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In this paper, we show how proper assignment of weights to the edges of a complex network can enhance the
detection of communities and how it can circumvent the resolution limit and the extreme degeneracy problems
associated with modularity. Our general weighting scheme takes advantage of graph theoretic measures and it
introduces two heuristics for tuning its parameters. We use this weighting as a preprocessing step for the greedy
modularity optimization algorithm of Newman to improve its performance. The result of the experiments of
our approach on computer-generated and real-world data networks confirm that the proposed approach not only
mitigates the problems of modularity but also improves the modularity optimization.
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I. INTRODUCTION

The study of the properties of complex networks has
recently attracted many researchers from various disciplines
such as physics, biology, and mathematics [1–4]. A feature,
observable in many networks, is the presence of community
structures, i.e., clusters of vertices which are densely connected
to each other while less connected to the vertices outside. The
community structure identification is an important problem
in a wide range of applications such as marketing in social
networks and the study of protein interaction networks.
Usually, the community members have more properties in
common among themselves than with nonmembers and de-
tecting community structure helps in analyzing and searching
the network with less effort.

In many scenarios, community detection methods can help
to unveil the functional properties of the complex networks.
Besides, many of these networks such as the Internet are large
scale and their size grows with time. Thus there is a necessity to
devise better community detection methods which meet both
speed and accuracy requirements simultaneously.

In order to estimate how much a decomposition of a
network which is found by a community detection algorithm is
meaningful, we need a measure. For a particular measure, the
community detection algorithms can be ranked. So far, various
measures have been proposed in the literature. These measures
can be classified into two distinct categories. The first category
consists of measures which indicate the accuracy of the found
partition by comparing it to the true one. Thus before using
these measures, the correct communities should already be
known, which is not the case in a wide range of networks
including many real-world ones. This constraint mostly limits
their application to computer-generated benchmark graphs.
Some examples of such measures are the fraction of the nodes
classified correctly [5], the Jaccard index [6], and normalized
mutual information [7].

The second category belongs to the measures which
evaluate the quality of the found partition and are mostly used
when there is no information about the correct communities.
Indeed, such measures cannot provide the accuracy of the
found partition since they do not assess how close it is to the
true partition. Angelini et al. [8] have proposed a measure
called ratio association, which is derived from the ratio of

the number of edges to the number of vertices within each
partition. But, the most prevalent measure, which has been
used extensively in the literature, is due to Newman and
Girvan [9]. This measure, called modularity, quantifies how
much the density of the edges inside identified communities
differs from the expected edge density in an equivalent network
with similar number of vertices and edges but randomized edge
placement. Indeed, the higher the modularity value, the better
the decomposition. Therefore considering the modularity
measure, the community detection problem is transformed to
the modularity maximization problem. In this paper, we focus
on this measure for our analysis.

It has been discovered that there is a strong correlation
between structure and function of complex networks. Accord-
ingly, a function of a complex network can be significantly
influenced by its structure. Thus one can think of adjusting
a proper structural property such as weighting of the links to
improve a particular function of a complex network.

In this paper, we discuss how an appropriate weighting
scheme can affect the problems that are associated with
modularity, i.e., the resolution limit [10] and the extreme
degeneracy [11]. Then, we take advantage of the local and
global structural information of the network and propose a
weighting scheme that not only mitigates the problematic
behavior of modularity, but also remarkably improves the
community detection performance of the Clauset-Newman-
Moore method (CNM) [12], which is a simple greedy modu-
larity optimization method. The proposed approach is a good
compromise between speed and accuracy. Briefly summarized,
a proper weighting scheme is applied on a given unweighted
network and then a modularity optimization algorithm, i.e.,
CNM, is used to determine the communities.

II. RELATED WORK

Several algorithms have been proposed for modularity
optimization [5,8,9,12–18]. The main shortcoming of most
of the available algorithms is their high computational com-
plexity. This is the main reason that prevents their use for
large-size networks and restricts them to networks with a few
thousand vertices at most. Some algorithms have been recently
proposed that achieve acceptable performance with rather
low computational cost. Duch and Arenas (DA) proposed
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an extremal optimization based procedure [13] that finds
the community structure in O(n2 log n) operations, where
n is the number of vertices in the network, and obtained
very good performance for the modularity measure. Blondel
et al. [16] have proposed a low computational complexity
method, of order O(n log n), for sparse networks, called
the Louvain method, which is one of the fastest available
algorithms proposed so far. This method has shown very good
performance on benchmark networks [19].

Also, Newman proposed a greedy approach [18] called
the fast Newman method. In particular, this method initially
assumes each individual vertex to be a separate community
and then, it repeatedly finds a pair of communities whose
joining gives the greatest increase in modularity and joins
them together. It continues joining communities until a single
community is left. Finally, the community division which
corresponds to the highest modularity value is chosen as the
outcome. In [12], Clauset, Newman, and Moore introduced a
faster implementation of the same algorithm called CNM with
the computational complexity of O(md log n), where m is the
number of edges and d is the depth of the dendrogram, i.e.,
a tree diagram used to illustrate the hierarchical arrangement
of the clusters of a network. The CNM algorithm is simple,
intuitive, and fast. Indeed, it is much faster than DA from
a computational complexity point of view, but poorer in
modularity optimization. It has been frequently reported to
show poor performance on some classes of networks. The
low performance can be rooted to two main sources, namely
the greedy nature of the algorithm and the failure of the
modularity measure to capture all needed information for
perfect community detection.

The idea of reconfiguring the network to enhance a specific
function is used in different eras. Two main approaches
frequently applied in the literature are proper rewiring [20] and
weighting of links [21]. The improvement of a network func-
tion using a proper weighting can be traced back to the training
of artificial neural networks, while exploiting a weighting
scheme based on structural properties of complex networks is
a much newer technique. Recently, proper weighting schemes
have been successfully applied to various problems, including
improvement of synchronizability of complex networks [21],
reservoir-based recurrent neural networks [22], and average
consensus on complex networks [23]. In particular, Berry et al.
have proposed a weighting scheme for community detection
enhancement with runtime of O(mn log n) for scale free
graphs [24].

III. MODULARITY ANALYSIS

In order to reveal the properties of modularity, one should
know the intuition behind the terms that define it. For a
particular partition of an unweighted network, the standard
definition of modularity [9] is

Q =
c∑

i=1

[
lin
i

L
−

(
di

2L

)2]
,

where c is the number of communities, L is the total number
of edges in the network, and lin

i and di = 2lin
i + lout

i are the
number of edges and the sum of vertex degrees in the ith

community, respectively. Also, lout
i is the number of edges

with one end in the ith community. The first term of the
summation is indeed the fraction of edges within community
i while the second term corresponds to the expected value
for the same community in a random network with the same
degree sequence. The definition of modularity is generalized
accordingly for weighted networks. In such networks, L is the
sum of weights of all edges in the network, and lin

i and di

are, respectively, the sum of weights of edges and the sum of
degrees of vertices of the ith community where the degree of
a vertex is defined as the sum of weights of edges connected
to that vertex. An unweighted network can be considered as
a special case of a weighted network with all edge weights
equal to 1.

Although the standard modularity measure has been ac-
cepted as a convenient measure among researchers, it has
some intrinsic shortcomings [25]. For instance, the modularity
value for a particular partition of network cannot individually
express how good this division is, e.g., there are partitions of
instances of random networks that have high modularity values
just by pure chance. Therefore a network has only an intrinsic
community structure, if its modularity value is significantly
larger than the (probabilistic) maximum modularity of the
random network with the same expected degree sequence [26].
As a more serious criticism, it has been shown that modularity
is highly correlated to the presence of a community structure
only if the size of the communities is limited by a value which
is dependent to the total number of edges in the network [10].
This limit on the size of the communities is counterintuitive
since networks can have communities with different sizes
depending on the density of intercluster and intracluster edges.
There is also the recent discovery of extreme degeneracies
in the modularity [11]. In other words, one can find various
distinct solutions, i.e., high modularity partitions without a
clear global maximum for a given network.

The ratio Ri = lout
i / lin

i plays an important role in the
mentioned problems of modularity. This ratio should be within
�0,2� in order to satisfy the criterion of the “weak” definition of
community given by Radicchi [27]. Next, we will show how a
proper weighting scheme can abate the resolution limit as well
as extreme degeneracy problems and make modularity a more
trustable measure. For the sake of simplicity, we keep the sum
of weights of all edges, i.e., L of the weighted graph constant
and equal to the total number of edges. Thus L is equal for
both weighted and unweighted versions of the network. Also,
as a general notation, all quantities that carry a hat, e.g., R̂,
belong to the weighted graph and are generalizations of the
same quantities without a hat belonging to the unweighted
graph, e.g., R.

A. Resolution limit

Fortunato et al. have discovered the resolution limit of
modularity. This is an important reason why optimization
performs poorly in certain circumstances [10]. It is shown
in [10] that the communities determined by modularity
optimization are constrained in size, i.e., lin

i falls necessarily
into a certain subinterval of �0,L�. Therefore when the size of
a true community falls outside of this subinterval, it cannot be
detected by modularity optimization. The effect of introducing
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a proper weight on the edges of the graph is that the subinterval
gets larger and therefore weighted modularity, optimization,
i.e., maximizing the modularity value for the weighted version
of the network, is capable of detecting communities with a
larger range of sizes. We first recall the rigorous bounds on the
community sizes from [10].

Theorem 1. The size of any community that contributes
positively to the modularity measure is limited by

lin

L
<

4

(2 + R)2
, (1)

where R = lout/lin. If merging community i and community j
does not increase the modularity measure, the sizes of the two
communities are bounded below by

lin
i

L
� 2Rij

(Ri + 2)(Rj + 2)
; for all j,

(2)
lin
j

L
� 2Rji

(Ri + 2)(Rj + 2)
; for all i,

where Rij l
in
j = Rjil

in
i = lout

ij , which is the sum of weights of
edges between ith and jth communities. �

If we weight the network such that the sum of all
weights is L, if l̂in

i and l̂out
i are, respectively, the sum of

the weights of the edges within community i and the sum of
the weights of the edges connecting a vertex of community i to
a vertex of another community, if R̂i = l̂out

i /l̂in
i , R̂ij = l̂out

ij /l̂in
j ,

and if we use the weighted modularity measure, the constraints
on the community sizes corresponding to those of Theorem 1
are

2R̂ij

(2 + R̂i)(2 + R̂j )
� l̂in

i

L
<

4

(2 + R̂i)2
. (3)

As we will show, the weighting we propose will in general
reduce the value of R̂i and therefore increase the upper bound
for the size of the community. As far as the lower bound is
concerned, reducing R̂i ,R̂j , and R̂ij will not necessarily reduce
the bound. However, making the reasonable assumption that
R̂i � 2 for all i, we can give an interval for the lower bound:

1

8
R̂ij � 2R̂ij

(2 + R̂i)(2 + R̂j )
� 1

2
R̂ij . (4)

Both endpoints of this interval decrease when R̂ij decreases.
Therefore we conclude that the lower bound for the size of
the communities in general decrease when our weighting is
introduced.

In summary, the introduction of our weights generally
allows us to detect both larger and smaller communities by
modularity optimization than would be possible without the
weights.

B. Extreme degeneracy

A recent analysis on modularity is given by Good et al.
in [11]. An important issue of modularity that has been argued
is the existence of extreme degeneracies in modularity. In some
cases, the penalty for joining two distinct communities can be
insignificant even when modularity decreases, i.e., �Q < 0.
Thus it frequently happens that there are many graph partitions
whose modularity is very close to the global maximum Qmax.

More specifically, the number of slightly suboptimal partitions
increases when there are more modular groups of vertices in
the network. As a result, it is more difficult to find the optimal
partition among competing suboptimal ones when the network
has a large number of modules. This problem is called extreme
degeneracy. It should be mentioned that extreme degeneracy is
problematic only when competing maxima are very different
from each other. Here, we show how an efficient weighting
scheme can improve this situation. To do so, we will discuss
the two cases which were investigated in [11] for illustrative
purposes.

The first case concerns extreme degeneracy in modular
networks. Indeed, it is argued that the penalty in Q for
joining two true communities i and j in a network with k
communities and roughly equal community degrees, i.e., di ≈
2L/k, is bounded below by �Qij = −2k−2. The difference in
modularity for joining two groups i and j is

�Qij = lout
ij

L
− 2

(
di

2L

)(
dj

2L

)
. (5)

An efficient weighting scheme that is capable of reducing
the weights of intercluster edges decreases the first term of
Eq. (5) and consequently increases the penalty in Q for an
inappropriate community join. When the size of communities
is less than a certain threshold, then the first term becomes
larger than the second term and the resolution limit problem
occurs, i.e., �Q > 0. Thus one can help mitigate both extreme
degeneracy and the resolution limit problem by reducing R
using an efficient weighting scheme. We admit that at the
same time when the number of communities increases, the
second term becomes small and the penalty for joining them
is reduced.

In the second case, a simple type of a hierarchical network is
considered. Suppose that there are two true communities i and
j, with two submodules each, so that {a,b} ∈ i and {c,d} ∈ j .
Merging the opposite pairs of submodules, i.e., a with c and b
with d, will produce the penalty

�Q =
(
lout
ac + lout

bd

)
L

−
(
lout
ab + lout

cd

)
L

− 2

(
da − dd

2L

)(
dc − db

2L

)
, (6)

which may produce still a smaller penalty than the first
case. In this case also, if a weighting scheme can strengthen
the intracommunity edges and weaken the rest, then it will
decrease the first term of Eq. (6) while increasing the second
one. Hence the total penalty will increase by introducing a
proper weighting scheme.

Based on the arguments given in this section, we propose to
use a proper weighting scheme prior to applying a community
detection method based on modularity optimization. The
weighting scheme should be able to discriminate between in-
tercluster and intracluster edges. It should be able to strengthen
the weights of intracluster edges while decreasing the weights
of intercluster ones in order to mitigate the modularity
resolution limit and extreme degeneracies. Therefore such a
weighting scheme acts like a preprocessing procedure that sets
up the network for the next step, i.e., community detection.
Intuitively, it gives prior knowledge to community detection
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methods and improves their efficiency. In the following, we
introduce a weighting scheme that meets the criteria outlined
before.

IV. PROPOSED WEIGHTING SCHEME

In this section, we propose a weighting scheme that meets
the requirements discussed in the previous section and en-
hances the performance of the CNM significantly. This scheme
benefits from two well-known structural measures of complex
networks, namely the edge betweenness centrality and com-
mon neighbor ratio measures which are described below.

For an edge eij connecting vertex i and vertex j, the
edge-betweenness centrality (EBC) measure, denoted by Bij ,
is defined as the number of shortest paths passing through
eij [28]. This measure can be formally expressed as follows:

Bij =
∑

u �=v∈V

σuv(eij )

σuv

, (7)

where σuv(eij ) is the number of shortest paths between vertices
u and v that pass through edge eij and σuv is the total number
of shortest paths between u and v.

The paths that connect vertices of distinct communities
must pass through at least one intercluster edge. Bearing in
mind the fact that the communities are loosely connected, one
can expect that the intercluster edges have usually rather high
EBC scores. On the other hand, the vertices within a commu-
nity are tightly connected, so the betweenness centrality of in-
tracluster edges is usually smaller. Consequently, it seems that
the inverse of EBC is an appropriate parameter to weight the
network. Edge betweenness centrality measure has been pre-
viously used in some community detection algorithms [5,29].

Although EBC conveys important information about the
communities, it could be sometimes misguiding for commu-
nity detection algorithms. The betweenness centrality of an
edge depends on the number of vertices that are connected
to the network through that edge. Thus it is easy to imagine
cases where the betweenness centrality of an intercluster edge
which connects a small community to the network is less
than the betweenness centrality of an intracluster edge in a
large community. An example is given in Fig. 1 in which
there is one small community (M1) with n1 vertices and one
large community (M2) with n2 vertices, each of which is
connected by just one edge to the rest of the network (M0),
i.e., eout

1 and eout
2 , respectively. The total number of vertices is

n. Thus supposing that between two vertices there is always
only one shortest path, the betweenness centrality of eout

1 and
eout

2 are (n − n1)n1 and (n − n2)n2, respectively. Now, we
assume the following conditions for this network. lout

2 has only
two neighboring edges in M2 (ein

1 and ein
2 ), the number of

vertices in M2 is three times the number of vertices in M1

(n2 = 3n1), and finally n1n2 � n. With these conditions the
betweenness centrality for eout

2 is greater than for eout
1 by a

factor of almost 3 while the betweenness centrality of one of
ein

1 and ein
2 intracluster edges has at least half of the betweenness

centrality of eout
2 . Hence there is at least one intracluster edge

whose betweenness centrality is larger than the betweenness
centrality of the intercluster edge eout

1 . This happens because
EBC is community scale dependent.

FIG. 1. (Color online) A network division with at least three
communities. M1 and M2 are two communities which are connected
to the rest of the network (M0) each by one edge, i.e., eout

1 and eout
2 ,

respectively. eout
2 has two neighboring edges inside M2.

Recently, we have introduced a new measure, namely
common neighbor ratio (CNR) [15] which does not depend
on the size of the communities and is computed locally for
each edge. For a pair of vertices i and j , CNR, denoted by Cij ,
is defined as

Cij = 2
(
Aij + ∑

k AikAjk

)
∑

k Aik + ∑
k Ajk

, (8)

where A is the adjacency matrix, i.e., Aik = 1, if there is a
connection between i and k, while Aik = 0 otherwise. This
measure computes the percentage of the common neighbor
vertices between i and j. Since the vertices inside a community
are densely connected, CNR is supposed to be higher for such
vertices and lower for vertices which are not in the same
community. The denominator of the right hand side of Eq. (8)
locally normalizes the number of common neighbors. Again,
like EBC, although CNR contains some information about
community structures it can be misguiding in some cases. In
particular, on the boundaries of the communities, one can find
neighboring nodes from different communities that have rather
high CNR scores.

Recalling the fact that EBC is a global measure and
CNR is a local measure, one can imagine that they contain
some complementary information about the community struc-
ture of the network. Accordingly, our proposed weighting
scheme is a combination of EBC and CNR which is as
follows:

Wij =

⎧⎪⎨
⎪⎩

b−α
ij . C

β

ij∑
k,m
k �=m

b−α
km . C

β

km

if Aij = 1

0 if Aij = 0

; α,β > 0, (9)

where bij and Wij are the normalized EBC, i.e., bij =
Bij/Bmax , and assigned weight for the existing edge between
vertices i and j, respectively. Both of the factors in the
numerator of Eq. (9) are trying to distinguish the type of the
edges by strengthening the intracluster edges and weakening
the intercluster ones. The denominator of Eq. (9) normalizes
the weights. For a pair of α and β values, the algorithm assigns
weights based on Eq. (9) to the edges and then the CNM
algorithm is used that joins the community pair that maximizes
the modularity of the weighted network and, in the end, we
choose the partition that has the highest modularity. It is clear
that having a community configuration, the corresponding
modularity measure of weighted and unweighted networks are
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not the same. We call the modularity measure that is calculated
based on the weighted network weighted modularity while the
other one is called unweighted modularity.

In particular, having a pair of α and β, the proposed
algorithm has the following steps:

(a) The input is a pair of α and β and an unweighted graph,
G(V, E) where V and E are the set of vertices and edges of graph
G, respectively.

(b) Weight the network based on weighting scheme (9).
(c) Assume that each node is a separate community.
(d) While there is more than one community, do the

following:
(i) Calculate �Q for all pairs of communities.
(ii) Select the corresponding pair of communities that

has the highest �Q.
(iii) Join the selected pair of communities.
(iv) Store the current partition as well as correspond-

ing weighted modularity measures.
(e) Output the partition that results in the highest weighted

modularity measure.
The runtime of the EBC calculation is O(mn), while it

shrinks to O(n2) for sparse graphs [30]. Therefore the runtime
of the proposed weighting computation is O(n2) for sparse
graphs.

The proposed algorithm has two parameters, namely α and
β that control the level of contribution of the EBC and CNR
parameters, respectively. It is expected that different pairs of α

and β result in different outcomes. In fact, as we will show later
in this paper, when the parameters of the proposed weighting
scheme are well tuned, high modularity partitions are obtained
at an acceptable computational effort.

In general, the optimal values for α and β parameters can be
found by brute-force search or, preferably, by the Nelder-Mead
method [31]. Figure 2 shows the unweighted modularity
measure as a function of α and β for the United States
(US) Football network [5]. Here, the unweighted modularity
is chosen for the sake of comparision.

Finding the optimal modularity partition by brute force
search is computationally very expensive and similarly the
optimization of α and β is a time consuming task which has
its own problems such as trapping in local maxima. Thus it is

FIG. 2. (Color online) Modularity for the US Football network
after weighting and applying the CNM algorithm for different values
of α and β. The values are for the unweighted network as described
in the text. The brighter the region, the higher the modularity value.

desired to determine α and β in a much more efficient way.
In [14,15], we showed that the simple choice of α = β = 1
gives acceptable results on benchmark networks. Here, based
on the intuition behind our weighting scheme, we propose
another heuristic approach for tuning the parameters in a
computationally efficient way which gives very close results to
the optimal value of modularity. We will first give the heuristic
reasoning that leads to the proposed algorithm.

Consider the weights (9) of all edges in the network.
They constitute a certain distribution in �0,1� that depends
on α and β. In a high modularity partition of the graph,
the edges with large weights are likely to be intercluster
edges and those with low weights intracluster edges. If the
distribution of the weights is narrow, then different partitions
have rather close modularity values, which is detrimental to
modularity optimization. Therefore it seems natural to choose
the parameters α and β that maximize the variance of the
weight distribution. While this choice gives good results,
the values of α and β chosen by the following heuristics
have produced still better results.

It is a two-step procedure. In the first step, we find β via a
line search such that

β = arg max
∑
i>j

Aij =1

γij

(
C

β

ij − 〈Cβ〉)2
, (10)

where γij = bij C
−β

ij and 〈Cβ〉 denote the average of C
β

ij over
all i and j with Aij = 1. Roughly speaking, the values of γ are
high for the intercluster edges and low for the rest, which is as
desired. Finding β, the second step tries to find α such that

α = arg max
∑
i>j

Aij =1

γij

(
bα

ij − 〈bα〉)2
, (11)

where in this case γij = b−α
ij C

β

ij and 〈bα〉 is the average of
bα

ij over all i and j with Aij = 1. Thus the values of γ are
strengthening the intercluster edges and weakening the rest.
Note that the optimization of α and β are not independent. In
the rest of paper, we call this heuristic max weighted variance
(MWV).

Many real-world networks are weighted. In such networks,
weights incorporate invaluable information about the structure
of the network [32]. Accordingly, we have also extended our
method for weighted networks where the weighting scheme
remains the same while the definitions of the terms of Eq. (9)
are modified. Since EBC on weighted networks is derived from
paths with the lowest costs, it may happen that some powerful
edges, i.e., edges with high coupling value, gain zero EBC
score. This phenomenon may lead to network disconnectivity.
To avoid such a problem, we define bij = (Bij + Bmin)/Bmax ,
where Bmin is the minimum nonzero edge betweenness
centrality of the network. The latter term maintains the network
connected while keeping the EBC measure effective.

Furthermore, we define Cij for weighted networks as

Cij = 2Sij

(
1 + ∑

k SikSjk

)
∑

k Sik + ∑
k Sjk

, (12)
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where Sij is the original weight of the edge connecting i and j
nodes. It is obvious that when Sij = 0, Cij and consequently
Wij are both equal to zero.

It should be emphasized again that the proposed approach
for finding proper pairs of α and β is an intuitive heuristic
and there is no rigorous guarantee for optimal outcome. It is
obvious that in applications where accuracy is vital, a more
complex and costly search for α and β, e.g., Nelder-Mead,
should be performed.

V. RESULTS

In this section, we will present the change in the ratio R on
benchmark networks before and after applying our proposed
weighting scheme. Indeed, we show that our weighting is able
to reduce this ratio and meet the criteria discussed in Sec. II.
Also, we will evaluate the whole procedure, i.e., weighting plus
CNM on different networks including computer-generated and
real-world data networks.

A. Computer-generated benchmark networks

The computer-generated graphs that we have used to
evaluate our claims of this paper include the Girvan Newman
(GN) bechmark graphs [5], and the Lancichinetti Fortunato
Radicchi (LFR) graphs [33], and the ring of cliques networks
[10] which consist of a ring of k cliques connected by one edge.

The popular GN bechmark graphs are used extensively in
the literature for the sake of performance comparison between
different community detection methods. These graphs consist
of 128 vertices in four known communities, each of which has
32 vertices. Every intracluster edge is independently chosen
with a probability pin and every intercluster edge with a
probability pout. Therefore the expected intracluster degree
at each vertex is zin = 31pin and the expected intercluster
degree is zout = 96pout. Furthermore, we varied pin and pout

in such a way that zout varies from 0 to 8 in steps of 0.5 and
zin + zout = 16 on average.

In [33], Lancichinetti, Fortunato, and Radicchi recently
introduced a new set of computer-generated benchmark
graphs, so called LFR. The LFR benchmark graphs give
the users the opportunity to make more realistic graphs by
tuning the relevant parameters. Such graphs are scale free with

arbitrary scale factor where the degree of the vertices and the
numbers of vertices in communities follow distinct power-law
distributions with user defined exponents. The total number of
vertices, average degree of vertices, maximum vertex degree,
and finally, the mixing parameter (μ) are the other parameters
that need to be set by the user. The latter varies within �0,1�
and determines the level of the fuzziness of the clusters in
the network. The larger the μ, the more fuzzy the clusters.
Also, the minimum and maximum of the community sizes are
arbitrary to set. It is worthwhile to note that the GN benchmark
is a special case of the LFR benchmark.

In the following, we will show by simulation that our
proposed weighting scheme reduces R to achieve the goals
discussed in Sec. II. In Fig. 3(a), the average ratio R before
and after applying our weighting scheme to GN benchmark
graphs is represented. To show the individual effects of EBC
(CNR), we have also plotted R for when we weight each edge
ij by b−1

ij (Cij ). As can be seen, both reduce the average R,
while the proposed heuristics do so more. The same results are
obtained for the LFR benchmark graphs with the following
properties. Each graph has 1000 vertices with average degree
of 20 and maximum degree of 50. The power-law exponents
of distributions of vertex degree and the number of vertices
in each community are 2 and 1, respectively. The mixing
parameter is varied between 0 and 0.5 where the average R
reaches 2 for the unweighted graph. The results are presented
in Fig. 3(b).

From Fig. 3, it is clear that the proposed weighting scheme
has reduced the average ratio R considerably. This ratio
has been reduced more than four times for LFR benchmark
graphs. Also, it has been reduced more than two times for
GN benchmark graphs when zout � 6.5. The results of two
heuristics are close to each other but the simple choice of
α = β = 1 gives lower average R in both cases. As we will see
later, it does not always mean that this weighting gives better
results in terms of the accuracy of the found community. One
reason for this phenomenon could be that this weighting may
increase (decrease) the weight of a portion of intercommunity
(intracommunity) edges rather than all of them.

As mentioned before, different metrics have been devised
to approximate the accuracy of the community detection
algorithms on the test and benchmark networks. The first one
which was introduced by Girvan and Newman [5] was the
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FIG. 3. (Color online) The change in the average ratio R, before and after applying the proposed weighting for (a) GN (b) LFR benchmark
graphs. Each point is an average over 50 distinct graphs.
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FIG. 4. (Color online) Mutual information for MWM and MUM partitions after applying max weighted variance heuristic weighting and
CNM. The test is done for (a) small and (b) big community sizes of LFR benchmark graphs with n = 1000 vertices. Other parameters are
described in the text. Each point is an average over 50 realizations.

fraction of the nodes classified correctly. Although it is a good
measure for a GN benchmark, it is not well performing in the
cases where two or more true communities are identified as
one sole community. In addition, there exist some cases where
the value of this measure changes abruptly by reassigning
a vertex to a new community. Therefore some more robust
metrics have been recently used to evaluate the algorithms.
One of these metrics which is extensively examined in
information theory is normalized mutual information (mutual
information) that was introduced by Danon et al. in [7]. This
measure takes values in �0,1� and estimates how much the
true and found communities have information in common.
When they are perfectly matched, the mutual information is
1. Otherwise, the less there is a match between the found
and true communities, the smaller is the value of the mutual
information. We have used this measure to assess the accuracy
of the results on benchmark networks. The mutual information
between the partitions of the true communities X and the found
communities Y is mathematically defined as

I (X,Y ) = −2
∑cX

i=1

∑cY

j=1 Nij ln(nNij /Ni.N.j )∑cX

i=1 Ni. ln(Ni./n) + ∑cY

j=1 N.j ln(N.j/n)
, (13)

where cX and cY are, respectively, the number of communities
in partitions X and Y. In this equation N is the confusion
matrix where the rows and columns correspond to the true and

found communities, respectively. The element Nij is defined
as the number of common nodes in the true community i and
the found community j. Also, Ni . and Nj . denote the sum over
the ith row and the jth column, respectively.

In order to show the effect of our weighting on modularity,
we have done the following experiment. We have weighted
the graph using our max weighted variance heuristic and then
have applied the CNM algorithm. Then, we have chosen two
distinct partitions such that one of them has the maximum
weighted modularity (MWM) while the other one is the
partition with the maximum unweighted modularity (MUM).
For this experiment, two different LFR benchmark graphs have
been engaged. These LFR graphs have the same properties of
the last experiment and their distinction is the size of their
communities. The number of the vertices of each community
in the first graph set is between 10 and 50, while these
values for the second set are 20 and 100, respectively. The
first graph set has small community sizes and it is shown
in [19] that it has a modularity resolution limit problem for
the modularity optimization methods. On the other hand, the
second data set has more diversity on the size of clusters and
the modularity resolution limit has less effect on detecting
the communities [19]. We denote, respectively, the first and
second graph sets by small and big in the rest of the paper. The
outcome of this experiment is illustrated in Fig. 4. As can be
seen, the MWM partitions are more accurate than the MUM
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FIG. 5. (Color online) The result of (a) CNM, our heuristic weightings plus CNM, (b) DA, Louvain, and SA methods on GN benchmark
graphs. Each point is averaged over 50 realizations.
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FIG. 6. (Color online) Test of algorithms (a) CNM, (b),(c) our proposed heuristic weightings and CNM, (d) maximizing weighted modularity
using Nelder-Mead, (e) maximizing mutual information using Nelder-Mead, (f) Louvain method, (g) DA method, and (h) SA method on LFR
benchmark graphs with n = 1000 and n = 5000 vertices and small and big community sizes. Each point is averaged over 50 realizations.

ones, i.e., MWM partitions have higher mutual information
for the small graph set [Fig. 4(a)], while they are similar for

the big graph set [Fig. 4(b)]. In fact, one can trust more the
weighed rather than the unweighted modularity.
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Figure 5 presents the results of different methods, including
CNM, our heuristic weightings plus CNM, the simulated
annealing method [34], the Louvain method, and the DA
method on GN benchmark graphs. The simulated annealing
(SA) method is one of the best methods that can disclose
the communities of GN benchmark graphs [19] but in a very
high computational cost. Also, the DA method is proved to be
reliable on modularity optimization with lower computational
complexity than SA. As can be seen, the results of our
heuristics are much better than CNM and the Louvain method,
better than DA, and very close to the result of SA while our
runtime is much lower than that.

In [11], it is well described that the high modularity
partitions do not always correspond to the best partition, and
they are sometimes even far from optimal. In Fig. 5(a), we
have sketched the best mutual information result we could
get by optimizing using the Nelder-Mead method. It clearly
outperforms the result obtained by SA in terms of accuracy
of the found communities. It is worthwhile to note that
these optimal mutual information partitions do not correspond
to the highest modularity ones and it confirms what is
argued in [11].

We have also tested our approach on the LFR benchmark
graph, which is more general than the GN benchmark graph.
Four groups of graphs are considered for this purpose which
are the combination of graphs with 1000 and 5000 vertices
with small and big community sizes. Each vertex of the graphs
has an average degree of 20 and maximum degree of 50. The
power-law exponents of distributions of vertex degree and the
number of vertices in each community are 2 and 1, respectively.
The results are drawn in Fig. 6.

The results of CNM, DA, and SA algorithms are illustrated
in Figs. 6(a), 6(g), and 6(h), respectively. All these methods
try to optimize the modularity function in order to resolve
the communities. By looking at Figs. 6(b) and 6(c), one can
find out that both of our heuristics have significantly improved
the performance of CNM and they outperform the DA and
SA methods. Indeed, it proves our claim that optimizing the
weighted version of the modularity function leads to more
accurate decomposition of the graph. Figure 6(h) shows that
the SA method, which tries to find the maximal modularity
partition, substantially suffers from modularity resolution
limit. Since the resolution limit depends on L, it worsens
the accuracy of community detection of larger graphs in the
case that the community sizes are kept similar. It is clearly
illustrated in Figs. 6(a) and 6(h) for CNM and SA methods,
respectively. However, by applying our weighting scheme,
the accuracy is improved when we increase L. This is also
evidence that our weighting scheme mitigates the resolution
limit problem.

In addition, we have plotted the results of optimizations of
Nelder-Mead over α and β parameters in Figs. 6(d) and 6(e).
It is clearly shown that the results of weighted modularity and
mutual information optimizations are very close to each other
and of course better than the heuristics. These results are also
very close to the Louvain method, i.e., Fig. 6(f), which is
proved to have an excellent performance on such benchmark
graphs [19]. It can be concluded that by optimizing the
weighted modularity function, significant results can be
obtained.
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FIG. 7. (Color online) Test of algorithms (a) CNM and (b),
(c) our proposed heuristic weightings and CNM on weighted LFR
benchmark graphs with n = 5000 vertices, small and big community
sizes, and the topological mixing parameter μt = 0.5 and μt = 0.8.
Each point is averaged over 50 realizations.

Furthermore, we have tested our proposal on weighted
LFR benchmark graphs which are introduced in [35]. Such
graphs have two different mixing parameters. The first one,
which is similar to what has been used so far, is dedicated
to the topology (μt ), while the second adjusts the strengths
of the edges (μw). Indeed, it is on average the percentage of
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TABLE I. The results of CNM and the proposed weighting heuristics on a ring of cliques graph with 1000 cliques and ten vertices per clique.

Approach CNM MWV (heuristic) + CNM α = β = 1 (heuristic) + CNM

NOIC 232 1000 1000
Q 0.9905 0. 9972 0.9990
Mutual information 0.88 1 1
R 0.044 0.0036 5.71 × 10−10

the node’s strength, i.e., the sum of the weights of the edges
connected to the node, which lies on the intercluster edges.
In our simulations, we fixed the topological mixing parameter
and then ran our method on such graphs with different strength
mixing parameters. The topological mixing parameter values
are chosen as 0.5 and 0.8, respectively. Another parameter
on these graphs is the exponent of the distribution of the
strength, which was set to 1.5 in our simulations. The rest
of the parameters were set as they were for unweighted LFR
graphs.

The results of our proposed method and CNM on weighted
LFR networks with n = 5000 are shown in Fig. 7. It is clearly
shown that our weighting scheme improves the accuracy of
the resolved communities compared to CNM. Comparing our
results with what is obtained in [19], it is obvious that our
method is among the best proposed methods for unveiling the
communities of weighted networks.

Our last experiment on computer-generated graphs is done
on a ring of cliques networks. It can be easily shown that
for such networks, modularity optimization algorithms are not
always able to find the cliques as communities due to the
resolution limit problem. Indeed, there are some cases where
the identified communities consist of more than one clique,
which is undesired in reality. For example, the results of CNM
and our proposal for the case of such a graph with 1000 cliques
with ten vertices per clique, i.e., n = 10 000, is summarized in
Table I. As can be seen, the number of identified communities
(NOIC) that is found by CNM is 232 out of 1000. On the
other hand, both of our proposed heuristics are able to resolve
all the cliques perfectly. In fact, the ratio becomes almost
negligible.

VI. REAL-WORLD DATA NETWORKS

We evaluated our approach for some real-world data
networks, shown in Table II. We believe that the partition with

the maximum weighted modularity is more similar to the true
partitions for a given network; but, for the sake of comparison
with other methods, the maximum unweighted modularity
function that is obtained by our proposal is presented. In
addition, the best result, i.e., maximum unweighted modu-
larity, that can be obtained when α and β were determined by
Nelder-Mead optimization is given. In order to compare our
method with the rest, we have provided the best published
results, which were obtained by applying computationally
more complex algorithms. As can be seen, the result heuristics
are marginally smaller than the modularity with α and β

found by the Nelder-Mead optimization, but they are always
very close to the best published values, but at a smaller
computational cost.

Normally, the true structure of real-world data networks is
not known. However, there are a few examples available that
have a known community structure. The US Football network
is one of them. The data of this network were gathered by
Girvan and Newman. It is a representation of the schedule
of Division I American Football games in the 2000 season
in the Unites States. The vertices are the teams which are in
12 distinct groups. The vertices are joined by an edge when
there are regular-season games between them. Since the actual
community structure of this network is available, one can
evaluate the accuracy of the algorithms by comparing their
mutual information index. Accordingly, we have applied our
weighting scheme and compared the mutual information of
both MWM and MUM partitions using Nelder-Mead optimiza-
tion. The result shows that the MUM partition corresponds to
ten communities with mutual information equal to 0.890 while
these values for MWM partition are 11 and 0.911, respectively.
Therefore we can conclude that our weighting has increased
the accuracy of the community identification procedure. It is
worthwhile to mention that it is also possible to find better
network community division by modularity based algorithms

TABLE II. This table is a summary of results for some real-world data networks. The modularity of these networks for our proposed
approach when α = β = 1, for α and β found by Nelder-Mead optimization, and for α and β found by the maximum weighted variance
heuristic are shown. Also, the modularity of CNM and the best modularity values which are published up to now are given for them.

Network CNM Best published Q after applying weighting + CNM

Name Ref. Q Best published Q Source Nelder-Mead α = β = 1 MWV heuristic

Zachary’s Karate Club [36] 0.381 0.420 [37] 0.416 0.416 0.415
US Football [5] 0.567 0.606 [37] 0.605 0.604 0.604
Les Miserables [38] 0.501 0.561 [37] 0.560 0.532 0.539
Dolphin Social Network [39] 0.496 0.531 [37] 0.529 0.518 0.521
Email [40] 0.503 0.579 [37] 0.574 0.549 0.563
Jazz [41] 0.439 0.446 [37] 0.444 0.437 0.442
PGP-key signing [42] 0.849 0.878 [43] 0.880 0.843 0.872
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FIG. 8. (Color online) Configuration of the US Football network.
Each node is a team and each set of nodes encircled represents a
group. The edge widths are proportional to the corresponding MWM
weight. The group surrounded by the solid box is a special group
which is discussed in the text.

if the resolution of modularity, i.e., the scale at which modules
are looked at, is properly chosen.

In Fig. 8, the effect of MWM weighting on this network
is illustrated. The vertices represent the teams and the set
of vertices encircled are the groups labeled by Girvan and
Newman. The widths of edges are scaled proportional to
their corresponding weights. As can be seen, as an effect of
our proposed weighting scheme, most of the intracommunity
edges are reinforced while the majority of the intercom-
munity edges are weakened. The only exception is for the
community which is surrounded by the solid box. In fact,
contrary to the intuition behind community definition, the
vertices of this group have few connections with each other,
i.e., they are loosely coupled within the cluster, while they
have more links with the members of the other groups, i.e.,
they are rather strongly coupled with the rest. This is why
our approach and many other community detection algorithms
could not identify this specific group.

VII. CONCLUSION

Summarizing, we have analyzed how applying an appro-
priate weighting scheme can mitigate the resolution limit

and extreme degeneracy problems of community detection
methods that are based on modularity optimization. Also,
we have introduced a weighting scheme based on EBC and
CNR, which improves the performance of the Newman-
Fast algorithm considerably. As was mentioned, the tunable
parameters of the algorithm, i.e., α and β, need to be adjusted
for the network at hand. Furthermore, to get rid of complexity
of optimization algorithms, two heuristic methods for finding
the parameters of the weighting scheme are introduced. The
first heuristic is the simple choice of α = β = 1 and the second
one follows a line search to determine α and β such that
the weighted variances of bα and Cβ over all the edges are
maximized, respectively.

The results of the experiments show that the proposed
method has a very good performance on the benchmark graphs
as well as real-world data networks. It not only ameliorates
the problems of modularity but also enhances the modularity
optimization. Indeed, when we apply our proposed weighting
and run the CNM for a given network, the results show that
the MVM partition is more accurate while the modularity of
the MUM partition is significantly higher than CNM and very
close to the maximum modularity found for such a network.
We admit that the computational complexity of the proposed
weighting is not that low but it is comparable with many
existing procedures. Furthermore, our primary goal in this
paper was to investigate the possibility of improvement of
a particular functionality, i.e., community detection, using a
proper weighting scheme. In order to decrease the complexity
of the proposed algorithm, as a future work we will use
an estimation of EBC [44,45] instead of the original and
investigate what precision of EBC estimation our proposed
algorithm tolerates.
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