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Earthquake correlations and networks: A comparative study
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We quantify the correlation between earthquakes and use the same to extract causally connected earthquake
pairs. Our correlation metric is a variation on the one introduced by Baiesi and Paczuski [M. Baiesi and
M. Paczuski, Phys. Rev. E 69, 066106 (2004)]. A network of earthquakes is then constructed from the time-ordered
catalog and with links between the more correlated ones. A list of recurrences to each of the earthquakes
is identified employing correlation thresholds to demarcate the most meaningful ones in each cluster. Data
pertaining to three different seismic regions (viz., California, Japan, and the Himalayas) are comparatively
analyzed using such a network model. The distribution of recurrence lengths and recurrence times are two of the
key features analyzed to draw conclusions about the universal aspects of such a network model. We find that the
unimodal feature of recurrence length distribution, which helps to associate typical rupture lengths with different
magnitude earthquakes, is robust across the different seismic regions. The out-degree of the networks shows a
hub structure rooted on the large magnitude earthquakes. In-degree distribution is seen to be dependent on the
density of events in the neighborhood. Power laws, with two regimes having different exponents, are obtained
with recurrence time distribution. The first regime confirms the Omori law for aftershocks while the second
regime, with a faster falloff for the larger recurrence times, establishes that pure spatial recurrences also follow
a power-law distribution. The crossover to the second power-law regime can be taken to be signaling the end of
the aftershock regime in an objective fashion.
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I. INTRODUCTION

Many complex processes in nature have the intrinsic
tendency of self-organizing themselves into a critical state.
For example, earthquakes, forest fires, avalanches, biological
evolution, and so on have this feature in common. These
processes are characterized by long-range correlations in space
and time and, typically, also exhibit power-law distributions
in many of their variables [1]. However, the dynamics of the
processes that self-organize the system to the critical state is
still not understood clearly [2]. In recent times, many studies
have sought to understand seismicity from the viewpoint of
complex networks [3–8]. The spatiotemporal properties of
the seismicity of a region are analyzed from the patterns
exhibited by a network constructed from the earthquake
catalog of the region. Such an approach which focusses on
the spatial and temporal links between nodes represented by
the events in the catalog, without considering the causes of
such linkages, is particularly useful in seismicity where the
underlying dynamics is still obscure. We adopt this method in
this study and compare different networks constructed from
earthquake catalogs of three different seismic regions of the
globe, California, Japan and the Himalayas.

The clustering of earthquakes in space and time suggests
that events that follow in time are, to a certain extent, causally
related to the earlier ones. However, restricting the causality
connection to a single predecessor or to the somewhat arbitrary
mainshock-aftershock scenario may not be enough. Rather, the
causality connection can be extended to a cluster of events
that are strongly correlated based on data analysis. With
this in mind, Baiesi and Paczuski [5] introduced a metric to
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quantify correlations between earthquakes. We use a similar
metric here, but with a change which will be clarified below.
Both the metrics are obtained by combining two of the most
robust statistical laws that characterize earthquake data, the
Gutenberg-Richter (GR) law [9] and the fractal distribution of
earthquake epicenters (see, for example, Ref. [10]). The former
law states that the number N of earthquakes of magnitude � m

vary as

N (m) ∼ 10−bm, (1)

where b is a constant ≈1, but does vary a little with the region
and the catalog (see, for example, Ref. [11]). The latter is based
on fractal analysis and is of recent origin, but has been shown to
be quite robust through the analysis of different data sets from
various regions of the globe (see, for example, Refs. [10,12])

N ′(l) ∝ ldf , (2)

where N ′ is the number of pairs of points separated by a
distance l and df is the fractal dimension.

If we combine the above two laws, we may state that the
average number of events that can occur in the region within
a distance lij separating two events i and j is

nij = Kl
df

ij 10−bmi �mi, (3)

where K is a constant of proportionality that may be related to
the seismic activity of the region [13] and �mi is the accuracy
in measurement of the magnitude mi . Note that the events of
the catalog are assumed to be time ordered with j > i and
tj > ti . We may then define a correlation relation between
earthquakes as

cij = 1

nij

, (4)
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and note that the correlation between two events is a maximum
when nij is at a minimum [i.e., “unexpected” (few) events
are likely to be more correlated than many events in the
radius of reckoning which lead to them being “expected”].
Importantly, these unexpected events will be, as seen from
the equation, characterized by larger magnitudes and smaller
distances resulting in very small values for nij . This is
what we would also expect intuitively. The metric used here
ensures that spatially close by events are more correlated
and, also, a higher magnitude event contributes a larger
value to correlation than a lower magnitude one at that same
location.

We construct the network now by making the linkages be-
tween correlated events in the time-ordered list of earthquakes.
For this purpose, correlation thresholds cth are defined and
only those event pairs with cij � cth are linked together in the
network. The basic premise is that all subsequent events in the
catalog are recurrences to the selected event, but a pruning is
being done based on cth to ensure that only the most correlated
are selected.

Our metric for measuring correlation is similar to the one
used by Baiesi and Paczuski [5] (hereafter referred to as
BAPA). However, we will be focusing on spatial recurrences
rather than aftershocks. It is the latter which was studied in
BAPA. Thus, they had chosen to include additionally a time
factor tij (= tj − ti) in their expression corresponding to
Eq. (3). This reduces the temporal radius from within which
correlated events will be sought. Our metric does not, unlike
in BAPA, leave out events that are separated by large time
intervals, as long as they satisfy the correlation relation, Eq. (4)
(see Krishna Mohan and Revathi [14] for a more detailed
comparison).

It is to be also noted that, in BAPA, the question that
was asked was as to which previous event the present event
is an aftershock of. To this end, Eq. (3) (with the added
factor of tij ) was evaluated in BAPA by holding j fixed
and varying i from the set of all previous events. In such a
procedure, mi as well as l

df

ij keep changing in each evaluation.
In our case, we go forward in time and ask which event is
returning to the same location. Therefore, i and mi are fixed,
j varies between evaluations, and only lij keeps varying.
Thus, in our case, each event selects a spatial window
proportional to its magnitude and the subsequent events closer
to it get more weight in the computed correlation value. In
the case of BAPA, the size of the spatial window depends
not on the magnitude of the event whose associations are
being looked for, but the earlier events which are being
sampled to identify associations. Our procedure identifies all
spatial recurrences whereas only aftershocks are sought out in
BAPA.

We studied in a recent work [14] (hereafter referred to as
CALNTWRK) the spatial recurrences of earthquakes in the
California region by following the above procedure. In this
paper, we adopt the same procedure to construct networks of
correlated events from an earthquake catalog of Japan and from
a catalog for the Himalayan belt. We analyze the seismicity
of these regions in terms of the topology of these networks
and compare the same with the findings from CALNTWRK
to extract the robust features of such correlated networks of
seismic events.

II. THE REGION AND CATALOGS

The regions chosen for the study here are both regions
of high seismic potential. Japan is located in a region of
considerable seismic risk. Japan lies on the cusp of the Pacific-
Philippine-Eurasian triple plate junction, where the complex
interactions of three tectonic plates are unpredictable and
loaded with potential activity. Seismicity is dominated by the
subduction of the Pacific Plate under the Okhotsk Plate to the
north and, in southern Japan, the subduction of the Philippine
Sea Plate under the Amurian Plate and the Okinawa Plate [15].
The complex interaction of these plates has produced a long
history of damaging earthquakes. The recurrence interval of
earthquakes along most crustal faults in Japan is typically quite
long, while the recurrence intervals of events along subduction
zones is usually much shorter [16]. The region covered in
this analysis lies between 126.433◦E–148.0◦E longitudes and
25.730◦N–47.831◦N latitudes.

The Himalayas are among the most seismically active
regions of the world. The seismicity of the Himalayas is
contributed mainly by the north-south convergence of the
Indian and Eurasian plates, the east-west convergence of the
Indo-Burmese mountain, and the underthrusting of the Indian
Plate below the Eurasian Plate [17]. Several studies of this
region indicate that shallow focus earthquakes dominate this
region and the fault plane solutions indicate the dominance
of thrust faulting and strike slip in this region [17]. Though
the whole Himalayan belt may be considered as one seismic
belt, we have carried out the analysis based on a division into
three zones: Western Himalayas (WH) (between 70◦E–78◦E
longitudes and 30◦N–38◦N latitudes), Central Himalayas (CH)
(between 78◦E–98◦E longitudes and 28◦N–38◦N latitudes),
and North Eastern Himalayas (NEH) (between 88◦E–98◦E
longitudes and 20◦N–28◦N latitudes). Due to the paucity of
data, CH is not analyzed here.

The data sources are (1) Japan University Network Earth-
quake Catalog [18] for the Japanese data (January 1, 1993
to December 31, 1998) and (2) Advanced National Seismic
System (ANSS) catalog [19] (January 1, 1973 to December
31, 2007) for the Indian Himalayas. The data were analyzed
against Eq. (1) to confirm adherence to the GR law, by varying
the minimum magnitudes (mmin) considered in the data sets.
The minimum of mmin, which gives a reasonable power-law
behavior, was subsequently chosen (Fig. 1) and only data
with m greater than that considered for the analysis presented
here. The mmin chosen was 3.0 for the Japanese data and 4.5
for the Indian Himalayas. The Japanese data use the Japan
Meteorological Agency (JMA) scale to express magnitude
while the ANSS data are expressed in moment magnitude.
The ANSS catalog is for a much longer period. However,
since the minimum magnitude for the catalog is higher at 4.5,
the number of events is much less and thus the data set much
poorer.

III. METHODOLOGY

We have chosen to retain the values for K and �mi as was
used in CALNTWRK for all the regions studied here. Note
that the absolute value of these parameters are not critical for
this study since only the relative correlation values matter in

046109-2



EARTHQUAKE CORRELATIONS AND NETWORKS: A . . . PHYSICAL REVIEW E 83, 046109 (2011)

10 0

10 2

10 4

10 6

 2  4  6  8

N
(m

)

m

(a)

Jap

slope = - 0.87

10 0

10 2

10 4

 3  4  5  6  7  8  9

N
(m

)

m

(b)

WH

slope = - 1.08

10 0

10 2

10 4

 3  4  5  6  7

N
(m

)

m

(c)

NEH

slope = - 1.24

FIG. 1. The log-log plot of Eq. (1) for the different regions studied here. The panels have been labeled after the corresponding seismic
regions: (a) “Jap” for Japanese data, (b) “WH” for Western Himalayas, and (c) “NEH” for North Eastern Himalayas.

separating the most correlated from the less correlated. The
values of b were obtained from a linear fit to the the log-log
plots of Eq. (1) (Fig. 1) and were 0.87 for Japan, 1.08 for
WH, and 1.24 for NEH. df was set equal to 1.6 for Japan
[12] while, for WH and NEH, we estimated df ourselves as
1.85 and 1.6, respectively, using the Grassberger-Procaccia
algorithm [20].

The distribution of correlation values between all pairs of
events in each catalog is similar. Excepting at the upper and
lower limits, the distribution is a power law over many decades
of the log scale. The range of the power law will be more for
a region if the mth value of the catalog is smaller since a lower
mth value leads to bigger data sets. However, the range will
be different for different regions even if the mth values are
the same because of differing sizes of data sets which result
because of differing rates of seismicity. The distribution for
Japan (mth = 3.0) shows a range of about seven decades for the
power-law regime, while the two Himalayan regions (both with
mth = 4.5) have ranges less than five decades. CALNTWRK
(mth = 2.5) had a range of about eight decades.

The exponents of the power law for all the regions are in
the range −1.6 to −1.9 and are given in the plots (Fig. 2);
CALNTWRK had an exponent of −1.7. Again, whether the
exponent depends on the region can only be established if
we compare the values obtained from catalogs with similar
degrees of completeness, homogeneity, and accuracy. For
example, we noticed that, in general, for the same region and
same catalog, if we increase mth, the magnitude of the exponent

of the power law decreases. Nevertheless, for different regions,
the exponent does not agree even if they have the same mth

values.
In the analysis below, we have tested the sensitivity of our

results as cth and mth values are varied. For this purpose, based
on Fig. 2, it was decided to explore a range of cth values from
106 to 109 for the Japanese data. The different mth values used
in the analysis of the Japanese data are 3.0, 3.5, 4.0, and 4.5.
Likewise, we employed a range of cth values from 106 to 109

for the WH data and 107 to 1010 for the NEH data. For both of
these data sets, the mth values tried were 4.5, 5.0, and 5.5.

IV. RESULTS

A. Degree distributions

The maximum out-degree (kmax) and maximum in-
degree (jmax) distributions for the Japanese seismic network
[Figs. 3(a) and 3(d), respectively] shows almost similar
features as CALNTWRK. In particular, a hub structure is
present as far as out-degree is concerned while it is absent
with the in-degree distribution; in-degree distribution is more
density dependent. The former can be deduced from the
fact that kmax values are consistently much higher than the
jmax values. Large earthquakes will tend to have more events
associated with them through higher correlation values since
Eq. (4) is positively correlated with magnitude. kmax is, for
the Japanese data, at least an order of magnitude higher than
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FIG. 2. The distribution of correlation values, evaluated using Eq. (4), for all pairs of events of the corresponding earthquake catalogs. The
panels have been labeled after the catalogs: (a) is for Japan, (b) is for WH, and (c) is for NEH.

046109-3



T. R. KRISHNA MOHAN AND P. G. REVATHI PHYSICAL REVIEW E 83, 046109 (2011)

10 2

10 3

10 4

10 6 10 8 10 10

k
m

ax

cth

(a)

Jap

m th = 3.0
m th = 3.5
m th = 4.0
m th = 4.5

10 1

10 2

10 3

10 5 10 6 10 7 10 8 10 9

k
m

ax

cth

(b)

WH

m th = 4.5
m th = 5.0
m th = 5.5

10 1

10 2

10 3

10 7 10 8 10 9 10 10

k
m

ax

cth

(c)

NEH

m th = 4.5
m th = 5.0
m th = 5.5

10 0

10 1

10 2

10 3

10 6 10 8 10 10

j m
ax

cth

(d)

Jap

m th = 3.0
m th = 3.5
m th = 4.0
m th = 4.5

10 1

10 2

10 3

10 4

10 5 10 6 10 7 10 8 10 9

j m
ax

cth

(e)

WH

m th = 4.5
m th = 5.0
m th = 5.5

10 0

10 1

10 2

10 3

10 7 10 8 10 9 10 10

j m
ax

cth

(f)

NEH

m th = 4.5
m th = 5.0
m th = 5.5

FIG. 3. (Color online) The maximum out-degree (kmax) (top panels) and maximum in-degree (jmax) (bottom panels) values are plotted
against increasing cth values for the different seismic regions considered. The seismic regions pertaining to the panels have been labeled therein
with (a,d) for Japan, (b,e) for WH and (c,f) for NEH.

the jmax for the corresponding mth values. On the other hand,
lower magnitude events require small lij ’s to obtain larger
correlation values (i.e., the density of points become important
for such events). In the case of both the Himalayan regions
[Figs. 3(b) and 3(e) for WH and, Figs. 3(c) and 3(f) for NEH],
we observe that the kmax values are not so much larger than the
corresponding jmax values as in the Japanese (or California)
case. This needs to be investigated with better data sets to try
to understand whether the distribution of different magnitudes
across the region is in any way significantly different from the
other regions.

As cth is increased, kmax values falloff in approximately a
power-law fashion. This was observed with CALNTWRK and
we see the same behavior with these data sets as well. However,
the falloff in the Japanese case is slightly less uniform. Whereas
with the CALNTWRK we observed a slower initial falloff
followed by a faster falloff for the higher cth values, we find this
pattern repeated twice for the Japanese data. The parallelism
between the different graphs for different mth values during the
falloff, which confirms that a scale invariance with respect to
magnitude is maintained as cth is increased, is mostly present
with the Japanese data, excepting only in the case of the graph
for mth = 3.0. The latter converges to the same value as that
of the graph with mth = 3.5 for cth = 1010.

We had observed, in the case of CALNTWRK, a con-
vergence of jmax values as cth is increased resulting in a
common value for all mth values at higher cth values. This is in
accordance with the observation that the in-degree is controlled
by the density of points. As cth is increased, only the higher
magnitude events and close by events are left in the clusters
and, given the sparse network, all clusters have more or less
similar densities. We observe the same behavior here with all

data sets. The only difference is that, in the case of Japanese
data, the difference in jmax values, for different mth values,
are not as much for low cth values as for the other regions
[cf., for example, Figs. 3(d) with 3(e) and 3(f)]. This tendency
to uniformity in the density of jmax values across different
mth values needs to be explored further because it suggests a
uniform distribution of magnitudes with the same jmax values.

As far as the general out-degree distribution is concerned
[Fig. 4(a) for the Japanese data, Fig. 4(b) for WH, and Fig. 4(c)
for NEH], all the regions considered have similar behaviors
with an approximate power-law falloff with increasing k

values. For the intermediate range of k values, the exponent is
close to −2.0 for the CALNTWRK and Japanese data. This is
also in agreement with the exponent value quoted by BAPA.
On an average (for cth > 107), the same exponent value is
obtained for the Himalayan region as well. For cth = 107,
a departure is observed from this value in the case of WH
and NEH and, in particular, NEH shows a significant plateau
region (see below). The graphs depart from the general trend
for very small k values as well as very large k values. This
is understandable since very small k values indicate isolated
events and very large k values indicate very large magnitude
events which are also sparse as attested to by the GR law
[Eq. (1)]. There is, however, some new features present in the
distribution of k values for the Himalayas. This is prominent
in the case of NEH where we see that, for the smallest cth

value, a significant plateau is observed in the distribution. We
can identify a similar tendency in the case of WH, even if it
is not so prominent. Since smaller cth values are dominated
by smaller magnitudes and larger distances, we see in these
cases a tendency toward a uniform density with respect to
the spatial distribution of such events. Perhaps this may be
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FIG. 4. (Color online) The general out-degree (k) (top panels) and in-degree (j ) (bottom panels) distributions are plotted for the different
seismic regions with the panel labels indicating the region analyzed. (a,d) are for Japan, (b,e) are for WH and (c,f) are for NEH.

indicating a uniform distribution of new fractures generated
by plate tectonics. A more complete and homogeneous data
set needs to be studied with respect to these areas to clarify
this behavior further.

The general in-degree distribution [Fig. 4(d) for the
Japanese data, Fig. 4(e) for WH, and Fig. 4(f) for NEH]
is similar across all regions of California, Japan, and the
Himalayas. They all show a significant plateau region for the
lowest cth value suggesting a uniformity with respect to the
distribution of intermediate j values across all the clusters,
a prominent density-dependent feature. When the network
gets sparser with higher cth values, the number of available
j values decrease, and the distribution has a steeper falloff in
an approximate power-law fashion.

B. Recurrent time distributions

An important feature of earthquake data is that aftershocks
decay according to the Omori law [21,22]

n(t) ∼ K

(c + t)p
, (5)

where c and K are constants in time but depend on magnitude
m and p ≈ 1; n is the number of aftershocks per unit time.
Earthquakes of all magnitudes have aftershocks which decay
according to the Omori law. It is widely recorded in the
literature that even intermediate magnitude events can have
aftershocks that persist for years [5,22,23]. We investigate this
by studying the distribution of recurrence times (also referred
to as “waiting times” in the literature [24,25]) in the data.

We define here the recurrence time (τ ) as the time between
successive events in a cluster surrounding an event. τ ranges
from seconds to tens of years in all the clusters. We have left

out τ < 180 s because of the likely error margins. It can be
seen from Fig. 5 that the graphs for the different mth values, for
a fixed cth value [Figs. 5(d), 5(e), and 5(f)], overlap indicating
that all recurrence times follow the same pattern regardless of
the mth values (i.e., there is no dependency on mth at all). This is
pretty much the same for the graphs corresponding to different
cth values for a fixed mth value [Figs. 5(a), 5(b), and 5(c)],
except for the Himalayan graphs which are considerably noisy
due to data inadequacy which has already been noted. But
even for these graphs the insets which show rescaled graphs
indicate a collapse onto a single graph (see below for details).

In the case of CALNTWRK, we had observed that, in a
log-log plot of the distribution of τ , a power law holds for most
of the range of recurrence times and, in particular, for about
five to six decades. In the case of the Japanese data [Figs. 5(a)
and 5(d)], we see that such a situation holds very well (for
about four decades in this case). However, in addition, we
also see a second power-law regime with a different exponent
before noise sets in. The Himalayan data, due to its sparsity,
show a lot of scatter and do not give visually appealing graphs
[Figs. 5(b) and 5(e) for WH and Figs. 5(c) and 5(f) for NEH].
Nevertheless, we can again identify a similar trend of two
linear regimes in the log-log plots. We revisited the data
for CALNTWRK and concluded that a two linear-regimes
analysis does hold in that case also even though the first linear
regime is quite prominent in that case and lasts for almost five
decades (out of seven decades).

In the insets provided with the plots we have shown rescaled
graphs which bring out the linear aspect better. From the inset
of, for example, Fig. 5(d), we see that the appearance of about
four decades of linearity in the main graph can be made more
precise. The plot has two linear regimes, with the first one till
log τ ≈ 4.5 and the second for log τ > 4.5. The Japanese data
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FIG. 5. (Color online) Recurrence time (τ ) distribution is plotted for fixed mth and varying cth in the upper row and vice versa in the bottom
row. The regions have been labeled in the panels with (a,d) for Japan, (b,e) for WH, and (c,f) for NEH. The insets to the plots show a rescaled
version which brings out the linear regimes in the main log-log plots better. Two different linear regimes are clearly seen in the insets. Rescaling
function F (τ ) = τβP m(τ ) where β is the slope of the first linear regime in the main graph.

do show that the low correlation data, for cth values 106 and 107,
do not overlap all the way with the graphs for other cth values
[Fig. 5(a)]. Since this occurs for low correlation values, we do
not consider it a significant departure from the general trend,
but the data will nevertheless be examined later in more detail.

Since we are dealing with only correlated earthquakes, the
above trend of two linear regimes suggests that the recurrences
belong to two different classes. It is known that the recurrence
times display the Omori law in the initial part, for shorter time
periods, up to a cutoff time and subsequently the power law
changes [26]. It is then clear that the two classes of recurrences
we find here are (i) aftershocks in the first part and it is followed
by (ii) the general spatial recurrences. It follows that these plots
can be used to identify aftershocks in an objective fashion.
The time at which the first power law crosses over to the
second may be used as the limit of the aftershock time zone.
We recall here that no objective criterion has, so far, been
suggested in the literature to identify the aftershock time zone,
and this has been a serious flaw underpinning the concept of
foreshocks, mainshocks, and aftershocks in earthquakes. Quite
often there is debate in the literature on whether earthquakes
can be identified to be aftershocks when they are well separated
in time, of the order of months and years. Our method makes
it possible to state the aftershock time zone in an unambiguous
fashion. In addition, we have also succeeded in extending the
Omori law (with a different exponent, i.e., in so far as there
is a power law) to general spatial recurrences not limited by
time.

Recently, analysis of the distribution of τ has gained
momentum and several works have appeared in the literature
[24–33] dealing with it. The trend was initiated by a work of
Bak et al. [24] where the waiting times in the California region
were analyzed. The novelty in their approach was in dividing
the analysis region into square (in latitude-longitude units)
grids and noting how the distribution varied, if at all, with
varying unit cell sizes. No distinction was made between the
earthquakes in terms of foreshocks, mainshocks, or aftershocks
and all were treated on par with the only restriction being
that they employed complete catalogs, with no missing events
greater in magnitude than a minimum. They came to the
conclusion that a scaling law of the form

ταPS,L(τ ) = f (τ−bLdf ), (6)

holds where P is the waiting time distribution, m = log S, and
L the size of unit cells of the grid. The function f was seen to
consist of a constant part and an exponentially decaying part,
separated by a sharp kink. They concluded that the constant
part consisted of the aftershocks (correlated earthquakes)
and the decaying part with uncorrelated earthquakes (i.e.,
independent earthquakes seeded by the nonzero driving rate
of plate tectonics). The scaling function was claimed to be
universal and some of the parameters as well; for example, α

which was identified with the Omori exponent p of Eq. (5).
If we assume that seismicity is a mixture of random

events, each with their own set of triggered aftershocks, as
is often assumed in the literature, then the mixture of these

046109-6



EARTHQUAKE CORRELATIONS AND NETWORKS: A . . . PHYSICAL REVIEW E 83, 046109 (2011)

two categories of events can be in arbitrary ways in a given
catalog depending on the region and the period of the data
analyzed. For example, a larger region is likely to have the
Poissonian events interspersed at short waiting times itself
in the catalog. On the other hand, a smaller region may
have the full set of aftershocks running out before the next
Poissonian event strikes (see, for example, Touati et al. [27]).
Such manners of mixing of the two categories of events may
vary with the period of the catalog and rate of seismicity.
The epidemic-type aftershock sequences (ETAS) [28] model
for seismicity explicitly builds in the above structure for
the distribution of events and generates appropriate time
series. Based on the above idea, it has been argued that
the interpretation of the kink in the distribution by Bak
et al. [24] may not be appropriate since no distinct range of
waiting times can be attributed to either of the two categories
of events [29,30].

It has also been shown that another power-law regime exists
for small waiting times [26]. This regime was not seen by Bak
et al. because they had left out τ values <38 s. This introduces
a kink at smaller waiting times in the full distribution which
scales differently from the second kink which was the one
seen by Bak et al. [24]. This was attributed by Davidsen and
Goltz [26] to multifractality in epicenter distribution contrary
to the single fractal distribution assumed by Bak et al. [24].
The former concluded that the waiting time distribution is not
universal and depends in a nontrivial way on the region under
consideration.

Following up on Bak et al. [24], Corral [25] studied the
τ distributions for different regions, from very small to very
large (global level), and concluded that all of them can be
made to collapse onto a single graph by rescaling them using
the mean seismic rate. He came to the conclusion that the τ

distribution can be modeled as a gamma distribution

p(�t) = C · (�t)γ−1 · e−�t/β, (7)

with C = 0.5 ± 0.1, γ = 0.67 ± 0.05, and β = 1.58 ± 0.15.
In the above, �t is the normalized waiting time (i.e., �t = λτ

where λ is the seismic event rate). He also argued for clustering
beyond the aftershock bursts (i.e., clustering of the independent
events seeded by plate tectonics, as well as self-similarity of
such clustering in the space-time-magnitude domain). A key
criticism of this work has been that it requires the data to be
stationary failing which a mean seismic rate may not define
(see Corral [31] for an approach based on an instantaneous
rate of seismicity). This necessitates that the initial set of
aftershocks (short waiting times) be ignored because of fast
change in the rate of seismicity.

In general, it has been argued that the τ distribution is
bimodal. The correlated events (aftershocks) are expected to
follow the gamma distribution and the Poissonian events an
exponential distribution with a crossover region between the
two which may resemble a power law [27]. The exact form
of p(�t) depends on the percentage of Poissonian events and
thus is not universal. This has been shown analytically [32]
and using ETAS model simulations [33].

Note that we are selecting only correlated earthquakes for
our analysis; we are not dealing with the Poissonian events
at all. We also note that our correlation metric derived from
Eq. (3) combines Eqs. (1) and (2) in a similar fashion to

Eq. (6). While we use such a metric to cull the correlated
events, Bak et al. [24] tried to rescale the raw data using it
and thereby distinguish between correlated and uncorrelated
events. However, such an approach is questionable because,
as stated before, no distinct range of waiting times can be
attributed to either of the two categories of events [29,30].
Our focused approach to correlated events show that a kink
appears in the τ distribution for correlated events itself which
separates the aftershocks from the purely spatial recurrences
and both are distributed in a power-law fashion. While new
fracture zones will be opened up by repeated earthquakes, a
majority of earthquakes will tend to visit old fault zones which
are repeatedly subjected to a healing process before once again
fracturing (see, for example, Nielsen [34,35]). We believe this
process induces long-term correlations which show up in the
data in the form of correlated earthquakes (i.e., purely spatial
recurrences are a ubiquitous feature). The latter populate the
second power-law regime in plots like Fig. 5. We may also
note here that the variation in grid size (L) effected by Bak
et al. [24] is akin to variation in cth in our case; higher cth values
imply smaller distances between earthquake pairs and lower
cth values imply larger distances between earthquake pairs. We
have, as already noted, confirmed that the same pattern exists
for all cth sizes [for fixed mth values; Figs. 5(a), 5(b), and 5(c)].

C. Recurrence length distributions

By recurrence length, we mean the distance from an event
to each of the other events in the same cluster. In other words,
we are measuring the scatter in the way the subsequent events
in a cluster are distributed around the event in question. While
there is no established law like the Omori law for recurrence
lengths, studies have indicated that a power law seems to hold
for recurrence lengths as well [8]. To investigate this, we use
the great circle distance rij for computing the distance between
two event locations. This is calculated using the Haversine
formula [36] with the radius of the earth taken as 6367 km.

The general appearance and behavior of the graphs for the
Japanese as well as Himalayan data (Fig. 6) are similar to
the CALNTWRK. The probability distribution of recurrence
lengths is unimodal in nature and peaks at a recurrence length
(rm

ch) which is larger for increasing values of mth, for a fixed
cth. The sparsity of Himalayan data gives rise to much scatter
and does not give clean graphs [Figs. 6(b) and 6(e) for WH
and Figs. 6(c) and 6(f) for NEH]. Nevertheless, the above
behavior can be clearly seen there as well. Keep in mind that
the distribution with lower mth value contains the data points
appearing in the distribution with higher mth values. Also,
not all the data points appearing with the lower mth value is
present with the higher mth value. Thus, as mth increases, the
data points corresponding to the lower m values get left out
of the distribution. The shifting of rm

ch to the right, as mth is
increased, therefore points to the presence of a characteristic
rm
ch associated with particular m values and, this clearly is

larger for larger m values. The rupture is larger with larger
earthquakes and we may think of rm

ch as representative of a
typical rupture length associated with events of that magnitude
(see also Ref. [8]).

While the graphs for different mth values are separated
before the rise to the peak, they are collapsed onto a single
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FIG. 6. (Color online) Recurrence length (r) distribution is plotted for two different cth values for the three different seismic regions
(indicated in the respective panels) considered here. Top panels are for cth = 107 and the bottom panels are for cth = 109. (a,d) are for Japan,
(b,e) are for WH, and (c,f) are for NEH. The insets show rescaled graphs, where r ′ = r/10αmth and F (r ′) = 10αmthPm(r); α is a function of the
data set and is computed from a linear fit to the plot of rm

ch values (the peaks in the plots) against mth.

curve after their peaks. We had also observed the same in our
study of CALNTWRK. This trend is easily enough observed
in the case of the Japanese data, but more difficult to confirm
for the Himalayan data because of the scatter induced by data
paucity. The presence of the power law, before the peak, with
a common exponent for the different mth values, suggest that
the location errors for these small recurrence length values are
not random in nature and, if any, are systematic in nature. This
is contrary to what has been claimed in the literature [8], as
already suggested by us in an earlier work [14].

As cth is increased, the part of the graphs before the peak is
shortened (compare the top panels with the corresponding bot-
tom panels in Fig. 6), eventually disappearing for sufficiently
high cth values (not shown here). Note that we are plotting only
pairs of events with rij > 100 m. As such, the peaks disappear
for larger values of cth since the peak values are now <100 m.
The behavior seen with rm

ch is completely in accordance with
Eq. (3). As cth increases, we are selecting event pairs of larger
magnitudes separated by smaller distances.

The part of the graphs, for different mth values, after the
peaks, are collapsed onto a single curve till data paucity forces
scatter for the higher recurrence length values. The former may
be expected from the fact, already stated, that the data points
for the lower mth value contain the data points for the higher mth

values. In the case of the Japanese data [Figs. 6(a) and 6(d)],
we see a small plateau appearing after the falloff just before
the very high recurrence length values. In the Himalayan case

[Figs. 6(b) and 6(e) for WH, Figs. 6(c) and 6(f) for NEH], the
falloff is seen to be much steeper compared to the other cases
because of the smaller range of recurrence lengths.

The plots for the different values of mth collapse on to a
single curve when the x axis is rescaled as r ′ = r/10αmth and
the y axis by 10αmthPm(r). α is a function of the data set and is
the rate of variation of rm

ch with mth. It is computed from a linear
fit to the plot of rm

ch values against mth. α was seen to be the
same regardless of the cth value in the case of CALNTWRK.
We observe the same feature in the case of the Japanese data as
well. However, in the case of the Himalayan data, different α

values were obtained for the different cth values. This was not
surprising because, given the sparse data set and with just three
mth values to play with, it was difficult to spot the rm

ch peaks
correctly. We have, however, still used a single α value for any
particular Himalayan region, and with reasonable success as
seen from Fig. 6, with this value being an averaged value over
the different α values obtained for the different cth values.

V. CONCLUSION

In a continuation of our earlier study, we have compared
the network features of seismic data from three different
areas, California, Japan, and the Himalayas. The networks
were constructed according to our algorithm, based on a
modification of the algorithm given by BAPA. Both these
algorithms are based on a metric for correlations between
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earthquakes and our algorithm differs from BAPA in omitting
the time factor from their definition to enable the spatial
recurrences to be identified, as opposed to the identification of
aftershocks by BAPA. Also, we evaluate the correlations going
forward in time as against the backward associations in BAPA.
The approach developed in BAPA locates the most correlated
predecessor which is identified as the mainshock of the present
event which, in turn, is therefore one of the aftershocks of that
predecessor. Our algorithm goes forward in time and identifies
all spatial recurrences to the present event from the subsequent
events in time.

Our comparisons show that there are some robust features
present in networks constructed from seismic data from around
the globe. These include a hub structure in the out-degree
distribution accompanied by a density-dependent in-degree
distribution, unimodal recurrence length distribution with a
peak value that increases with mth indicating that characteristic
rupture lengths for different magnitudes may be present and
a recurrence time distribution, which has two power-law
regimes with different exponents. Note that we are employing
only correlated earthquakes for the analysis. Hence, the two
different power-law regimes in the recurrent time distribution

suggests an initial aftershock regime (following Omori’s law)
followed by a pure spatial recurrences regime. We have
therefore proposed that the recurrence time at which the first
power-law regime crosses over to the second one be used as an
objective criterion for the upper limit of the time window used
for selecting aftershocks. This is a significant new result since
no objective criterion was available till now for identifying
aftershocks. Furthermore, this also establishes that recurrence
times for spatial recurrences, after the initial aftershocks, also
falloff in a power-law fashion akin to the Omori law for after-
shocks, albeit with a different exponent (higher in magnitude).

It is clear from this comparative study that earthquake
networks provide us with a useful analysis tool to study
the seismicity patterns of the globe. Further work in this
area should lead us to a better understanding of the event
distribution and, eventually, the dynamics behind it.
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