case
is steeper than for state-dependent delay. As shown in Fig. 2,
Eq. (20) exhibits good fit with numerical continuation [29] for
small-amplitude solutions. We note that our approximation in
Eq. (20) improves when the damping is decreased because we
derived it for a � 1. This explains why the dashed line in
Fig. 2(a) (a = 0.1) is closer to the numerical result than that
in Fig. 2(b) (a = 0.4).

B. Sigmoid

The first state-dependent delay we consider, which we refer
to as the sigmoid case, is defined by

τ (y) = 2τ0
1

1 + eρy
. (21)
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FIG. 3. (Color online) (top) The sigmoid state-dependent delay
τ (y) given by Eq. (21) is plotted as a function of y for (a) ρ = −8,
(b) ρ = −1, (c) ρ = 1, and (d) ρ = 10. (bottom-left) ψ is given
by Eq. (22) for ρ ∈ [−10,12] and indicated points corresponding to
delay definitions (a)–(d). (bottom-right) Numerical continuation [29]
(solid curves) along with our bifurcation equation given by Eq. (18)
(dotted curves) illustrate sub- and supercritical branches of periodic
solutions corresponding to (a) and (b) where ψ > 0 versus (c) and
(d) where ψ < 0.

This definition of τ (y) has range (0,2τ0) and domain (−∞,∞)
such that the delay is defined and positive regardless of the
value of the state variable y. The parameter ρ can be any
nonzero number because ρ = 0 corresponds to the constant-
delay case. It follows from Eq. (21) that for the sigmoid case

ψ = τy = −τ0ρ

2
, (22)

which is positive when ρ < 0, indicating that the Hopf
bifurcation is subcritical, as shown in Figs. 3(a) and 3(b). On
the other hand, ψ < 0 when ρ > 0, causing the bifurcation to
be supercritical, as shown in Figs. 3(c) and 3(d). As ρ → 0,
τ (y) approaches the constant function, which causes ψ → 0
as indicated by Figs. 3(b) and 3(c). As a consequence, the am-
plitude of periodic solutions, which is inversely proportional
to

√|ψ |, increases for delays near the Hopf bifurcation.

C. Parabolic

In this section, we consider a parabolic state-dependent
delay defined by

τ (y) = τ0(1 − ρy2), (23)

which is quadratic in y. As in the previous example, we
exclude ρ = 0, which yields the constant delay (Sec. IV A). It
is clear that when ρ > 0, τ (y) is concave down with domain
[−1/

√
ρ,1/

√
ρ]. We require that ρ < 1 in order to maintain

positive delay for small-amplitude solutions. On the other
hand, when ρ < 0, τ (y) is concave up and, thus, always
positive. It follows from Eqs. (23) and (19) that

ψ = 1
2τyy = −τ0ρ, (24)

which is linear in ρ with negative slope. Thus, we find that
the Hopf bifurcation is subcritical where ρ < 0 as shown in
Figs. 4(a) and 4(b), while it is supercritical when ρ > 0 as
illustrated in Figs. 4(c) and 4(d).
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FIG. 4. (Color online) (top) The parabolic state-dependent delay
τ (y) is given by Eq. (23) and (a) ρ = −1, (b) ρ = −0.1, (c) ρ =
0.25, and (d) ρ = 0.9. (bottom-left) ψ is given by Eq. (24) for ρ ∈
[−1.2,1.2] and indicated points corresponding to delay definitions
(a)–(d). (bottom-right) Like Fig. 3, numerical continuation [29] (solid
curves) is plotted with our analytical result given by Eq. (18) (dotted
curves) for (a) and (b) where ψ > 0 versus (c) and (d) where ψ < 0.

While for the sigmoid case ψ depends on τy by Eq. (22), for
the parabolic case ψ depends on τyy by Eq. (24), indicating the
importance of the latter term in the definition of ψ in Eq. (19).
For both the parabolic and sigmoid cases, we note that their
respective definitions of ψ are linear in ρ as shown in Figs. 3
and 4. The next example will show a case where ψ ∼ ρ2.

D. Exponential

In both previous examples, the change from subcritical to
supercritical occurs when the delay is a constant and ψ = 0.
Here we look for nonconstant delays yielding ψ = 0. Although
the expressions τy and τyy are evaluated at y = 0, we use ψ = 0
as motivation to form the initial value problem (IVP):

τ ′(y) + 1
2τ ′′(y) = 0, τ (0) = τ0, τ ′(0) = k. (25)

The solution to this IVP is τ (y) = τ0 + 1
2k − 1

2k exp(−2y).
We choose k = −2τ0 for convenience to obtain the simpler
expression τ (y) = τ0 exp(−2y). We now introduce the param-
eter ρ in order to tune the delay so that the right-hand side of
Eq. (25) could be positive or negative instead of strictly zero.
More specifically, we consider delay defined by

τ (y) = τ0e
(ρ−2)y (26)

and refer to it as the exponential case. τ (y) is decreasing when
ρ < 2 and increasing when ρ > 2, while ρ = 2 corresponds
to a constant delay. In this case, both τy and τyy are nontrivial
such that

ψ = τ0ρ
(

1
2ρ − 1

)
. (27)

Unlike the sigmoid and parabolic delays, the exponential delay
causes ψ to be quadratic in ρ with zeros at ρ = 0 and 2, and
vertex (1, − τ0/2). It follows that the Hopf bifurcation will be
subcritical when ρ < 0 or ρ > 2 because these are the regions
where ψ > 0, as illustrated by Figs. 5(a) and 5(d). Contrarily,
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FIG. 5. (Color online) (top) The exponential state-dependent
delay τ (y) is given by Eq. (26) and (a) ρ = −0.5, (b) ρ = 0.8,
(c) ρ = 1.8, and (d) ρ = 3. (bottom-left) ψ is given by Eq. (27) for
ρ ∈ [−1,3.5] and indicated points corresponding to delay definitions
(a)–(d). (bottom-right) Numerical continuation [29] (solid curves) is
plotted with our analytical result given by Eq. (18) (dotted curves)
for (a) and (d) where ψ > 0 versus (b) and (c) where ψ < 0.

it will be supercritical when 0 < ρ < 2, as shown in Figs. 5(b)
and 5(c).

We note that the zeros of ψ given by ρ = 0 and 2 correspond
to qualitatively different state-dependent delays. Because τ (y)
is constant when ρ = 2, it follows that the bifurcation curve
will be supercritical and approximated by Eq. (20). On the
other hand, when ρ = 0, ψ is zero for nontrivial τy and τyy , yet
the delay is a decaying exponential, as illustrated in Figs. 5(a)
and 5(b). In this case, the nonlinear effect of the delay is
captured at higher order.

Consider the four cases of (ρ,ψ) as shown Fig. 5, each
of which corresponds to a different τ (y) shown at the top.
In Fig. 5(a), we see for ρ < 0 that τ (y) is a decreasing
function and ψ is positive, yielding a subcritical bifurcation.
If we adjust ρ to be positive, as shown in Fig. 5(b), then
ψ is negative, indicating the bifurcation has switched to
supercritical. As we approach ρ = 2 as shown in Fig. 5(c),
ψ remains negative (bifurcation remains supercritical), but
the amplitude of oscillations is greater. This is because |ψ |
at (b) is greater than that at (c), causing the coefficient for
amplitude in Eq. (18) to be larger for (c). Furthermore, the
amplitude of persistent oscillations for the supercritical case
will be minimized when ψ is at its local minimum, i.e., ρ = 1
and ψ = −τ0/2. For values of ρ > 2, ψ is positive once again,
causing the bifurcation to be subcritical, as shown in Fig. 5(d).
Finally, we note that the amplitude of periodic solutions for
the two subcritical cases in Fig. 5 is larger where ψ is smaller.

V. DISCUSSION

Our analysis applies the asymptotic method of averaging
to a delay-differential equation with state-dependent delay.
We employ a series expansion of the functional delay based
on small-delay and small-amplitude oscillations. While our
approach is formal and there is no a priori guarantee this
method will produce correct results, we find that the derived
bifurcation equation correctly describes what is observed using
numerical continuation [29]. Further, we have also simulated
the SDDEs directly [33] and obtained identical results.
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The results of our analysis allow us to predict how the
functional form of the state-dependent delay, τ (y), influences
the nonlinear behavior of the system. Specifically, the sign of
the quantity ψ = τy(0) + (1/2)τyy(0) determines whether the
bifurcation will be supercritical or subcritical. Additionally,
ψ controls the amplitude of the periodic solutions such that
the amplitude is proportional to 1/

√|ψ |; thus, smaller |ψ |
leads to larger amplitude oscillations. The importance of this
prediction lies in the different way oscillatory solutions will
appear as the delay is increased beyond the value at the Hopf
bifurcation point. For the supercritical case, the oscillations
will initially be small amplitude and grow smoothly with the
distance away from the bifurcation point. In contrast, for the
subcritical case increasing the delay past the critical value
causes the oscillations to suddenly jump to an attractive limit
set consisting of large-amplitude pulsating, quasiperiodic, or
chaotic oscillations. In the case of machine-tool vibrations
when there is a subcritical bifurcation, increasing the bifurca-
tion parameter past the Hopf bifurcation point leads to chaotic
oscillations, referred to as “chatter,” which can cause poor
surface quality on the material being cut [3] or failure of the
cutting tool [28].

In the context of machine-tool vibrations sub- and supercrit-
ical Hopf bifurcations have been shown to occur by varying the
functional form of the state-dependent delay [14,27]. Although
the state-dependent delay in Ref. [14] is implicitly defined,
Insperger et al. demonstrate that increasing the feed rate,
which is proportional to the mean time delay, causes the Hopf
bifurcation to switch from sub- to supercritical. In Ref. [27]
Demir et al. use a Lyapunov-Schmidt reduction to derive
a bifurcation equation that depends on the parameters and
functional form of their model and obtain a simple condition
for either a supercritical or subcritical Hopf bifurcation.
However, their result depends in a complex way on the mean
delay so that results are not as easy to summarize as our simpler
model, which depends on the quantity ψ .

Using the examples in Sec. IV, we demonstrated specific
cases of how ψ controls the direction of the bifurcation
and, more specifically, that ψ = 0 is the critical value that
separates supercritical from subcritical bifurcations. There are
two different ways in which ψ = 0. The delay can be a constant
such that τ (y) = τ0 and all derivatives are 0, or the functional

form can be such that the first and second derivatives balance
leading to ψ = 0. In Figs. 3 and 4 we show the case when ψ

passes through zero with a constant delay. In Fig. 3(b) τ (y)
has positive slope while in Fig. 3(c) it has negative slope,
which causes the bifurcation to switch from subcritical to
supercritical. In Fig. 4(b), the concavity is positive while in
Fig. 4(c) it is negative, which again causes the bifurcation
to switch from sub- to supercritical. In contrast, we show in
Fig. 5 a change in bifurcation for the case of a nonconstant
delay. Specifically, the delay is an exponential function whose
derivatives are such that ψ passes through 0. Thus, in both
Figs. 5(a) and 5(b) the function is decreasing and concave
up, i.e., they are qualitatively similar; however, the size of
the derivatives has changed, causing a switch from sub- to
supercritical.

We note that the exponential case shown in Fig. 5 is not
the only function with nonzero derivatives causing a switch
in the direction of the bifurcation. We used the exponential
function because it solves the initial-value problem in Eq. (25).
However, other examples such as τ (y) = τ0/(1 + ρy) yield
quadratic expressions for ψ as a function of ρ and will exhibit
qualitatively similar bifurcation behavior.

For the exponential case in Sec. IV D, we find a number
of examples where the subcritical bifurcation branch reaches
a turning point and then bends back to the right. The turning
point coincides with a change in stability, and in the examples
we consider we have verified with numerical continuation [29]
and direct solvers [33] that the periodic oscillations beyond the
turning point are stable. This then leads to a region of bistability
between the turning point on the left and the Hopf bifurcation
point on the right, where both the zero steady state and the
periodic solutions are stable.

In conclusion, we have successfully applied the asymptotic
method of averaging to a relatively simple delay-differential
equation with state-dependent delay. Models with state-
dependent delays are of increasing interest both because they
arise naturally and because they are introduced as part of a
broader control methodology. We are able to correctly predict
bifurcations to oscillatory solutions in a model that has wide
application. Our analytical results are tested against both
numerical continuation and direct simulation, and we obtain
excellent agreement.
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