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Local dynamics of a randomly pinned crack front during creep and forced propagation:
An experimental study
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We have studied the propagation of a crack front along the heterogeneous weak plane of a transparent
poly(methyl methacrylate) (PMMA) block using two different loading conditions: imposed constant velocity
and creep relaxation. We have focused on the intermittent local dynamics of the fracture front for a wide
range of average crack front propagation velocities spanning over four decades. We computed the local velocity
fluctuations along the fracture front. Two regimes are emphasized: a depinning regime of high velocity clusters
defined as avalanches and a pinning regime of very low-velocity creeping lines. The scaling properties of the
avalanches and pinning lines (size and spatial extent) are found to be independent of the loading conditions and
of the average crack front velocity. The distribution of local fluctuations of the crack front velocity are related to
the observed avalanche size distribution. Space-time correlations of the local velocities show a simple diffusion
growth behavior.
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I. INTRODUCTION

The failure of heterogeneous materials has a vast impor-
tance in geophysical systems, industrial applications, and, of
course, fundamental physics. This subject is far from under-
stood and has been studied extensively over the years [1–3]. Of
key importance for brittle materials is the competition between
pinning forces due to local material heterogeneities and elastic
forces due to outer applied stress, resulting in a complex
roughening of fracture surfaces. In general, this competition
triggers a rich history dependence of the fracture process.
Up until quite recently, a broad range of experimental and
simulation studies have been concerned with the morphology
of either fracture surfaces in the case of three-dimensional
solids [4], or interfacial crack fronts for planar fracture [5–7].
In both geometries it has been well established that the fracture
roughness exhibits self-affine scaling properties [8–11]. To
this end, theoretical approaches have been suggested: the
fluctuating line model [12,13], where the interface is seen
as an elastic string propagating in a rough morphology, being
pinned with different strengths at different positions and also
the stress weighted percolation approach [14] with a damage
zone ahead of the crack.

In this study, we will pay attention to the dynamics of
fracture propagation. Owing to the material heterogeneities,
the motion is complex and characterized by abrupt jumps
separated by periods of rest. Both the jumping and the resting
behavior span a large range of time scales. This dynamics is
often referred to as crackling noise [15]. Apart from the direct
observation of fracture [16–19], such intermittent dynamics
embody also large-scale activity in earthquakes [20–22],
acoustic emission during material failure (fiberglass [23],
rocks [24], paper [25], etc.), magnetic domain wall motion
(Barkhaussen noise) [26], wetting contact line motion on a
disordered substrate [27,28], and imbibition fronts in porous
media [29].

Studies on fracture propagation often characterize the
complex dynamics through related effective average quantity
due to the difficulties of direct observation and/or insufficient
resolution of the spatiotemporal behavior at local scale. In
contrast we use here a transparent poly(methyl methacrylate)
(PMMA) model for an in-plane mode-I fracture well suitable
for capturing optically detailed intermittent behavior with high
precision in both time and space [5].

The present work is a completion and substantial extension
of the experimental study presented by Måløy et al. in
Ref. [17], where the concept of the waiting time matrix was
introduced; a consistent way of obtaining the local velocity
field of the propagation of a pinned interface. Statistical
analysis, based on the waiting time matrix, of avalanche
behavior in fracture front propagation has since been fol-
lowed up by simulations. Bonamy et al. [30] quantitatively
reproduced the intermittent crackling dynamics observed in
experiments, using a crack line model based on linear-elastic
fracture mechanics extended to disordered materials. Using
a similar string model, but with pure quasistatic driving and
zero average propagation velocity, Laurson et al. [31] have
recently proposed a scaling relation connecting the global
activity with the observed local avalanches, connecting the
dynamics at large and small scales. Further they found that
the aspect ratio of local avalanches is consistent with recent
experimental advances of multiscale roughness analysis [7].
Experimentally, Grob et al. [32] have, through the terminology
of seismic catalogs, been able to compare the dynamics of
interfacial crack propagation to what is found in shear rupture
for earthquakes.

Most of the previous studies mentioned in the above para-
graph address only rapid event statistics for a fracture propaga-
tion that is forced by the imposed boundary conditions (critical
fracture propagation). What we present here is more elaborate
and general in the sense that we consider intermittency in
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both high and low velocity regimes of crack propagation
using two different methods of external loading: (1) constant
opening velocity of the crack and (2) creep relaxation of a
crack maintained at a constant opening distance. While it is
easy to imagine that these different boundary conditions will
give a very different global behavior, we are surprised to find
that the local dynamics is similar in every respect. This is
shown by statistical analysis of high and low velocity events,
referred to as depinning and pinning clusters, respectively,
and by considering the autocorrelation of the velocity field.
The vanishingly small time correlations have been related to
the time evolution of the width of the fracture front [16]. We
see that it follows simple diffusion growth. Another important
finding is that the pinning and depinning size distributions
are described by the same power-law exponent. Moreover,
we propose a relationship between the different power-law
exponents describing the fracture process, thus linking velocity
fluctuations with spatial avalanches.

This paper is organized as follows. In Sec. II we describe in
detail the experimental setup, including sample preparation,
loading conditions, and optical setup. We then present the
results in Sec. III starting with the distribution of local
velocities along the fracture front (Sec. III A). In Sec. III B
we obtain the autocorrelation functions in time and space
for these velocities. Finally, in Sec. III C we give the main
statistical analysis of spatial clusters that we eventually show
to be linked to the local velocity distribution in Sec. III A.
Section IV summarizes the paper with concluding remarks.

II. EXPERIMENTAL SETUP

A. Sample preparation

The experimental setup [5,6,32] is shown in Fig. 1. The
fracture sample is made out of two transparent Plexiglas
(PMMA) plates: a thicker plate with dimensions (l1,w1,h1) =
(30,14,1) cm and a thinner plate with dimensions (l1,w2,h2) =
(30,10,0.4) cm for the length, width, and thickness, respec-
tively. The plates are then sandblasted on one side using
glass beads ranging between 50 and 300 μm in diameter.
Sandblasting introduces random roughness on the originally
“flat” surface. This causes light to be scattered in all directions
from these microstructures, hence transparency of the plate
is lost and it becomes opaque. The plates are then clamped
together in a pressure frame, with the sandblasted sides
facing each other. The pressure frame is made of two parallel
aluminum plates, exerting a normal homogeneous pressure on
both sides of the PMMA. Finally, the pressure frame is put in a
ceramic temperature controlled oven at 205 ◦C for 30–50 min.
This annealing or sintering procedure creates new polymer
chains between the two plates and the resulting PMMA block
is now fully transparent. The new layer created between the
two plates are weaker than the bulk PMMA, so that we obtain
a weak plane with quenched disorder in which the fracture can
propagate. This system is ideal for direct visual observation
since the fractured part of the sample immediately becomes
opaque whereas the unfractured part remains transparent. The
sharp and high contrast boundary between transparent and
opaque parts thus defines the fracture front.

FIG. 1. Sketch of the experimental setup. Two PMMA plates with
dimensions (l1,w1,h1) = (30,14,1) cm and (l1,w2,h2) = (30,10,0.4)
cm are sintered together, creating a weak in-plane layer for the fracture
to propagate. Fracture is initiated by lowering a cylindrical press
bar, controlled by a step motor, onto the lower plate. The uncracked
part of the sample is transparent, whereas the cracked part has lost
transparency hence creating a good contrast at the fracture front. The
fracture front is imaged from above by a digital camera. The deflection
d (z direction) between the plates is indicated in the lower panel. The
fracture plane is (x,y), where the x direction is transverse to the
average direction of fracture propagation whereas the y direction is
parallel to the average direction of fracture propagation.

The rough surface generated by the sandblasting technique
depends on the volume flux of the beads, the kinetic energy of
the beads, the bead size, and the total time of the sand blasting.
It is important to note that there is no obvious direct link
between the bead size and the characteristic size of the disorder.
The rough surface will, after annealing, give local toughness
fluctuations. The strength of these fluctuations will depend
on the sintering time. The relationship between the disordered
morphology of the plates and the toughness fluctuations is very
difficult to access experimentally. However, we know that the
toughness fluctuations will change when the disorder of the
plates changes [7]. In Ref. [33] a white-light interferometry
technique was used to measure the rough surface, sandblasted
with 50–100 μm particles, and it was found that the local
heterogeneities had a characteristic size of ∼15 μm. Other
samples have been studied through a microscope [6] where
the random position of the defaults and the maximum size
of the defaults was seen to roughly correspond to the bead
size ∼50 μm. However, we emphasize that the image pixel
resolution is smaller (∼1–5 μm) and the largest length scales
considered (∼103 μm) are much larger than the sample
disorder.
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Two different PMMA samples, characterized by the glass
bead diameter, have been used in our experiments. Sample 1
has been sandblasted with 100–200 μm beads whereas sample
2 has been sandblasted with 200–300 μm beads. Both samples
where sintered in the oven for 50 min.

B. Mechanical setup and loading conditions

The thick plate of the PMMA block is mounted on a rigid
aluminum frame, also containing a camera setup for imaging.
The mode-I fracture is induced by a normal displacement of
the thin plate pushed by a cylindrical press bar, as shown in
Fig. 1. Indicated is also the definition of our coordinate system,
where (x,y) is the fracture plane: the x direction is transverse
to the average direction of fracture propagation whereas the
y direction is parallel to the average direction of fracture
propagation. The deflection d is defined as the plate separation
at the position of the press bar. A bit of glycerol is put on the
contact between the plate and the press bar to reduce any
friction and prevent shear loading. The press bar is mounted to
a force gage on a vertical translation stage controlled by a step
motor so that it can be moved up and down in the z direction.
Through the force gage we are able to monitor the force
exerted on the lower plate during an experiment. To ensure
a homogeneous loading, all components of the experimental
setup are mounted on a rigid plane aluminum plate and leveled.
Particularly, a level is used on the thin plate to ensure that it
is perfectly horizontal. If not, adjustments are made to make
it so. This is also done with the press bar, thus any gradient in
the loading should not exist.

We use two sets of loading conditions.
(1) The imposed deflection d (see Fig. 1) as a function of

time t is given by

d(t) = vpt, (1)

where vp is the velocity of the press bar. Throughout the
experiment we can measure the force F on the lower plate at the
position of the press bar. As an example, the force development
during an experiment is shown in the upper panel of Fig. 2(a).
Initially there is a period of linear increase, corresponding
to pure elastic bending of the lower plate. At some point,
indicated by the dashed line, linear behavior is deviated and
fracturing occurs. After some transient period, the force decays
only slowly in time as the fracture propagates in the sample.
The corresponding linear increase of the deflection is shown
in the bottom panel. We will refer to these loading conditions
as constant velocity boundary conditions (CVBC).

(2) The deflection is given by

d(t) =
{

vpt for t < tstop

const. for t > tstop
, (2)

where tstop marks the time at which the step motor controlling
the pressbar is switched off (i.e., vp = 0). We will refer to
these loading conditions as creep boundary conditions (CBC)
since it is seen that the fracture front continues to propagate at
“creepingly slow” velocities over several days after tstop. An
example is shown in Fig. 2(b) where we see a logarithmic decay
of the force while the deflection is maintained as constant.
Motivated by the different global behavior of the fracture in
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FIG. 2. (Color online) (a) Constant velocity boundary conditions
(CVBC). Upper panel shows the force development F (t) on the lower
plate as it is bent by the pressbar. The dashed line indicates the onset
of fracturing. Lower panel shows the linear increase of the deflection
d(t). (b) Creep boundary conditions (CBC). Same as in (a) but F (t)
and d(t) are in a semilog scale. The short, solid line in the upper panel
indicates the onset of fracturing, whereas the dashed line indicates
the time at which the pressbar is stopped and maintained in a constant
position according to Eq. (2).

CVBC and CBC, we have performed experiments using both
loading conditions to study the local dynamics.

C. Optical setup

A small central region, at the millimeter scale, of the
front propagation is followed in time using a high-speed
digital camera mounted on a microscope. The large width
of the bent PMMA plate (10 cm) ensures that the central
region of interest is not influenced by finite size effects
(see Fig. 3). In one experiment between 12 000 and 30 000
frames are captured using either the Photron Fastcam-
Ultima APX (512 × 1024 pixels) or the Pixelink Industrial
Vision PL-A781 (2200 × 3000 pixels). High-resolution images
(∼ 1–5 μm/pixel) are captured at a high frame rate relative
to the average propagation velocity of the crack front (see
Table I). This is important as the local fluctuations in velocity
can range over several decades. As large amounts of data are
accumulated, we only have the possibility to follow the fracture
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FIG. 3. (Color online) Fracture frontline h(x,t ′) at some time
t ′, superimposed on the corresponding raw image. Direction of
propagation is from top to bottom. System size L in the x direction
is indicated. The framed raw image corresponds to a tiny central part
of the full sample as seen in the upper panel.

front over short time windows compared to the long-time
global development in the examples shown in Fig. 2. Both
in the case of CBC and CVBC these time windows are small
enough so that the average propagation velocity of the crack
front is considered constant. Also for CBC we did several
experiments with very different average velocity [Fig. 2(b)]
during the same loading periods. The span of the time windows
will of course vary depending on the average velocity, but the
y distance (parallel to direction of propagation) covered by
the crack front is roughly ∼500 μm in all our experiments.
Note that the average initial y position of the crack front is
varied on the order of several centimeters between different
experiments. Finally, image capture is initiated only after onset
of the fracture process.

The obtained grayscale images of the fracture front contain
two parts: a dark and a bright region, corresponding, respec-
tively, to the uncracked and the cracked part of the sample. The
gray level distribution of the image thus presents two distinct
peaks. Image analysis is performed to obtain the coordinates
of the fracture front line, h(x,t), separating the two regions.
This is done by thresholding the grayscale image at the local

TABLE I. Parameters of the different experiments, sorted after
the average propagation velocity of the front 〈v〉: System size L (x
direction), image timestep δt gives the time delay between the capture
of two subsequent images, resolution a gives the pixel resolution of
an image, displacement type denotes the set of boundary conditions
used, and the last column indicates the sample number. Sample 1
has been sandblasted with 100−200 μm beads whereas sample 2 has
been sandblasted with 200−300 μm beads.

〈v〉 L a Displacement Sample
(μm/s) (μm) δt (s) (μm/pixel) type no.

Expt. 1 0.028 6700 1 2.24 CBC 2
Expt. 2 0.15 6700 5 × 10−1 2.24 CBC 2
Expt. 3 0.42 5600 2 × 10−2 5.52 CVBC 2
Expt. 4 1.36 5600 2 × 10−2 5.52 CBC 2
Expt. 5 2.4 2865 8 × 10−3 2.83 CVBC 1
Expt. 6 10.1 2865 2 × 10−3 2.83 CBC 1
Expt. 7 23 2865 2 × 10−3 2.83 CVBC 1
Expt. 8 141 2842 5 × 10−4 2.83 CVBC 1

minimum of the gray level histogram, between the bright and
dark peak. We then obtain a black and white image from
which the front can easily be extracted. We always obtain a
very good contrast between the cracked and uncracked part of
the sample; the extracted fronts are very robust with respect
to perturbations in the chosen threshold. For a more detailed
description of the front extraction and image treatment see
Refs. [6,32].

Figure 3 shows an extracted front line h(x,t) superimposed
on the corresponding raw image. Its roughness is due to local
pinning asperities of high toughness, created as a result of
the sandblasting and annealing procedure as explained earlier.
Occasionally, on small scales close to the pixel resolution, the
front shows local overhangs and is not always a single valued
function of x. However, the number of overhangs per front and
the scale at which they occur are small; hence we construct the
single valued front h(x,t) by keeping only the most advanced y

coordinate at the front line for a given x coordinate. Arbitrarily
we could also have chosen the least advanced y coordinate.
Single valued fronts are constructed to simplify the statistical
analysis, which has shown not to influence the results.

III. RESULTS

The rough fracture front exhibits self-affine scaling prop-
erties [8–11,13,14] together with a complex avalanche-like
motion with very large velocity fluctuations. Due to the large
temporal and spatial variations in front velocity it is not
straightforward to analyze the local dynamics by a simple front
subtraction procedure. Therefore we characterize this complex
behavior by measuring the local waiting time fluctuations of
the crack front during its propagation, following the procedure
introduced first in Ref. [17]. We compute a so-called waiting
time matrix (WTM) [29,30,32], which is a pinning time map
with elements w, giving the amount of time the front is pinned
down or fixed at a particular position (x,y) in time step units.
As explained in Appendix A, the local velocity v at a given
position is given as v = a/(w δt). Using h(x,t) and the WTM,
it is then straightforward to obtain the local velocities along a
fracture front v(x,t). Furthermore, by computing v(x,t) for all
time steps, we build the spatiotemporal velocity map Vt (x,t).
The average velocity 〈v〉 is defined as the average over all
elements of Vt (x,t) (i.e., the total average over all fronts).

Presented below are the results of eight experiments (both
CBC and CVBC), spanning a broad average propagation
velocity range, where we have characterized the local dynam-
ics. The total duration of an experiment is within the range
of 4 seconds to 7 hours, whereas the average distance of
front propagation, is ∼500 μm in all cases. The details of
each experiment can be found in Table I. Additionally we will
also compare the present data to previous experiments from
Ref. [17].

A. Distribution of local velocities

A grayscale map of the waiting time matrix is shown for a
CBC experiment in Fig. 4. The dark regions correspond to a
high waiting time and thus a low velocity, and vice versa for
bright regions. The dark low velocity regions are seen to occur
as irregularly shaped “lines,” separated by brighter compact
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FIG. 4. Waiting time matrix of a CBC experiment, 〈v〉 =
1.36 μm/s. The map results from the extraction of 24 576 front lines
at a rate of 50 fps. Dark regions correspond to a high waiting time
and thus a low velocity, and vice versa for bright regions, as shown in
the colorbar indicating the amount of time (in seconds) the front has
been fixed at a given position. Black pinning lines are visible, with
bright depinning regions in between. The system size L is indicated.

regions referred to as high velocity avalanches. The wide span
of waiting times shown by the colorbar, together with their
irregular distribution in space, is direct visual confirmation
of the complex dynamics found in this system. Furthermore,
the visual impression of the WTM for a CBC experiment
compared to a CVBC experiment is identical. The similarity
of the local dynamics in CBC and CVBC experiments is also
confirmed in our analysis, as we will return to.

From the local velocities along all front lines Vt (x,t) we can
compute the normalized probability density function (PDF)
P (v). By rescaling every local velocity with the average
propagation velocity v/〈v〉, we obtain a data collapse for all
experiments as shown in Fig. 5. In this figure the results from all
experiments in Table I are put on top of previous experiments
from Ref. [17]. It was found that

P (v/〈v〉) ∝ (v/〈v〉)−η, for v/〈v〉 > 1, (3)

with the exponent η = 2.55 ± 0.15. It is important to note
that the PDF P (v), computed here directly from Vt (x,t),
is exactly the same quantity as the PDF of the local front
velocity v found by estimating the occurrence number of each
measured velocity on all the pixels in all the fracture front
line images, as defined in Ref. [17]. The result in Eq. (3),
primarily obtained for CVBC, is now extended to the case of
creep experiments. It is indeed very stable over the different
experiments, considering the wide range of average velocities.
We emphasize that Fig. 5 provides quantitative confirmation
on the similarity between the local dynamics for CBC and
CVBC experiments.

At this point we divide the velocity distribution in two and
define a pinning regime for v/〈v〉 < 1 and a depinning regime
for v/〈v〉 > 1, as indicated in Fig. 5. The Fig. 5 inset shows
the corresponding PDF of waiting times P (w/〈w〉). Through
Eq. (A2) the two distributions are related by P (v)dv =
P (w)dw [cf. Eq. (35)], giving P (w/〈w〉) ∝ (w/〈w〉)η−2 for
w/〈w〉 < 1. Note that the waiting time distribution decays
very fast in the pinning regime compared to the depinning
regime.

B. Space and time correlations

The power-law distribution of the local velocities confirms
the visual impression of a nontrivial local dynamics of the
fracture process. As mentioned earlier, the front propagates
through high velocity bursts of different sizes. An important

question is thus how the local velocities along and between
different front lines are correlated in space and time.

We define the normalized autocorrelation function G(�x)
and G(�t) for the local velocities on all front lines v(t,x) in
space and time as

G(�x) =
〈 〈[v(x + �x,t) − 〈v〉x][v(x,t) − 〈v〉x]〉x

σ 2
x

〉
t

, (4)

G(�t) =
〈 〈[v(x,t + �t) − 〈v〉t ][v(x,t) − 〈v〉t ]〉t

σ 2
t

〉
x

, (5)

where 〈v〉x and σx is the spatial average and standard deviation,
respectively, at a given time in Vt (x,t), whereas 〈v〉t and σt are
the temporal average and standard deviation, respectively, for
a given position in Vt (x,t). The outer brackets in Eqs. (4) and
(5) denotes an average over all different realizations in time
and space, respectively (i.e., over all columns and rows in the
Vt matrix).

In Fig. 6 the spatial correlation function G(�x) is shown
for all experiments listed in Table I. It is more or less evident
that correlation functions obtained from the same sample are
grouped together, independently of the average propagation
velocity and loading condition. By fitting the data with power-
law functions with an exponential cutoff we get

G(�x) ∝ �x−τx exp(−�x/x∗), (6)

where τx = 0.53 ± 0.12 is the average exponent and x∗ =
{92,131} μm is the average cutoff or correlation length of
the local velocities in the x direction, for samples 1 and 2,

respectively. The quality of the fits is not perfect, as can be seen
in Fig. 6, but they represent each group of correlation functions
fairly well. It is to be noted that extracting well-defined
correlation lengths is not trivial in our data. Other estimators
of Eq. (4) are possible to use (e.g., the power spectrum
method).
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respectively (see text).

In Fig. 7(a) the time correlation function G(�t) is shown
for all experiments listed in Table I. For each experiment,
functional fits analog to Eq. (6) have been made. Using
the average value of the power-law exponent τt ≈ 0.43 and
different cutoff correlation times t∗, a good collapse is
obtained. We note also that t∗ is small; typically more than
two orders of magnitude smaller than the duration of an
experiment. The inset shows the scaling of the correlation
time with the average propagation velocity

t∗ = y∗/〈v〉, (7)

where y∗ ≈ 7 μm. The proportionality constant y∗ has the
dimension of a length since the scaling exponent equals minus
unity. This length scale is on the order of the pixel resolution a

and also within the disorder limit. Hence y∗ is very small and
might be influenced both by resolution and disorder effects. For
comparison we calculate G(�y) directly, that is, the velocity
autocorrelation in space along the direction of propagation,
defined similarly to Eq. (4) and shown in Fig. 7(b). We find no
power-law decay in this case, but the drop to zero correlation
occurs between 10–20 μm consistently with y∗. Correlation
functions from the same sample are shown using filled and
empty markers for samples 2 and 1, respectively. Within the
interval {a,20} μm, where a is the image resolution, the sample
grouping is not so clear as in the case for G(�x) as shown in
the inset, but the same initial trend is observed. This can be
attributed to resolution effects and the very small correlation
lengths. Thus at the time and length scales we are looking
at, the local velocities are considered uncorrelated in the y

direction.
Since the local fluctuations control the global advancement

of the crack, it is of interest to consider the evolution of
the width of the fracture front in time. This growth process
is known to depend on the system correlations. It has been
shown previously [34] that uncorrelated growth processes
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FIG. 7. (Color online) (a) Time correlation functions collapsed
onto each other according to a power law with an exponential
cutoff G(�t) = A�t−τt exp(−�t/t∗). The exponent is τt ≈ 0.43.
Inset shows the scaling between the crossover correlation time and
average propagation velocity t∗ ≈ 7 μm/〈v〉. (b) Space correlation
function G(�y) with logarithmic �y axis. Consistently with (a) and
Eq. (7), the local velocities become uncorrelated after only a short
distance (∼10–20 μm) in the y direction. Correlation functions from
experiments performed on samples 2 and 1 have filled and open
markers, respectively. To some extent we see also here a grouping
of experiments from the same sample. The difference is, however,
not as clear as for the spatial correlations along the transverse x

axis (subparallel to the fronts), on the inset showing G(�x) with
logarithmic x axis. The reason might be that the drop to zero
correlation occurs close to the resolution scale for G(�y).

such as simple diffusion, Brownian motion, and so on, can
be described by a growth exponent α = 1/2. For the present
case we define the root-mean-square (RMS) value of the front
width �h(t) as

〈�h(t)2〉 1
2 = 〈([h(x,t + t0) − h] − [h(x,t0) − h0])2〉

1
2
x,t0 ,

(8)

where h(x,t0) is an initial front line and h̄ indicates a positional
average height at a given time. This differs somewhat from the
usual situation of a front growth from an initially flat front. In
our case the front width is defined as the fluctuations from an
initially rough line which corresponds to the geometry of the
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front at the onset of the experiment. The front width is related
to the autocorrelation of local velocities in time. By rewriting
Eq. (8) and using that h(t + t0) − h(t0) = ∫ t+t0

t0
v(t ′)dt ′ we

obtain

〈�h(t)2〉 = 〈[h(x,t + t0) − h(x,t0)]2〉 − (t〈v〉)2

=
∫ t+t0

t0

∫ t+t0

t0

〈v(n) v(m)〉dm dn − (t〈v〉)2. (9)

By substituting n + �t = m and using Eq. (5) we get

〈�h(t)2〉
=

∫ t+t0

t0

∫ t+t0−n

t0−n

〈v(n) v(n + �t)〉d�t dn − (t〈v〉)2

= σ 2
t

∫ t+t0

t0

dn

∫ t+t0−n

t0−n

d�t G(�t). (10)

As argued above, we consider the local velocities uncorrelated
in time. The regime where G(�t) behaves as a power law is
very short, and should only affect �h(t) on very small time
scales.

Thus we approximate the autocorrelation function with the
Dirac delta function G(�t) ≈ δ(�t) which gives

〈�h(t)2〉 ∝ t ⇒ 〈�h(t)2〉 1
2 ∼ tα, (11)

with the growth exponent α = 1/2. Figure 8 shows the scaling
of the front width as a function of time for all experiments. We
find, indeed, a growth exponent α = 0.55 ± 0.08 consistent
with Eq. (11), as indicated by the fitted dashed line. The
large-scale crossover is an effect of a limited system size in
the direction of crack propagation. Our direct measurement of
the growth exponent also agrees with the indirect measures
in Refs. [16,33], where the front width power spectrum was
analyzed at different times and interpreted in terms of a
Family-Vicsek scaling, with a dynamic exponent κ = 1.2 and
a roughness exponent δ = 0.6 giving α = δ/κ = 0.5.
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FIG. 8. (Color online) Scaling of the front width as a function of
time, rescaled with the average velocity. The dashed line corresponds
to 〈�h(t)2〉 1

2 ∝ t0.55.

Due to the one-to-one correspondence between velocity
and waiting time [Eq. (A2)], the above analysis of correlations
could just as well have been performed using the latter quantity.
Calculating G(�x), G(�t), and G(�y) using w, we obtain
approximately the same trends and correlation lengths as for
v. We turn now to the statistics of the dynamical avalanches in
the pinning and depinning regimes.

C. Cluster analysis

1. Spatial map of clusters

As discussed earlier, the local dynamics of the fracture
front is a mix of pinning lines where the front is fixed or only
moves slowly, and sudden propagation in high velocity jumps
or bursts. The statistics in both the pinning and depinning
regimes will be shown to be scale invariant and characterized
by equal scaling exponents. To study both these regimes we
apply a thresholding procedure to the velocity matrix V (x,y)
and obtain a thresholded binary matrix VC

VC =
{

1 for v � C 〈v〉
0 for v < C 〈v〉 , (12)

for the depinning regime and

VC =
{

1 for v � 1
C

〈v〉
0 for v > 1

C
〈v〉 , (13)

for the pinning regime. Here C is a threshold constant of the
orders of a few unities. An example of a thresholded matrix
VC in both regimes is shown, in Fig. 9. The geometrical
characteristics of the two regimes can be seen quite clearly.
Depinning clusters (high velocity regions) are compact and
extend somewhat longer in the x direction than in the y

direction. Pinning clusters (low velocity regions) have also
a long x direction extension, but are very narrow in the y

direction on the other hand. Thus they can be described almost
like irregularly curved lines in the fracture plane. From Eq. (12)
it is clear that the cluster size decreases with increasing values
of the threshold parameter C in both regimes. Obviously one
must choose reasonable values of C in the two regimes as the
number of clusters goes to one and zero when C is very small
or very large, respectively.

In order for the thresholding of the velocity matrix to be
consistent, it is important to note that the average velocity
must be constant in time to avoid clusters from being affected
by a size gradient. Thus we ensure that the duration of image
capture is short enough for the global development of the
average velocity to be approximated as constant for CBC and
CVBC experiments.

2. Size distribution of clusters

We will denote the size or area of a cluster, for both
pinning and depinning, S. Figure 10 shows for C = 3 the
normalized probability density function (PDF) of the sizes
P (S), respectively for all experiments. There are several
aspects to emphasize about these figures. First of all, the
distributions show a power-law decay, with a cutoff for large
sizes S. Furthermore, the distributions fall on top of each
other, meaning that they span the same range of cluster sizes,
independently of the average propagation velocity. Neither is
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C=3

C=1.5

C=10 C=5

C=4

C=2

Depinning Pinning

FIG. 9. Thresholded matrix VC (5600 × 1400)μm in the depinning (left) and pinning (right) regime for a CBC experiment with 〈v〉 =
1.36 μm/s. White clusters correspond to velocities C times larger than 〈v〉 for the depinning case, whereas white clusters or lines correspond
to velocities C times less than 〈v〉 for the pinning case.

there a clear indication that the PDF cutoffs depend on the
correlation length x∗. It is thus reasonable to average cluster
data from all the experiments to improve, in particular, the
tail of the distribution. Finally, the distributions from both
CBC and CVBC experiments cannot be distinguished. Thus
the distributions seem to indicate that the local dynamics are
very similar in the two cases, despite very different boundary
conditions. We will, in the following, quantify the properties
of these distributions.
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FIG. 10. (Color online) Probability distribution function P (S) for
all experiments using a threshold C = 3. A distribution averaged over
all experimental conditions is also included for the depinning (dashed
line and circular markers) and pinning regime (dashed line and square
markers). The pinning size distributions have been shifted along the
y axis to enhance visual clarity.

Figure 11 shows the averaged P (S) distributions for a
threshold range C = 2–12 in the pinning regime. It is clear that
the distributions follow a power law with an exponential-like
cutoff. Furthermore it is evident and to be expected that
the size of the largest clusters (i.e., the cutoff cluster size)
decreases with increasing values of the threshold level. A
similar behavior is found for the PDFs of cluster sizes in the
depinning regime, but the cutoff size is generally larger due to
the cluster geometry. In contrast to what was done in Ref. [17],
where the distributions were rescaled by the average cluster
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FIG. 11. (Color online) Distributions of pinning clusters P (S)
averaged over all different experimental conditions, for a threshold
range C = 2–12. Solid lines show the fits corresponding to a power
law with an exponential cutoff.
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FIG. 12. (Color online) Collapsed P (S) distributions averaged
over all different experimental conditions for both depinning (upper
set of data) and pinning (lower set of data). The pinning distributions
have been shifted relative to the depinning distributions by a factor
0.01 for visual clarity. Depinning and pinning thresholds are in the
range C = 2–22 and C = 2–12, respectively. The dashed and the
solid lines both have the slope γ = 1.56. Inset shows the scaling
between the cutoff S∗ and the threshold C for the depinning (solid
line σd = 1.77) and pinning regime (dashed line σp = 2.81).

size (P (S/〈S〉)), we choose to fit the distributions according
to the function

P (S) ∝ S−γ exp(−S/S∗), (14)

where S∗ is the cutoff cluster size and γ the power-law
exponent. This is shown for the pinning regime in Fig. 11,
where the fitted solid lines are plotted on top of the averaged
experimental data (similar fits have been obtained for the
depinning regime). We find that in both regimes, the cluster
size PDF scales with an average exponent γ = 1.56 ± 0.04.
Using this exponent and the fitted values for the cutoff cluster
size we obtain a data collapse in both velocity regimes for the
full range of available threshold values, as shown in Fig. 12.
Furthermore we find a scaling relation between the cutoff
cluster size S∗ and the threshold level C, as shown in the
inset of Fig. 12. For the depinning regime it is given by

S∗ ∝ C−σd , (15)

where σd = 1.77 ± 0.16. Similarly, we obtain for the pinning
regime.

S∗ ∝ C−σp , (16)

where σp = 2.81 ± 0.23.
The exponent γ = 1.56 is somewhat lower, but consistent

with the previously reported value in Ref. [17] (γ = 1.7 ±
0.1), in which the distributions were rescaled by the average
cluster size in the absence of a pronounced cutoff size. A
later check using the rescaling as explained in the above
paragraph does show to lower the exponent also for the
old data. We would like to mention that our experimentally
obtained exponents γ and σd are in excellent agreement with
the recent numerical study of high velocity clusters in planar
crack front propagation by Laurson et al. [31]. They used

an empirical value of σd = 1.8 to describe the relationship
between the cutoff size and the threshold. Their value of
the size exponent γ = 1.5 is explained theoretically from the
decomposition of a global avalanche (collective movement of
the front as a whole) into local clusters. The experimental
equivalent to the suggested numerical approach is to study
how the fluctuations of the spatially averaged instantaneous
velocity 〈 ∂h

∂x
(x,t)〉x relates to the distribution of local clusters

that we observe here. We do not consider global avalanches in
this study, but it is certainly available in our data and is a work
in progress. In this respect, we would also like to explore the
suggested link between macroscopic loading conditions and
the cutoff length scale of the global front dynamics [35,36].

It should also be noted that our results for the local cluster
size distributions further provide quantitative confirmation of
the similarity between the local dynamics for the CBC and the
CVBC experiments. A recent local elastic thermal model by
Kolton et al. [37] also showed a similar dynamic between the
subcritical and the critical regimes. This model, however, only
contains elastic interactions with the nearest neighbors. In our
experiments we expect the nonlocal elastic interaction to be of
central importance for the dynamics.

3. Scaling relations

The collapse in Fig. 12 shows that the scaling in Eqs. (15)
and (16) are well satisfied. If we first consider the depinning
regime, it is possible to relate the exponents σd and γ of the
cluster size distribution [Eq. (14)] to the exponent η char-
acterizing the spatiotemporal distribution of local velocities
[Eq. (3)]. The latter distribution is obtained from Vt (x,t),
that is, the velocity map in space and time of all front lines
[Eq. (A3) and Fig. 18(b)], thus the space-time fraction covered
by local velocities between v and v + dv is P (v)dv. One may
also define the spatial distribution of local velocities, obtained
from the spatial map of local velocities V (x,y) [Eqs. (A1)
and (A2)], denoted R(v). The fraction of (x,y) space covered
by local velocities between v and v + dv is then R(v)dv. As
shown in Appendix B, there is a relationship between these
two probability density functions. Using Eq. (B5) gives

R(v) = P (v)

〈v〉 v ∼ v−η+1, for v > 〈v〉. (17)

The cumulative distribution of R(v), from a given threshold C

and up to the highest velocity, equals the area fraction that these
velocities occupy out of the total area swept by the fracture
front. In terms of threshold level we then get

Rc(v � C) =
∫ ∞

C

R(v) dv ∼ C−η+2. (18)

The same area fraction can also be expressed through the
cluster size distribution, hence we obtain

Rc(v � C) = N〈S〉
Ax,y

(19)

∝ N

∫ ∞

Slow

SP (S) dS, (20)

where Ax,y is the total area in the (x,y) plane where the fracture
has propagated, N is the total number of clusters, 〈S〉 is the
average cluster size, and Slow is the pixel size or some other
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lower cutoff. Substituting P (S) = B S−γ exp(−S/S∗), where
B is the normalization factor, in the above integral, we obtain
for 〈S〉

1

B
=

∫ ∞

Slow

S−γ exp(−S/S∗) dS, (21)

〈S〉 = B

∫ ∞

Slow

S1−γ exp(−S/S∗) dS, (22)

where S∗ is the cutoff cluster size. Considering the normaliza-
tion factor, we get by substituting x = S/S∗

1

B
= S∗1−γ

∫ ∞

Slow/S∗
x−γ exp(−x) dx. (23)

Since the lower limit is very small and γ = 1.56 > 1, the
power-law part of the integrand will dominate and the
contribution from the upper cutoff is negligible. Thus we
approximate

1

B
≈ S∗1−γ

∫ ∞

Slow/S∗
x−γ dx ∼ S∗1−γ S

1−γ

low

S∗1−γ
= S

1−γ

low , (24)

which is independent of S∗. For the average cluster size we
then obtain

〈S〉 ∝ S∗2−γ

∫ ∞

Slow/S∗
x1−γ exp(−x) dx. (25)

Since γ − 1 = 0.56 < 1, this integral will converge at the
lower end, to a value independent of Slow as long as Slow/S∗ �
1. Thus from Eq. (15), we obtain

〈S〉 ∝ S∗2−γ ∝ C−σd (2−γ ), (26)

where σd (2 − γ ) = 0.79. Equation (26) is experimentally
verified for C > 3, as shown in Fig. 13.

The number of clusters N depends on the threshold level
in a nontrivial manner. This is shown in the inset of Fig. 13.
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FIG. 13. (Color online) Average cluster size 〈S〉 obtained from the
image analysis vs. threshold level C. The dashed line shows a power-
law fit for 3 < C < 30, with the exponent −σd (2 − γ ) = −0.75.
Inset shows the number of clusters as a function of threshold level for
the various experiments. The dashed lines all have the average slope
χ = 0.28.

We see, however, that in the interval 3 < C < 16 the number
of clusters can be approximated by

N (C) ∼ Cχ, (27)

where χ = 0.28. Inserting Eqs. (18), (26), and (27) into
Eq. (19) we obtain the following scaling relation

C−η+2 ∼ C−σd (2−γ )+χ , (28)

leading to a quantitative link between the exponent of local
velocity distribution and the exponent of the event size
distribution

η = σd (2 − γ ) − χ + 2. (29)

Inserting numbers in the above equation (η = 2.55, γ =
1.56, χ = 0.28) we get that σd = 1.88, in good agreement
with the empirically found value of σd = 1.8. Strictly speaking
this result is only valid for 3 � C � 16. If we now turn to
the pinning regime, we note that from Eqs. (15) and (16),
σp ≈ σd + 1, although we cannot derive it from a theoretical
argument. The pinning threshold values spans a velocity
interval (v/〈v〉 < 0.5), in which the P (v/〈v〉) distribution
does not follow a power law (Fig. 5). Thus a similar scaling
argument to the depinning regime, based on simple power-law
behaviors of all dependent variables, is not very likely to hold.

4. Cluster morphology

A depinning cluster of size S can be further decomposed
into two extension lengths lx , transverse to the average
direction of front propagation and ly , parallel to the average
direction of front propagation, by fitting a bounding box. A
bounding box is the smallest rectangle that can enclose the
cluster, with sides lx and ly as shown in the left panel of
Fig. 14(a). As mentioned earlier, the pinning cluster geometry
can be characterized as an irregularly curved line with a
much larger extension in the x direction compared to the
y direction. Due to this feature, ly is not a good measure,
and badly overestimates the y-direction extension. This is
shown in Fig 14(b) where bounding boxes for both pinning
and depinning clusters are shown. Thus for pinning clusters
we use lx in the x direction and the average cross-sectional
width lyw as a measure of the y-direction extension, as shown
in the right panel of Fig. 14(a). Analysis shows that for a
cluster of size S, either depinning or pinning, the extension
lengths have well-defined means l̄x , l̄y , and l̄yw increasing
monotonically with S. Note here that the bar denote the mean
only over a narrow range of S and is not the overall mean. The
corresponding standard deviations are small and proportional
to these means. Due to the different definitions of ly and
lyw, their absolute value cannot be compared directly. From
analysis we find that, after an initial transient, l̄y and l̄yw

do scale similarly but with different prefactors for depinning
clusters. This is a consistency check between using either a
bounding box or the cross-sectional width to describe the
y-direction extension. Thus lyw is a reasonable measure for
the y-direction extension of pinning clusters.

Figure 15 shows the scaling of the different extension
lengths with the cluster size in the two regimes. In all
cases there are differences between small (pixel resolution
up to S ∼ 100 μm2) and large-scale behavior. In the case of
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FIG. 14. (Color online) (a) Left panel shows a bounding box
with sides lx and ly embedding a depinning cluster. In this case the
bounding box is a good measure of the linear extension of the cluster.
Right panel shows a bounding box embedding a pinning cluster. In
this case lx gives a reasonable linear extent measure, however, ly
does not due to the irregular curvature (somewhat exaggerated in the
figure) and to the narrow width in the y direction. To characterize this
width we use instead the average cross sectional width lyw . (b) Upper
and lower panels show bounding boxes for depinning and pinning
clusters, respectively, from one experiment.

depinning, for small S values, l̄x and l̄y scale more or less
similarly indicating that clusters are isotropic at these scales.
In the case of pinning, l̄yw is very small and stays constant
while l̄x scales almost like the depinning cluster size. This is
consistent with the characteristic linear geometry observed in
the pinning regime. However, the small-scale behavior ranges
only over one decade, and might be affected both by resolution
and disorder effects, so we do not have much information at
these scales. The large-scale behavior spans close to three
decades in S and displays robust scaling in all cases. From
Fig. 15 we obtain the following relationship between extension
lengths and cluster size

l̄x ∝ Sαx , l̄y ∝ Sαy , l̄yw ∝ Sαyw , (30)

for S > 100 μm2 where αx = 0.62 ± 0.04 is considered equal
in both velocity regimes, αy = 0.41 ± 0.06 in the depinning
regime and αyw = 0.34 ± 0.05 in the depinning regime. The
exponents in both regimes confirm the visually observed
anisotropy of cluster extension. Note also the very small
y-direction maximum extension (l̄yw ∼ 25 μm) of pinning
clusters, resulting from a small proportionality factor in the
scaling relation. Furthermore we obtain approximately from
the exponents in Eq. (30) that S ∼ l̄x l̄y ∼ l̄x l̄yw, meaning that
the ratio of the approximated area from the extension lengths
to the real cluster area is scale independent. From Eq. (30) we
get the following x and y direction aspect ratio:

l̄y ∝ l̄
αy/αx

x , l̄yw ∝ l̄
αyw/αx

x , (31)
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FIG. 15. (Color online) Linear extent of pinning and depinning
clusters as a function of cluster size for the full span of threshold
levels and averaged over all experimental conditions. The slopes of
the different fitted lines (dashed: pinning clusters, solid: depinning
clusters) are indicated in the caption. Note that there in all cases are
initial transients up to S ≈ 100 μm2.

where αy/αx = 0.66 and αyw/αx = 0.55 for the depinning and
pinning regime, respectively. It was suggested in Refs. [17]
and in [38] that αy/αx could be another measure of the
roughness of the self-affine fracture front, in agreement
with previous experimental measurements of the roughness
exponent. However, in a very recent experimental work [7] on
planar crack growth, there has been two roughness exponents
observed acting at different scales; a small-scale roughness
with exponent ∼0.6 and a large-scale roughness with exponent
∼0.4, with a crossover depending on the fracture toughness
fluctuations and the stress intensity factor. This trend has also
been seen for the aspect ratio of depinning clusters in the
simulation study by Laurson et al. [31]. In the experimental
case, on the other hand, considering that the length scale of
this roughness crossover is comparable with the l̄x range in
our case, we find no traces of such behavior in the aspect
ratio of depinning clusters. This point thus warrants further
consideration.

Finally, we discuss the marginal distributions of the ex-
tension lengths (i.e., for all cluster sizes) in the two regimes
denoted P (lx), P (ly), and P (lyw). For clarity we mention again
that lx scales similarly with S in the two regimes only separated
by a small difference in the proportionality factor, whereas
ly (describing the depinning regime) and lyw (describing the
pinning regime) are treated separately. The insets in Figs. 16(a)
and 16(b) show the extension length distributions P (lx) and
P (ly), respectively, in the pinning regime. The corresponding
pinning cluster distributions display similar behavior, except
that the P (lyw) distribution is entirely dominated by a cutoff
function. This is due to the very narrow y-direction span of
pinning clusters. We define the following distributions for the
extension lengths

P (lx) ∝ l−βx

x D(lx/ l∗x ), (32)

P (ly) ∝ l
−βy

y D(ly/ l∗y ), (33)

P (lyw) ∝ l
−βyw

yw D(ly/ l∗y ), (34)
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FIG. 16. (Color online) (a) Collapsed P (lx) distributions aver-
aged over all different experimental conditions for both depinning
(upper set of data) and pinning (lower set of data). The pinning
distributions have been shifted relative to the depinning distributions
by a factor of 0.05 for visual clarity. Depinning and pinning thresholds
are in the range C = 2–30 and C = 2–12, respectively. The solid
and dashed lines both have the slope βx = 1.93. Inset shows for
the case of depinning the threshold dependence for the unscaled
distributions. (b) Collapsed P (ly) and P (lyw) distributions averaged
over all different experimental conditions for the depinning (upper
set of data) and pinning (lower set of data) regime, respectively.
The pinning distributions have been shifted relative to the depinning
distributions by a factor of 0.1 for visual clarity. Thresholds are
in the range C = 2–30 and C = 2–12 for depinning and pinning,
respectively. The solid line has the slope βy = 2.36. Inset shows
for the case of depinning the threshold dependence for the unscaled
distributions.

where D(x) is some cutoff function decaying faster to zero
than any power of lx , ly , or lyw when x > 1 and constant
otherwise. The β exponents above can be predicted from our
previous results for the cluster size distribution. From statistics
we know that the relation between the PDFs of two random
variables b and c, one-to-one related, can be expressed as

P (b) = P (c)
dc

db
. (35)

In our case S, lx , ly , and lyw is not one-to-one related, but
since the means l̄x , l̄y , and l̄yw have only small standard
deviations, the PDFs P (lx), P (ly), and P (lyw) should at least

be approximated by Eq. (35). For P (lx) we get by inserting
Eqs. (14) and (30) into Eq. (35)

βx = γ + αx − 1

αx

, (36)

where βx = 1.93. Similarly we obtain βy = 2.36 and βyw =
2.65. For the depinning regime we obtain for the cutoffs in
Eqs. (32) and (33) by using Eqs. (15) and (30)

l∗x ∝ C−σdαx , l∗y ∝ C−σdαy . (37)

For the pinning regime we obtain for the cutoffs in Eqs. (32)
and (34) by using Eqs. (16) and (30)

l∗x ∝ C−σpαx , l∗yw ∝ C−σpαyw . (38)

The extension length distributions in both velocity regimes
are collapsed according to Eqs. (32) through (34) as shown
in Figs. 16(a) and 16(b). In the x direction, transverse to the
direction of crack propagation, the distribution in both regimes
scale with the same exponent, similarly to what was found for
the cluster size distribution. The only difference between the
two distributions is the proportionality factor in the cutoff
length, as explained earlier. We see that along the direction of
crack propagation the depinning [P (ly)] and pinning [P (lyw)]
distributions are quite different, in the sense that all power-
law behavior is suppressed by the cutoff function in the latter
distribution. This is understandable since the span of lyw values
is no more than one decade.

In Sec. III B we discussed various correlation functions of
the spatiotemporal velocity field. In particular, it was seen that
the local velocities had correlation lengths of the order ∼100
and 10 μm in the x and y directions, respectively. One would
expect the correlation lengths in some sense to control the
extent of pinning and depinning clusters. This dependence
is nontrivial since a cluster in this context is artificially
constructed by thresholding the velocity field. No clear
relation is found between the cutoff size of the pinning and
depinning clusters, and the correlation length extracted from
the autocorrelation function of the velocity field. However,
since the clusters are obtained from thresholded velocities,
it is also possible to look at the autocorrelation function of
thresholded velocities rather than the one of the continuous
velocity signal. In ongoing work we consider such correlation
functions GC(�x) [Eq. (4)], obtained from discretized signals
vC(x,t) where the local velocities along each front line are
now thresholded with a threshold C according to Eq. (12). A
preliminary analysis indicates the existence of a correlation
length roughly proportional to l∗x [Eq. (37)], meaning that both
quantities evolve similarly with the threshold C.

Furthermore, in the x direction we could see clear sample
differences in the correlation lengths, even though they were
within the same order of magnitude (Fig. 6). Analyzing care-
fully both size and extension length distributions of individual
experiments, and not average distributions as presented above,
we could not recognize such trends. In this respect it is also
important to mention that for individual experiments, the cutoff
behavior in the distributions are not well pronounced due to
the lack of large-scale statistics. Even when considering the
above limitations, we can say that the geometry of pinning
lines are qualitatively consistent with the observed correlation
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lengths. Thus it seems that the vanishingly small correlation
length in the y direction, describes the low-value part of the
local velocity distribution.

IV. CONCLUSION

The local dynamics of an in-plane mode-I fracture have
been studied experimentally using high-resolution monitoring
of the front line advances. Indeed the transparency of the
PMMA enable us to follow the fracture process using a
high-speed camera. Fracture is induced by fixing the upper
plate, while applying a force on the lower plate from a pressbar
controlled by a step motor. Experiments are performed using
two sets of boundary conditions: (1) constant driving velocity
on the pressbar, giving a linear deflection in time between the
plates (CVBC) and (2) fixed deflection between the plates
(CBC), resulting in a slow creep motion of the fracture
front.

Disorder is introduced in the fracture plane by a sand-
blasting and sintering procedure, resulting in heterogeneous
fluctuations of the local toughness. The competition between
the toughness fluctuations and the long-range damping elastic
forces results in a rough fracture front with self-affine scaling
properties. In this study we have considered the local dynamics
of the fracture front over a wide range of average propagation
velocities (0.028 < 〈v〉 < 141) μm/s. The local velocity field
is obtained through the waiting time matrix and gives a
spatiotemporal distribution with a large power-law tail for
high velocities described by an exponent −η = −2.55. The
fracture front advance, displays pinning, and avalanches with
a broad range of velocity scales. Our results show that the
local dynamics is similar in every respect for the two different
boundary conditions. This is an important and nontrivial result
considering the very different behavior in the global large-scale
propagation. Additionally, no dependence on the average
propagation velocity for different experiments is found.

The average autocorrelation of local velocities have been
studied in both spatial directions, and also in time along the
direction of crack propagation. We find that the velocities are
correlated up to ∼100 μm transverse to the direction of crack
propagation, and ∼10 μm (i.e., close to the spatial resolution)
and thus uncorrelated in the direction of crack propagation.
Within these general trends we have seen that there are
differences in the autocorrelation function from sample to
sample, but no dependence on the loading condition or average
propagation velocity. Relating the autocorrelation of velocities
in time to the evolution of the front width gives a growth
exponent of α = 1/2 similar to simple diffusion, a process
such as Brownian motion.

The local dynamics have been studied through a statistical
analysis of local avalanche events. We have observed that the
cluster properties are independent of both loading conditions
and average velocity of the crack front. The depinning cluster
size distribution show scale invariance, described by an expo-
nent −γ = −1.56, in agreement with previous experimental
[17] and numerical results [30,31]. Surprisingly the same result
is found also for the pinning regime. Furthermore, we have
in this study seen that the cluster size distribution scaling
is truncated by an upper cutoff, depending on the threshold
value. We have shown that the cutoff essentially is controlled

by the total distribution of local velocities. Particularly for the
depinning regime we have obtained a scaling law relating the
cluster size exponent γ to the exponent η describing the local
velocity distribution.

Clusters have, in both velocity regimes, been further decom-
posed into extension lengths in the x and y directions. We have
demonstrated that the distributions of these extension lengths
are consistent with their size distribution. The aspect ratio
of depinning clusters follows a power law with the exponent
αy/αx = 0.66 indicating that the clusters are anisotropic and
extending longer transverse to the direction of propagation
than in the direction of crack propagation. We have yet to
obtain experimentally a relationship between the extension of
depinning clusters and the roughness of the fracture front. This
is a topic that warrants further work.

The pinning clusters were found to display a very strong
anisotropy, extending far in the x direction as opposed to
the very short y-direction extension. This is qualitatively in
agreement with the found velocity correlation lengths in the
two directions, thus indicating that these lengths describe the
spatial correlations of low velocities.
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APPENDIX A: THE WAITING TIME MATRIX

The waiting time matrix (WTM) is a robust procedure that
enables a comparison of both different experiments at different
time and space resolution, and also with numerical simulations
of similar systems. It can be applied to any propagating
interface [29,30,32], and is particularly suited for estimating
the local velocity of pinned interfaces which are dominated by
low speeds. Below, we will explain the procedure in detail.

The coordinates of the extracted front lines h(x,t),
introduced in Fig. 3, can be represented in matrix form as
H [x,h(x,t)] = 1 and 0 elsewhere, with a matrix size equal to
the captured image size. We define the WTM W as the sum of
all front matrices H

W (x,y) =
∑

t

H [x,h(x,t)], (A1)

where the sum runs over all discrete times t . Note that W is an
integer matrix, so to get the true waiting time, the time step δt

must be multiplied to each matrix element w. An example of
front line addition is shown in Fig. 17.

From above it is clear that the WTM procedure gives a
spatial map that accounts for the amount of time spent by the
front at a given pixel, thus reflecting the local dynamics of
the interface. However, avoiding holes in the WTM implies a
high enough sampling rate so that the movement of the front
position is at maximum one pixel between two subsequent
images. Second, it also requires a small noise from the imaging
device. Finally, care must be taken in preparing the sample.
Indeed, impurities and surface scratches are not transparent,
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FIG. 17. (Color online) Example of the computation of the
waiting time matrix W (x,y) [Eq. (A1)]. All fronts are added to an
originally empty matrix in time step unit. Indicated above is the
addition of front lines in three timesteps t1 (red), t2 (blue), and t3
(green).

but rather reflect light and may thus artificially alter the
extracted front shape. In our case, experiments are devised
so that the front is propagating in a steady manner both before
and after the short interval of image capture. To avoid transient
effects at the beginning and at the end of the image recording,
we typically clip between 200–500 front lines in the start and
end of the generated WTM.

From the WTM we can construct the local velocity matrix
in space V (x,y). Matrix elements represent the normal speed
of the fracture front at the time it went through a particular
position

v = 1

w

a

δt
. (A2)

From the local velocity matrix V (x,y), we can also obtain the
local velocity along each front h(x,t)

v(x,t) = V [x,h(x,t)]. (A3)

By computing v(x,t) for every time step, we build the
spatiotemporal velocity map Vt (x,t). We then define the
average propagation velocity of the front 〈v〉 as the average
taken over all elements in the matrix Vt (x,t). The development
of the front in time for a given x position is shown in Fig. 18(a),
also indicating how the velocity is approximated from the
WTM. One realization of the local velocity fluctuations along
a front line is shown in Fig. 18(b).

APPENDIX B: VELOCITY PDF TRANSFORMATION

In transforming from the spatiotemporal map Vt (x,t)
[Eq. (A3) and Fig. 18(b)] to the spatial map V (x,y) [Eqs. (A1)
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FIG. 18. (Color online) (a) Pixel level zoom in of a front line
h(x ′,t) at a given position x ′ as function of time. Indicated are three
waiting times w1, w2, and w3 separated by a one-pixel jump. As an
example, note that all captured fronts from h(x ′,t0) to h(x ′,t0 + w1)
are given the same constant velocity v1 ∝ 1/w1 in making the jump
from pixels 127 to 128 along the y axis. This approximation means
that the front position increases linearly during this time interval, as
indicated. (b) Local velocity fluctuations v(x,t ′) along the front line
h(x,t ′).

and (A2)] with the PDFs P (v) and R(v), respectively, we can
express the space traveled through at speed v over a time dt

as dy = v dt . The area in (x,y) space where the front travels
at speed u between v and v + dv corresponds to the total area
of fracture propagation, Ax,y , multiplied by the fraction of the
area corresponding to this speed∫

v<u(x,y)<v+dv

dxdy = Ax,yR(v) dv. (B1)

This area is related to the area covered by the fronts traveling
at that speed in the spatiotemporal map, expressed using the
variable change between y and t∫

v<u(x,y)<v+dv

dxdy =
∫

v<u(x,t)<v+dv

dxv dt. (B2)

Eventually, this last area is directly related to the distribution
P (v), with the same argument as for the spatial map: Denoting
Ax,t the total area of the spatiotemporal map, we can write∫

v<u(x,t)<v+dv

dxdt = Ax,tP (v) dv. (B3)

Inserting Eqs. (B1) and (B3) into Eq. (B2) leads to

Ax,yR(v)dv = Ax,tP (v)vdv. (B4)

Furthermore it can be shown that Ax,y/Ax,t = 〈v〉, thus
eventually

v P (v) dv = 〈v〉R(v) dv. (B5)
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