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Car-following model with relative-velocity effect and its experimental verification
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In driving a vehicle, drivers respond to the changes of both the headway and the relative velocity to the vehicle
in front. In this paper a new car-following model including these maneuvers is proposed. The acceleration of the
model becomes infinite (has a singularity) when the distance between two vehicles is zero, and the asymmetry
between the acceleration and the deceleration is incorporated in a nonlinear way. The model is simple but contains
enough features of driving for reproducing real vehicle traffic. From the linear stability analysis, we confirm
that the model shows the metastable homogeneous flow around the critical density, beyond which a traffic jam
emerges. Moreover, we perform experiments to verify this model. From the data it is shown that the acceleration
of a vehicle has a positive correlation with the relative velocity.
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I. INTRODUCTION

In the last several decades, the dynamics of traffic flow
has been investigated by many scientists in physics and
mathematics using the formalism of many-body systems of
self-driven particles [1–5].

One of the interesting phenomena of traffic flow is the
emergence of traffic congestion due to the instability of
the homogeneous flow, which has been recently verified by
the experiment conducted in a circuit [6]. Many researchers
have tried, up to now, to establish a mathematical model
which has this feature. Especially, a lot of car-following models
have been suggested since the 1950s. They are formulated
by focusing each driver’s movement against its preceding
vehicle. Some of them successfully show the formation of
traffic congestion as the instability of the homogeneous flow.
Gazis and co-workers [7,8] suggested a car-following model
which can be written as

d

dt
vj (t + τ ) = λ

vm
j (t)

hl
j (t)

�vj (t), (1)

where l and m are constants, λ is a positive constant parameter,
which expresses the sensitivities of drivers, vj is the velocity
of the j th vehicle, and hj = xj+1 − xj is the headway to the
vehicle in front. Accordingly, xj corresponds to the position
of the j th vehicle. �vj = vj+1 − vj represents the relative
velocity. We use this term as the difference between the
velocity of the vehicle in front and that of the given vehicle.
Thus �vj < 0 corresponds to the situation in which the
(j + 1)th vehicle is getting closer to the j th vehicle, and
�vj > 0 corresponds to the counter situation. The acceleration
of the j th vehicle is delayed for a reaction time τ . Since,
according to Eq. (1), the acceleration depends on the vehicle in
front, there is a critical problem that this model is not applicable
for very low traffic densities. If the vehicle in front is very
far (corresponding to hj → ∞), the acceleration of the j th
vehicle is zero, regardless of the j th own velocity. This means
that the velocity of the j th vehicle cannot be determined in
very low traffic densities. Actually, in this case, drivers tend to
accelerate to their desired velocity.

Newell [9] solved this problem by introducing a headway-
dependent function, called the optimal velocity (OV) function.
His model is described as

vj (t + τ ) = V [hj (t)], (2)

where the OV function V is given as V (h) = V0{1 −
exp[−γ (h − d)]/V0} with γ , V0, and d parameters associated
with characteristics of drivers. In this model, if the headway
is large enough (corresponding to h → ∞), the velocity
converges to the desired velocity V0. Although this model
solved the problem of the applicability to very low traffic
densities, another problem remains. This model assumes that
the vehicle’s velocity is adjusted by the headway to the vehicle
in front with the delay τ . However, drivers adjust only the
acceleration by putting on the accelerating or the braking
pedals in real driving.

Helly [10,11] proposed another car-following model. This
model combines two stimuli of a driver: keeping up the safe
headway and following the leading vehicle to maintain his/her
relative velocity equal to zero with time delay. However, as we
discuss later, it is not consistent with experimental results if
the two stimuli act linearly on the acceleration.

In the 1990s, Bando et al. [12] suggested another car-
following model,

d

dt
vj = 1

τ
[V (hj ) − vj ], (3)

which can be obtained by the Taylor expansion of Eq. (2) in
terms of τ . This model has been widely used by physicists
because of its simplicity. In the model, traffic congestion is
expressed as a limit cycle from the viewpoints of nonlinear
dynamics [13]. For typical values of the parameters [12],
crashes between successive vehicles are avoided if τ < 0.9 sec.
Moreover, in models (2) and (3), drivers respond to the stimuli,
which is a function of only the headway. In real driving,
drivers’ responses are affected not only by the headway but
also by the relative velocity, as a lot of studies show.

In more recent studies, some models that contain the relative
velocity effect are proposed. In the intelligent driver model
(IDM) [14], vehicles’ acceleration is determined by their
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headway, their own velocity, and their relative velocity. The
model consists of the linear combination of a relaxation term
and a braking term. Relative velocity is taken into account
in the braking term divided by two new parameters, i.e., the
maximum acceleration and the comfortable deceleration. A
verification of this model by using a car-following experiment
with GPS satellites has shown that braking behaviors in the
model does not coincide with experiments [15].

Another example is the full velocity difference model [16],
which is formulated by linearly adding the relative velocity
term to Eq. (3). However, the dependence of the relative
velocity on the acceleration is not so simple but nonlinear in
reality, as shown later. A similar model of linear dependence
of the relative velocity is proposed in [17–19].

Note that the model in [17] has a singularity, which is given
by the equation

d

dt
vj = A

(
1 − h0

j

hj

)
− Z2(−�vj )

2(hj − D)
− kZ(vj − vper) + η,

(4)

where the safety distance h0
j is written as h0

j = vjT + D, the
function Z is defined as Z(x) = (x + |x|)/2, the parameter η

is a white-noise term and the other parameters A,D,vper, and
k are constant.

Although a lot of car-following models have been suggested
for several decades, we are still far from reaching “the basic
equation” for vehicle traffic. Therefore in this paper we first
discuss the criteria that a realistic car-following model should
satisfy. Then we propose a different car-following model that
meets the criteria, and compare the model with experimental
data in detail. The experimental data show the asymmetry
between the acceleration and the deceleration not found in the
previous experiments [20].

This paper is organized as follows. In Sec. II we discuss
the important features of driving, and give the criteria which
a car-following model should have. In Sec. III we propose a
new car-following model, and analyze the linear stability of the
homogeneous flow in Sec. IV. Results of simulations under the
periodic boundary condition is given in Sec. V, and comparison
between experimental data and the model is shown in Sec. VI.
Finally, Sec. VII is devoted to the concluding discussions.

II. CRITERIA FOR REALISTIC
CAR-FOLLOWING MODELS

We first discuss important properties that are required for
realistic car-following models. From the brief historical review
given in the previous section, we summarize the criteria in the
following way:

(A) Drivers can adjust only their accelerations.
(B) Simulations must be stopped when two vehicles overlap

with each other.
(C) The model should be experimentally accessible.

These three requirements are necessary and should apply
to realistic models. Let us explain the criteria in detail.

(A) Every driver adjusts his/her movement by putting on the
accelerating or the braking pedal. This means the controlled
variable by the driver is only the acceleration. This property is
satisfied in the model (1), (3), and (4). Note that the variables
which influence the driver’s stimulus are not only the headway.

The relative velocity �v should also be an important variable.
Suppose that a driver just merges into an expressway at
60 km/h, and the vehicle in front of him/her is running at 100
km/h, with the headway 15 m. In such a situation, do we need
to put on the braking pedal due to the short headway? Instead,
we rather accelerate our vehicle to follow the mainstream.

(B) In real driving, if a crash happens, any vehicles must
be completely stopped and traffic flow is not able to be estab-
lished. Thus models, which continue calculations after crashes,
are not suitable for traffic simulations. Furthermore, the
simulation results after crashes are fabricated and meaningless.

(C) This property is also important when we investigate a
car-following model. All the parameters in the model should
be clearly measurable by the experimental or observed data
for making the model realistic.

III. CAR-FOLLOWING MODEL INCLUDING RELATIVE
VELOCITY EFFECTS

Now we propose a different car-following model taking into
account the criteria given in Sec. II. We assume that drivers’
responses depend on three quantities: their headway, their own
velocity, and their relative velocity.

We further suppose that accelerations and decelerations
are asymmetric. That is, the braking deceleration is usually
stronger than the acceleration because of the strong will of
drivers to avoid the crashes. This asymmetry has a significant
effect on the time evolutions of the spatial-temporal pattern of
traffic jams. We believe that this assumption is natural and our
experiment also shows this property (see Sec. VI) [21].

Our new model is described as

d

dt
vj = a − b

vj

(hj − d)2
exp(−c�vj ) − γ vj , (5)

where vj is the velocity of the j th vehicle, and hj = xj+1 − xj

is the headway to the vehicle in front. The parameter a

represents the maximum acceleration in the case vj = 0, and
b is the strength of the interaction with the vehicle in front.
The other parameters c, d, and γ , which take positive values,
respectively represent the weight of the relative velocity effect,
the headway when vehicles completely stop, and the strength
of the friction or drag. In the case �vj < 0, drivers will
decelerate for avoiding a collision with the vehicle in front,
and in the opposite case �vj > 0 they accelerate up to their
desired velocity.

Figure 1 shows the relation between the relative velocity and
the interaction term, i.e., the sum of the first and second terms
in the right-hand side of Eq. (5). From this figure the strength of
the interaction term is asymmetric with respect to the relative
velocity. If the relative velocity is negative, then there is a
possibility to crash and drivers try to avoid the accident by
strong braking. From the three curves in Fig. 1, we see that the
acceleration and the deceleration become stronger when the
headway or the velocity is shorter or faster, respectively. The
smaller their headway and the larger their velocity, the more
strongly drivers put on the brakes because of their avoidance of
accidents. Note that these curves are monotonically increasing
as �vj .

Although Gazis et al. considered the relative velocity effect
as the linear action to drivers’ accelerations as seen in Eq. (1),
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FIG. 1. Curves denoting the relation between the strength of the
interaction term a − bv exp(−c�v)/(h − d)2 and the relative veloc-
ity �v for the parameters a = 0.73,b = 3.25,c = 1.08,d = 5.25.
The headway and the velocity are smaller and larger, respectively,
from top to bottom.

our model has a nonlinear dependence of it. We can express
the driving property in real traffic more efficiently by this
improvement, as shown later.

If we set dvj/dt = 0 and �vj = 0 in Eq. (5), our model can
naturally lead the relation between the homogeneous headway
hH and the homogeneous velocity vH , which corresponds
to an optimal velocity function introduced in Eq. (2). The
homogeneous solution is easily obtained by putting vj = vH

and hj = hH for all j . Then, from Eq. (5) we have

vH = a(hH − d)2

b + γ (hH − d)2
. (6)

This is illustrated in Fig. 2, which gives the optimal velocity in
terms of the headway. We also see that, in the case of the low
densities flow hj → ∞, the homogeneous velocity converges
to a/γ .

Note that our model satisfies the criteria of realistic car-
following models referred to in Sec. II. First, drivers adjust only
their accelerations which depend nonlinearly on their headway,
their own velocity, and their relative velocity. Second, in our
model, simulations stop due to the divergence of deceleration
if hj becomes d, which corresponds to a crash between the
j th vehicle and the (j + 1)th vehicle. When the headway
approaches d, then the braking effect in this model becomes
strong due to this singularity. This corresponds to the maneuver
that drivers slam their brakes if the inter-vehicular distances be-
tween the leading vehicles and their vehicles are approaching
to 0. In [17], a similar singularity is introduced, however, the
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FIG. 2. Relation between the homogeneous headway and the
homogeneous velocity for the parameters a = 0.73,b = 3.25,c =
1.08,d = 5.25,γ = 0.0517. In the limit hH → ∞, the homogeneous
velocity converges to a maximum velocity a/γ .

exponent of the singularity is different from our model. The ex-
ponent in Eq. (5) is stronger than that of the model in [17]. Note
that our model has crashes in numerical simulations although
the model has the divergence of deceleration. This is because
the time t is discretized and one time step has a finite posi-
tive value in numerical simulations. Therefore hj inevitably
becomes less than d under the extreme initial conditions.
Finally, our model has just five parameters which are experi-
mentally accessible and it is easy to understand their physical
meanings.

In addition, accelerations and decelerations are asymmetric,
as seen in Fig. 1. Our model can realize this feature by
introducing the exponential function to the interaction term.
The strong will for avoidance of the crashes in the case of
negative relative velocity is well fit by this function, as shown
later.

IV. LINEAR STABILITY ANALYSIS

Let us study the stability of the homogeneous flow xj (t) =
vH t + hHj , which is one of the exact solutions of Eq. (5). We
set the velocity and the headway as

vj (t) = vH + αj (t), (7)

hj (t) = hH + βj (t), (8)

where αj and βj represent small disturbances. Substituting
Eqs. (7) and (8) into Eq. (5) and linearizing Eq. (5), the
dispersion relation is obtained by putting αj = exp(ikj + ωt)
(the detail calculation is shown in the Appendix). Then this
equation for ω is satisfied for two complex roots ω+ and ω−:

ω±(k) = 1

2

[
−

(
b

(hH − d)2
+ bcvH

(hH − d)2
(1 − eik) + γ

)

±
√(

b

(hH − d)2
+ bcvH

(hH − d)2
(1 − eik) + γ

)2

− 8bvH

(hH − d)3
(1 − eik)

]
. (9)
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The homogeneous flow is unstable if at least one of the
real parts of these solutions is positive. We have verified
that the real part of ω− is always negative for all values of
parameters a,b,c,d,γ . This means that the wave described by
the dispersion ω−(k) will decay exponentially, and disappear
very soon. The root ω− corresponds to the traveling wave
going forward, which is sometimes a topic of debate since
a forwarding wave is considered to be unphysical in a traffic
system [22]. However, this forwarding wave can be understood
as an evanescent wave studied in condensed-matter physics or
optics [23]. It is a momentary wave that decays exponentially,
and can exist only within a short propagating distance in
media. Of course in real traffic, perturbations propagate mainly
backward because drivers are mostly affected by the vehicles
in front. However, a driver sometimes feels psychological
pressure from the approaching vehicle from his/her back. This
is one of the examples of the momentary forwarding wave in
traffic flow. Thus we consider that it is natural for realistic
traffic models to have a negative real part of ω in the forward
traveling wave.

On the other hand, it is found that the real part of ω+
can sometimes be positive, which shows the instability of the
backward traveling wave. This is shown on the hH -k plane in
Fig. 3.

Let us focus the stability of the backward wave in the limit
k → 0. In this case we expand ω+ in terms of k as

ω+(k) = ∂ω+
∂k

∣∣∣∣
k=0

k + 1

2!

∂2ω+
∂k2

∣∣∣∣
k=0

k2 + · · · , (10)

where

∂ω+
∂k

∣∣∣∣
k=0

= i
2bv2

H

a(hH − d)3
, (11)

∂2ω+
∂k2

∣∣∣
k=0

= 2bv2
H

a3(hH − d)6

[
4bv3

H − 2abc(hH − d)v2
H

− a2(hH − d)3].
(12)
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FIG. 3. The instability regions (positive ω+) of the new car-
following model are shown by the shaded areas for the parameters
a = 0.73,b = 3.25,c = 1.08,d = 5.25,γ = 0.0517. The horizontal
axis and the vertical axis correspond to the homogeneous headway
and the wave number, respectively.
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FIG. 4. The relation between the ∂2ω+(0)/∂k2 and parameters
a,b,c,γ . The range of the homogeneous headway is depicted
from hH = d = 5.25 to 50 m. In the case ∂2ω+(0)/∂k2 > 0, the
homogeneous flow is unstable in the limit k → 0.

Here ∂ω+(0)/∂k and ∂2ω+(0)/∂k2 determine the group veloc-
ity and the stability of the linearized wave in the region k → 0,
respectively. In the case ∂2ω+(0)/∂k2 > 0, the homogeneous
flow is no longer stable. Therefore we have obtained the
instability condition in the limit k → 0 as

4bv3
H − 2abc(hH − d)v2

H − a2(hH − d)3 > 0, (13)

where the relation of vH and hH is given by Eq. (6). We
have understood by Eq. (13) that the homogeneous flow
becomes unstable when the homogeneous headway hH is
about from 7.91 to 28.91 m for the parameters a = 0.73,b =
3.25,c = 1.08,d = 5.25,γ = 0.0517 (see Fig. 3). We use
these values of parameters a,b,c,d,γ in the following, which
are estimated by the experiment explained in Sec. VI. In this
unstable region, drivers’ stimuli get to grow as a perturbation
propagates backward. Note that the traffic flow becomes stable
if the homogeneous headway hH is lower than 7.91 m. This
phenomenon is also seen in model (3).

Next, let us investigate the relation between the instability
and the parameters a,b,c,γ in detail. Figure 4 shows that
the unstable regions ∂2ω+(0)/∂k2 > 0 get to narrow with
increasing value of the parameters b,c,γ . However, the
increase of the parameter a makes the system more unstable.
We have also obtained the critical line of the instability on
the b-hH plane. The region surrounded by the critical line
in Fig. 5 is unstable. We can immediately check that the
critical line is connected on the b-hH plane and the instability
regions get smaller as the parameters c,γ are taking more
larger values. Figure 6 shows the instability on the c-hH plane.
From the figures, increasing the value of the parameters b and
γ generally results in the improvement of stability of traffic
flow. This is due to the improvement of the sensitivity of
the drivers. However, it is interesting to see that, in the case
c < 1.3, increasing the strength of the interaction b makes the
system more unstable when hH is larger than 26 m.
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FIG. 5. The critical lines of the instability on b-hH plane in the
case k → 0. The range of the homogeneous headway is depicted from
hH = d = 5.25 to 50 m. The upper figure shows the change of the
critical line in terms of the parameter c. The thick, thin, and dashed
lines correspond to c = 1.08,1.18,1.28, respectively. The lower figure
shows the similar change of the critical line against the parameter γ .
The other parameters are the same as in Fig. 3. In both figures, the
inside region surrounded by the critical line is unstable.

V. SIMULATION

In this section, we perform simulations under the periodic
boundary condition to investigate the behavior of model (5).
Simulations start with the condition that all the vehicles take
the same velocity and the same headway expressed by Eq. (6).
A small perturbation to the velocity is added to a single vehicle
at the beginning of the simulations. We employ the fourth-
order Runge-Kutta method for the time update.

Note that as for the simulations of the new model there are
no crashes on one-lane periodic roads if a crash does not occur
in the beginning. In addition, since the time t is discretized in
numerical simulations, crashes inevitably happen only when
we set the extreme initial conditions, such as the case that the
headway of the following vehicle is very small and its velocity
is much larger than the velocity of the vehicle in front of it.

Now let us present typical results of traffic congestion
in Fig. 7. This shows a space-time plot which denotes the
traces of individual vehicles. A disturbance starts to grow
and a cluster of congestion, which propagate in the opposite
direction to the movement of vehicles, emerges. The velocity
plots of each vehicle at t = 0.0, 100.0, 1700.0 sec are given
in Fig. 8 (upper). The cluster of congestion at t = 1700.0 sec,
which is numerically confirmed to be a stationary state, has an
asymmetrical feature. Namely, the upstream boundary of the
cluster is narrower than the downstream side. This means that
drivers are more sensitive to the rapid decrease of the vehicle’s
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FIG. 6. The critical lines of the instability on c-hH plane in the
case k → 0. The range of the homogeneous headway is depicted
from hH = d = 5.25 to 50 m. The upper figure shows the change
of the critical line against the parameter b. The lower figure shows
the change of the critical line against the parameter γ . The other
parameters are the same as in Fig. 3.

velocity than the increase. We can also confirm this asymmetry
by the Fig. 8 (lower), which is the plot of the time evolution
of density, i.e., inverse of headway.

Figure 9 shows the relation between the flux q and the
average density ρ̄, which is called the fundamental diagram.
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FIG. 7. A space-time plot of vehicles’ trajectories. The horizontal
axis denotes the positions of vehicles and the vertical axis denotes
the time. The number of the total vehicles in the circuit are 100, and
the length of the circuit is 1400 m (trajectories are depicted every two
vehicles). The initial condition is set for v1 = 0.0, vj = vH (j > 1),
hj = hH . The other parameters are the same as in Fig. 3.
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0.0,100.0,1700.0sec. The length of the circuit is 1400 m and the total
vehicles in the circuit are 100. The initial condition is set for v1 = 0.0,
vj = vH (j > 1), hj = hH . The horizontal axis denotes the locations
of vehicles. The vertical axis denotes the velocities of vehicles (upper)
and inverse of headway (lower). The other parameters are the same
as in Fig. 3.

The flux of the homogeneous flow is obtained as

q = ρ̄vH , (14)

where ρ̄ is the average density given by dividing the circuit
length by the total number of vehicles in the circuit. The
homogeneous velocity vH is given by Eq. (6). The range of ρ̄ >

0.190 = 1/5.25 corresponds to the situation h < d = 5.25. In
the range of the average density from 0.035 to 0.126/m, the
fluxes of simulations are lower than those of the homogeneous
flow due to the emergence of traffic congestion. This means
that the homogeneous flow becomes unstable in this region,
and easily changes into a jamming flow by a small perturbation.
The upper branch of two curves in the region 0.035 to 0.126/m
is called the metastable state.

In Fig. 8, we see clearly the coexistence of the stationary
jamming cluster and free flow in a circuit. The two states are
plotted in Fig. 9, which are indicated by points F and J . Note
that the clusters propagate as solitary waves and maintain their
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FIG. 9. The relation between the flux and the average density.
Data points are obtained by averaging after the relaxation. The flux
of the homogeneous flow is calculated by (14). The line F-J is obtained
by the simulation given in Fig. 8. The parameters a,b,c,d,γ are the
same as in Fig. 3.

size and velocity. The velocity of the cluster vB can be obtained
by the following equation:

vB = ρJ vJ − ρF vF

ρJ − ρF

, (15)

where ρF (ρJ ) is the density of free (jam) flow in the circuit, and
vF (vJ ) is the velocity that corresponds to ρF (ρJ ), respectively.
In Fig. 9, the velocity of the cluster vB is represented by the
tangent of the line and points F and J denote (ρF ,ρF vF )
and (ρJ ,ρJ vJ ), respectively. Here the density is defined as
the inverse of the headway. (ρF ,vF ) and (ρJ ,vJ ) are (0.0581,
9.74) and (0.1289, 1.31), respectively, from the numerical data.
Therefore we obtain the velocity of the cluster vB as −5.60 m/s,
which corresponds to −20.2 km/h. This is in good agreement
with observed data [24].

It should be noted that the rarefaction shock wave exists in
our model, although it cannot exist in usual fluid since it breaks
the law of entropy [25]. Vehicles are self-driven particles, not
the Newtonian particles, thus the the law of entropy cannot
be applied directly to the motion of vehicles. The rarefaction
shock wave is an expansion wave that maintains its profile
during the propagation. The density of its upstream area is
higher than that of the downstream area, and it propagates to
the opposite direction of the vehicles. If there is an inflection
point on the curve in the fundamental diagram, then we can
prove the existence of the rarefaction shock wave [26]. From
the result of simulations plotted in Fig. 9, the inflection point
is around 0.12/m.

VI. EXPERIMENT

In order to verify the relative velocity effect, we conducted
an experiment by using an oval course given in Fig. 10. We
use 12 vehicles for this experiment, and give an instruction to
the drivers that they should keep constant velocity of 30 km/h
and their headway if there is enough free space ahead of them.
The three types of homogeneous flow are chosen for initial
conditions, i.e., the headway 8, 10, and 15 m with the velocity

046105-6



CAR-FOLLOWING MODEL WITH RELATIVE-VELOCITY . . . PHYSICAL REVIEW E 83, 046105 (2011)

FIG. 10. (Color online) The snapshot and the sketch of the circuit
of our experiment. The conditions are L = 100 m,D = 50 m.

30 km/h. After observing stable flow, the driver of the leading
vehicle is told to put on the braking pedal at point A indicated in
Fig. 10 to decelerate his vehicle. We set two types of braking:
soft braking and hard braking. For soft (hard) braking, the
velocity of the leading vehicle decreases from 30 km/h to
25 (20) km/h. Then in these six cases various perturbation
waves of the deceleration propagate backward. We study these
waves by getting the data of the velocity, the headway, and the
acceleration of each vehicle using GPS devices.

In order to investigate the relation between the relative
velocity and the acceleration, we have to fix the other physical
values. Therefore we focus on the sectional data, which are
extracted from the total data under the condition that the
velocity and the headway regions are from 25 to 35 km/h and
from 14 to 19 m. Then we employed the average value v̄ and h̄

of the extracted data as the representative values. Specifically,
we obtained the values of v̄ and h̄ as 8.484 m/s and 15.52 m,
respectively.

The relation between the acceleration and the relative
velocity is shown in Fig. 11. Obviously, the acceleration is
positively correlated with the relative velocity. In the case
�v > 0, the acceleration tends to take a positive value. On the
other hand, the acceleration tends to take a negative value in the
counter case. However, in the neighborhood of the origin, there
are some plots in which the acceleration takes a positive value
in spite of the relative velocity taking a negative value. This is
because drivers do not have to put on the brake immediately
due to the small deceleration of the vehicle in front and enough
headway. Figure 11 also shows the difference of the strength
between the acceleration and the deceleration. That is, the
deceleration resulting from putting on the brake is stronger
than the acceleration resulting from putting on the accelerator.
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FIG. 11. This is the graph of the relation between the relative
velocity and the acceleration. Points are the experimental data, which
are extracted under the condition that the velocity and the headway
regions are from 25 to 35 km/h and from 14 to 19 m, respectively. The
dashed line is a − bv̄ exp(−c�v)/(h̄ − d)2 − γ v̄, where v̄, h̄ are the
average values of the extracted experiment data: v̄ = 30.54 km/h =
8.484 m/s, h̄ = 15.52 m. The other parameters are the same as in
Fig. 3.

Drivers tend to put on the brake more strongly because drivers
want to avoid the crush. We have shown clearly in Fig. 11
that our exponential function fits quite well to the relation
between the acceleration and the relative velocity. From the
experimental data, we have confirmed that the acceleration
has the positive correlation with the relative velocity; there is a
asymmetry between the acceleration and the deceleration and
the exponential function represents the relation between the
acceleration and the relative velocity. Note that the exponential
curve of the acceleration demonstrates for low-speed traffic. It
is because the experiment is conducted on a short circuit.

Finally, we show the estimated values of parameters
a,b,c,d,γ in Table I. We have employed a maximum accel-
eration of normal vehicles and normal drivers as the value
of the parameter a [14]. The parameter d is estimated from
the experiment by investigating the headway at which drivers
have to stop. The desired velocity estimated by the circuit
experiment is about 14.1 m/s (corresponding to 50.8 km/h).
It takes a small value because the experiment is conducted
on a short circuit. Of course the new model can be also
adopted to high-speed traffic, such as the expressway traffic,
by recalibration.

TABLE I. The parameters estimated by the circuit experiment.

Parameters Estimated values

a 0.73
b 3.25
c 1.08
d 5.25
γ 0.0517
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VII. CONCLUDING DISCUSSIONS

In this paper, we have proposed criteria of realistic car-
following models and have formulated a new car-following
model satisfying the criteria. The models have the asymmetry
between accelerations and decelerations and the singularity
of the vehicle’s crash. By analyzing the linear stability, it is
confirmed that it has the instability of the homogeneous flow.
We have verified the relative velocity effect by investigating
experimental data, and have estimated the values of param-
eters. Experimental data have shown that the acceleration is
positively correlated with the relative velocity. Furthermore,
it is also shown that the exponential function fits well with
the observed data taken from the experiments. Moreover, the
parameters in the model are all estimated by the data, and
the backward velocity of jam cluster in this model shows
20.2 km/h, which agrees with real traffic data.

We are currently investigating further mathematical proper-
ties of this model, including the size and number of asymptotic
clusters depending on initial conditions. The results will soon
be published elsewhere.

In our model, in the case that the inter-vehicular distance
is close to 0, the deceleration takes a larger value than what is
physically possible because of the equipment of the singularity.
For practical uses, it is one of the possible ways to cut off the
deceleration with some threshold around −12 m/s, which is
measured on dry road. Improvement of the model for practical
uses is under study.

Additionally, the detailed analysis of the crash is also our
future work. The study dealing in this analysis such as [27] is
significant for considering traffic flow with accidents. Then it
is important to know the relation between the acceleration
and the short headway, which is out of the scope in our
modeling as well as our experiments. Therefore we will get

more experimental data to examine the singularity in our model
in detail.

Moreover, model (5) is not equipped with explicit time
delay or the time derivate of the acceleration [28] for
analytical simplicity. It does not make a significant difference
to introduce the time delay in the acceleration term if it is
small [29]. However, there exist some studies which include
time delay [30] and some studies investigated the relation
between the time delay and instability in respect to global
bifurcation [31,32]. The extension to a model with time delay
is also our future work.

APPENDIX: CALCULATION OF LINEAR
STABILITY ANALYSIS

In this Appendix, we show the detail of how the dispersion
relation (A2) is obtained. Substituting Eqs. (7) and (8) into
Eq. (5), we have obtained the following equation for α after
linearization:

α̈j = 2bvH

(hH − d)3
(αj+1 − αj ) − b

(hH − d)2
α̇j

+ bcvH

(hH − d)2
( ˙αj+1 − α̇j ) − γ α̇j , (A1)

where α̇j = dαj/dt,α̈j = d2αj/dt2. By putting αj =
exp(ikj + ωt), the dispersion relation is obtained as

ω2 +
(

b

(hH − d)2
+ bcvH

(hH − d)2
(1 − eik) + γ

)
ω

+ 2bvH

(hH − d)3
(1 − eik) = 0, (A2)

where k is the wave number, ω is the frequency, and i is the
imaginary unit.
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