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Transverse plasma-wave localization in multiple dimensions
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Plasma-wave behavior in multiple dimensions is studied using two- and three-dimensional particle-in-cell
simulations. We find that large-amplitude waves with kλD � 0.2, where k is the wave number of the wave and λD

is the Debye length, localize in the transverse direction around their axis due to nonlinear, local damping caused
by transiting particles. The center of the wave behaves like a plane wave in which trapped particles maintain a
quasisteady state at approximately constant amplitude, while the transverse edges damp away.
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The linear and nonlinear evolution of infinitely long plasma
waves has been studied extensively. Despite the fact that
actual plasma waves have finite longitudinal and transverse
extent, the study of plasma waves in multiple dimensions
has received little attention. Recently, however, the transverse
localization of such waves was cited as a possible saturation
mechanism [1] of stimulated Raman scattering (SRS) [2].
Reference [1] attributed this localization to plasma-wave
self-focusing caused by the wavefront bowing that results from
the nonlinear trapped-particle frequency shift [3,4].

Beyond SRS, the evolution of multidimensional, nonlinear
plasma waves of finite spatial extent is fundamentally im-
portant to a wide range of plasma physics research. In this
Rapid Communication, we provide a fully kinetic analysis
of multidimensional plasma waves and show the mechanism
responsible for their transverse localization. We find that the
localization caused by wavefront bowing is dominated by that
due to multidimensional wave-particle interactions: particles
that originate outside the wave locally damp its edges as
they traverse it. We demonstrate this in part by showing how
energy flows in such waves. We provide quantitative agreement
between the simulations and fluid theory (kλD � 1) and then
consider in detail how local damping dominates self-focusing
at shorter wavelengths (kλD � 0.2).

Previous work on nonlinear plasma waves is extensive and
has a long history; see, for example, [5]. In one dimension
(1D), nonlinear frequency shifts, due to either harmonic
generation [6] or particle trapping [7–9], and self-generated
density modifications due to the ponderomotive force, have
been studied. In multiple dimensions, the effects of density
modulations have been studied using the Zakharov equations
[10,11]. This model requires kλD � 1 and assumes that
the wave’s transverse ponderomotive force digs a density
depression that concentrates its energy. As the waves collapse
to higher kλD , kinetic effects like Landau damping and
transit-time damping [12] are modeled with phenomenological
fluid damping terms [13] or quasilinear approximations [14].
For the waves considered here, kλD � 0.2, and nonlinear
kinetic effects dominate the wave’s behavior before Langmuir
collapse begins. In attempting to extend kinetic effects to
multiple dimensions, some authors have inserted the 1D
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expression for the frequency shift [7] into a nonlinear
Schrödinger equation (NLS) model. Such models can lead to
so-called trapped-particle modulational instabilities (TPMI)
[3,4] in 1D, and wavefront bowing and self-focusing in two
and three dimensions (2D and 3D) [1]. Importantly, these
models rely on a frequency shift that is a function of the local
and instantaneous wave amplitude. This is not always valid
for finite-size waves, and one must then rely on fully kinetic
simulation models.

In this Rapid Communication, we use 2D and 3D particle-
in-cell (PIC) simulations to study kinetic plasma waves
with finite transverse extent and kλD � 0.2. We use the
electrostatic PIC code BEPS with 256 × 4096 cells, �x =
�y = λD , �t = 0.2ω−1

p , and 2000 particles per cell. An
externally imposed ponderomotive driver excites a traveling
wave with a Gaussian or super-Gaussian profile defined by
Ex = E0e

−yn/2Wn
0 sin(kx − ωt), with n = 2 and 4, respec-

tively, k is the wave number, ω is the frequency, and we define
the phase velocity vφ = ω/k for use below. For each simula-
tion, we choose (�,k) to satisfy ε(�,k) = 0, where ε is the
kinetic dielectric function that includes a finite-size-particle
shape factor and ω = Re[�]. We also specify an amplitude
and a transverse profile. The initial width W0 is chosen to
approximate the ponderomotive force of a typical f/8 beam
at the National Ignition Facility (NIF) undergoing SRS. The
driver is on for about two wave periods before it shuts off.
The amplitudes of some waves discussed below fall below
the thermal fluctuations of the field. To observe them, we
subtract the field obtained from an identical simulation in
which the driver is turned off [15]. We have repeated a few
simulations with Darwin and electromagnetic codes based on
the UCLA Parallel Particle-in-Cell (UPIC) Framework [16]
with vth/c = 0.1 and observed quantitatively similar results.
The ions are fixed in the following, but simulations with mobile
ions also yield quantitatively similar results.

To illustrate transverse localization, in Fig. 1 we plot the
longitudinal electric field Ex at four times for a wave with
kλD = 0.3, a super-Gaussian transverse profile (n = 4) with
W0 = 200λD , and peak initial amplitude eE/mωpvth = 0.079,
or equivalently γL/ωB = 0.095, where ωB = √

eEk/m is
the trapped-particle bounce frequency and γL is the Landau
damping rate. The wave maintains a fairly constant amplitude
along its center as the boundaries (edges) gradually converge
(localize) toward the central axis. Nonlinear plane-wave (1D)
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FIG. 1. (Color) Time sequence of Ex(x,y) for a wave with kλD =
0.3, W0 = 200λD , peak amplitude eE/mωpvth ≈ 0.079, and super-
Gaussian profile (n = 4).

theory [7,17] suggests that waves having γL/ωB � 1 reach
a nonlinear steady state after the resonant particles that are
trapped in the wave’s potential wells have executed several
trapped-particle oscillations. Thus, the wave in Fig. 1 reaches
a steady state quickly. 1D kinetic theory also predicts that
particle trapping induces a negative, amplitude-dependent
frequency shift [7], so the center of a finite-width wave
accumulates a relative phase shift with respect to the edges
that causes the wavefronts to bend inward [1,3,4], as seen in
Fig. 1.

In the following, we first show that the center of finite-width
waves reaches this steady state once their initial amplitude is
increased beyond linear levels (γL/ωB ≈ 1) to ranges where
γL/ωB � 1. We then describe how a nonlinear local damping
mechanism leads to erosion of the wave’s edges with or without
wavefront bending. For clarity, we use the case shown in Fig. 1
for the majority of the figures in this Rapid Communication.
However, although not shown, similar behavior occurs for a
range of parameters satisfying kλD � 0.2, γL/ωB � 1, and a
variety of transverse profiles and widths.

At low amplitudes, when γL/ωB ≈ 1, finite-width waves
Landau damp with no notable differences from plane waves.
To demonstrate this, in Fig. 2(a) we show 〈U (x,y,t)〉x for a
wave with γL/ωB ≈ 0.42, where U = 1

2 E · E and the brackets
indicate an average over a wavelength. We have normalized
the energy to mv2

th and E to e/mωpvth. As shown in Fig. 2(b)
for γL/ωB ≈ 0.19, at slightly larger amplitudes particles trap,
causing a significant fraction of the wave’s energy to be
absorbed before bouncing and returning some of it. For early
times, t � τB/4, the wave Landau damps with γsim/γL ≈ 1.1,
which is within the measurement error, where γsim is the
measured damping rate in the simulation and τB = 2π/ωB .
From Fig. 2(b), we estimate τBωp ≈ 100, which gives a
thermal particle sufficient time to cross much of the wave
during a bounce time, i.e., vthτB � W0. Thus, many of the
resonant particles that absorb wave energy during the first
τB/4 either leave the wave or do not become trapped because
of the decreased depth of their potential well. Accordingly, the
amplitude at each successive bounce time decreases until the
wave disappears.

For the two low-amplitude cases described above, both
Landau damping and the modulation of the wave amplitude
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FIG. 2. (Color) 〈U (x,y,t)〉x for runs with kλD = 0.3 and
eE/mωpvth = 0.004, 0.02, and 0.079, or γL/ωB = 0.42, 0.19, and
0.095 in (a), (b), and (c), respectively. Case (c) corresponds to the
case in Fig. 1. Cases (d) and (e) correspond to tωp = 750 in (c), but
with a Gaussian profile and W0 = 40λD; cases (d) and (e) have n = 2,
and (e) has b = 2.

are due primarily to particles that were initialized within the
wave. At each transverse position, the wave behaves as if it
were an isolated, 1D wave. However, when γL/ωB � 1, after
the first few bounce times, multidimensional effects become
important. This is shown in Fig. 2(c) for the same wave shown
in Fig. 1. The center of this wave still behaves like a plane wave
since thermal particles bounce many times while still inside the
wave (vthτB ≈ 40λD ≈ W0/5). Accordingly, the wave exists
for a relatively long time, allowing novel multidimensional
effects to appear. The dominant new effect, as can also be
seen in Fig. 1, is the gradual localization of the wave in the
transverse direction while the central amplitude [the black line
in Fig. 2(c)] remains nearly constant until tωp ≈ 700. That
is, the central section shows 1D-like behavior, while the sides
locally damp. For tωp � 700 in Fig. 2(c), the wave continues
to localize, but an intensity enhancement also occurs. Although
it is qualitatively similar to the effects of self-focusing, a local,
instantaneous self-focusing model is inadequate to describe
the behavior. To see this, we show two waves in Figs. 2(d) and
2(e) with W0 = 40λD and Gaussian profiles that attempt to
reproduce the behavior of the wave in (c) at tωp ≈ 700. In (e),
the wave was initialized with inwardly bent wavefronts defined
by φ = φ0e

−y2/2W 2
0 sin(kx − ωt + be−y2/4W 2

0 ) and b = 2 that
mimic the bending seen in (c) at late times. In both cases, the
wave quickly damps away in contrast to the late-time behavior
of the wave shown in (c), whose amplitude abruptly increases
before falling again. These two cases illustrate that the wave’s
behavior is not solely dependent on the instantaneous, local
amplitude.

To understand the behavior of a nonlinear wave, one needs
to understand in detail how energy flows and dissipates in
multiple dimensions. The natural starting point is to examine
the conservation of both field and kinetic energy. We note
that the Poynting vector S = 1

4π
E × cB, written here in cgs

units, does not vanish in the electrostatic limit because,
although B → 0, the speed of light c → ∞ such that cB is
not necessarily 0. As shown by Decyk [18], an expression
for the electrostatic Poynting vector is P = φ(j + 1

4π
∂tE).

Thus, the equation expressing conservation of field energy
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FIG. 3. (Color) (a) 〈j · E〉x in blue, 〈j1 · E1〉x in black at tωp = 40;
(b) 〈j · E〉x in blue, 〈j1 · E1〉x in black, and 〈∇ · P〉x in red at tωp =
600; (c) 〈j · E〉x ; and (d) 〈∇ · P〉x . All cases have the same parameters
as Fig. 1 except (a), which has kλD = 0.1.

is ∂tU + ∇ · P = −j · E, where we have used electrostatic
units defined as eE/mωpvth, tωp, x/λD , and P/mn0v

3
th. It

is possible to rewrite j · E in a useful form in the fluid
limit. Inserting Euler’s equation, given by ∂tv + v · ∇v =
−E − 3

2∇n2, into j · E, we find the expression for conservation
of kinetic energy, given by j · E = ∂tUk + ∇ · Pk, where Uk =
1
2 (nv2 + n3), Pk = 1

2 (nv2v + 3n3v), v = |v|, j = −nv, and we
have assumed the adiabatic equation of state for the electrons.
Substituting this result for j · E back into the conservation
of energy equation gives ∂t (U + Uk) + ∇ · (P + Pk) = 0. An
energy transport velocity is defined by vE = 〈P + Pk〉t /〈U +
Uk〉t . In a plane wave, the magnetic field rigorously vanishes
so that P = 0. Under this condition, it can be shown for fluid
quantities of a linear wave that vE = 3k/ω = vg, where vg is
the linear group velocity.

For curved wavefronts P 
= 0, and the direction of vg
can vary with the transverse position. However, as verified
in the simulations (see below), |P| � |Pk|. In addition,
there is roughly equipartition between the field and kinetic
energy, U ≈ Uk . Therefore, j · E ≈ ∇ · Pk/2 so that we can
understand the total wave energy flux by examining only j · E.

For example, in Fig. 3(a) we plot 〈 j · E〉x from a simulation
for which the fluid approximation is reasonable, kλD = 0.1,
b = 5, W = 200λD , and eE/mωpvth = 0.61. This corre-
sponds to a wave with the wavefronts bent inwards. The blue
line in Fig. 3(a) shows 〈 j · E(tωp = 40)〉x from the simulation,
while the black curve shows 〈 j1 · E1〉x calculated using the
linear fluid quantities for the initial wave profile. Here, the
subscript “1” represents the linear quantity. Since there is no
damping for small kλD , j · E is proportional to the divergence
of the total energy flux. There is excellent agreement between
the linear fluid theory and the simulation, lending confidence
that the fluid theory calculation gives an accurate estimate of
the energy flow caused by wavefront bending. The fact that
wave energy is flowing coherently can be seen by noting that
wherever 〈 j · E〉x is positive, there is an adjacent region in
which it is negative, or

∫ 〈j · E〉xdy = 0. That is, energy that

left one region entered another nearby region and was not
dissipated.

We next examine j · E for kλD = 0.3, where collisionless
dissipation from wave-particle interactions is possible. In
Fig. 3(b), we show 〈 j · E〉x calculated from the simulation
in Fig. 1 in blue at tωp = 600. The black curve is 〈j1 · E1〉x
calculated from the linear fluid equations with b = 4 to
approximate the bending seen in the simulation. In this case,
there are dramatic differences between the simulation and the
fluid prediction, and

∫ 〈j · E〉xdy 
= 0, indicating dissipation.
From the plot of 〈 j · E〉x , it is clear this dissipation occurs
locally at the edge of the wave. We also plot the temporal
evolution of 〈 j · E〉x versus y in Fig. 3(c) to show that the
wave gradually localized due to the continued dissipation
of energy at the wave’s edge. In Fig. 3(d), we plot 〈∇ · P〉x
from the simulation and its lineout in Fig. 3(b). These plots
show that

∫ 〈∇ · P〉xdy ≈ 0, consistent with ∇ · P being related
to the energy flux, rather than the loss of energy, and that
〈∇ · P〉x � 〈∇ · Pk〉x , which implies that 〈∇ · P〉x � 〈j · E〉x .

From the above, it appears that localization is primarily
due to local dissipation rather than self-focusing. Another
demonstration that this is true is to compare the measured
Uaxis(t) = 〈U (x,y = 0,z = 0,t)〉x with what we would expect
were the field energy conserved during localization as it is in
self-focusing. In this case, we would find in 2D that Uaxis(t) =
U0W0/W (t) and in 3D that Uaxis(t) = U0[W0/W (t)]2, where
U0 = Uaxis(t = 0). Thus, the concentration of energy is ex-
aggerated in 3D. We measure W (t) in the simulations by
finding the y position such that U (y,t) = Uaxis(t)e−1. The top
of Fig. 4 shows isosurfaces of 〈U (x,y,z,t)〉x of a 3D simulation
with a Gaussian profile, W0 = 200λD , kλD = 0.3, and peak
amplitude eE/mωpvth ≈ 0.1. The bottom plot shows, on the
left axis, Uaxis(t) for the 3D wave labeled “U 3D” and for the 2D
wave in Fig. 1 (“U 2D SG”). The dashed lines are the on-axis
amplitude assuming self-focusing was occurring, or Uaxis(t)
calculated using the measured W (t) for each case (“W 3D”
and “W 2D SG”). We also show W (t) for an identical 2D run
with a Gaussian profile (“U 2D G”). We note that all three cases
localize at approximately the same rate despite having different
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profiles and dimensionality. As seen in the figure, the measured
energies are much smaller than would be observed were
self-focusing responsible for localization. The 3D simulation
used a grid 256 × 1024 × 1024 with 2.58 × 1010 particles with
periodic boundary conditions that limit the duration of the
simulation.

Previously we showed where the local damping occurs by
plotting 〈 j · E〉x in Fig. 3(c), but we have not shown which
particles cause it. We again plot 〈 j · E〉x versus y in Fig. 5(a)
for the same case, except now only the contribution from those
particles with initial conditions yi < −400λD and vyi > 0
is included. This figure shows that transiting particles that
start below the wave and move upward through it on average
absorb energy as they enter and return a fraction of what was
absorbed as they leave. Particles that originate above the wave
moving downward behave the same, such that there is a net
energy loss at the wave’s edges. By studying these particles,
we can identify which absorb the wave energy. As in 1D
theory, vx only changes for particles within the 1D trapping
width vT (y = 0) ≈ vth around vφ = 3.8vth. This is shown in
Fig. 5(b), which plots vxf versus vxi , where the “final” velocity
is measured when the particle satisfies y > 400λD , and the
cross corresponds to the lines vxf = vxi and vxf = 2vφ − vxi

within the trapping width. Figure 5(c) shows vy changes
little for the transiting particles, since |Ey | ∝ y|Ex |/kW 2

0 .
Figure 5(d), showing the distribution function versus vxf for
three different vyi , indicates that the trapping occurs for all
vyi . Thus, we confirm that the bulk of the particles execute
many bounce times as they cross the wave since vthτB ≈ W0/5.
Although not shown, this is also clearly seen in individual
particle tracks. It is these particles that sustain the center
of the wave. Figure 5(d) also indicates that, although there
are initially more particles with vyi = vth than 2vth, slightly
fewer of those particles have reached y = 400λD by the end
of the simulation. This shows that the damping depends on
the particle flux, rather than simply the local distribution, and
serves to illustrate the complexity of the local damping. We
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FIG. 5. (Color) Results for particles transiting upward:
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2, and 3vth, each for the same wave shown in Fig. 1. The values for
the color scale are also the values for the y axis of (d).

can further examine the distribution in Fig. 5(b) by considering
energy conservation for the transiting particles in the wave
frame. In a fixed amplitude wave, if vyi = vyf , then vxf =
vxi or 2vφ − vxi . However, in the simulation we measure the
average magnitude energy change to be 0.3mv2

th per particle.
This deviation from energy conservation (due to the changing
wave amplitude during localization) combined with the small
spread of vyf at a given vyi (with a full width at half-maximum
of ≈ 0.22vth) shown in Fig. 5(c) generates the spread of vxf

around the cross pattern that would be expected if energy were
conserved and vyf = vyi .
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