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We investigate the temporal patterns of human communication and its influence on the spreading of information
in social networks. The analysis of mobile phone calls of 20 million people in one country shows that human
communication is bursty and happens in group conversations. These features have the opposite effects on the
reach of the information: while bursts hinder propagation at large scales, conversations favor local rapid cascades.
To explain these phenomena we define the dynamical strength of social ties, a quantity that encompasses both
the topological and the temporal patterns of human communication.
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A quantitative understanding of human communication
patterns is of paramount importance in the explanation of
the dynamics of many social, technological, and economic
phenomena [1–4]. Most studies have focused on the com-
plex topological patterns of the underlying contact network
(whom we talk to) and its influence on the properties of
spreading phenomena in social networks such as diffusion of
information, innovations, computer viruses, and opinions [2].
Paradoxically, most of these studies of dynamical phenomena
on social networks neglect the temporal patterns of human
communication: humans act in bursts or cascades of events
[5–8], most ties are not persistent [9,10], and communication
happens mostly in the form of group conversations [8,11–14].
However, since information transmission and human commu-
nication are concurrent, the temporal structure of communica-
tion must influence the properties of information spreading.
Indeed, recent experiments of electronic recommendation
forwarding [15] and simulations of epidemic models on email
and mobile databases [6,16] found that the asymptotic speed
of information spreading is controlled by the bursty nature of
human communication, which leads to a slowing down of the
diffusion. However, even though the asymptotic speed is an
important property of the propagation of information in social
networks, there is still no general understanding of how and
what temporal properties of human communication influence
spreading processes and how they affect the very definition of
social interaction.

The answer to these questions can be framed in the
more general problem of how to model dynamical social
networks [9,17]. In most studies, real temporal activity is
aggregated over time, thus giving a static snapshot of the social
interaction where ties are described by static strengths that do
not include information about the temporal aspects of how hu-
mans interact. Temporal and topological aspects are therefore
disentangled in the analysis. In this Rapid Communication
we merge both aspects in the case of information diffusion
by adopting a functional definition of the social ties using
the well-known map between dynamical epidemic models and
static percolation [18]. The network is still described by a
static graph, but the interaction strength between individuals

now incorporates the causal and temporal patterns of their
communications and not only the intensity [19].

To this end we study the mobile communication patterns
from a European operator in a single country over a period of 11
months. The data consist of 2 × 107 phone numbers and 7 ×
108 communication ties for a total of 9 billion calls between
users. The call detail record (CDR) contains the hashed number
of the caller and the receiver, the time when the call was
initiated, and the duration of the call. We consider only events
in which the caller and the receiver belong to the operator under
consideration because of the partial access to the records of
other operators. Our data for the connectivity of the social
network, the duration of the calls, etc., are very similar to the
results reported in previous studies [19].

First we investigate the communication temporal patterns
that might affect information diffusion. The spreading from
user i to user j (i → j ) happens at the relay time intervals
τij (also called intercontact time [8]), i.e., the time interval it
takes for i to pass on to j any information received from any
another person ∗ → i (where ∗ �= j ; see Fig. 1). Information
spreading is thus determined by the interplay between τij

and the intrinsic time scale of the infection process. Note
that τij depends on the correlated and causal way in which
group conversations happen since it depends on the interevent
intervals δtij in the i → j communication as well as on the
possible temporal correlation with the ∗ → i events [18].
By ignoring this correlation it is possible to approximate
the probability distribution function (PDF) for τij by the
waiting-time density for δtij [6,16],

P (τij ) = 1

δt ij

∫ ∞

τij

P (δtij )dδtij , (1)

where δt ij is the average interevent time. In this approximation
the dynamics of the transmission process depends only on
the dyadic i → j sequence of communication events and, in
particular, the possible heavy-tail properties of P (δtij ) are
directly inherited by P (τij ). Figure 2 shows our (rescaled)
results for P (δtij ) and P (τij ). For comparison we also show
the results obtained (i) when the time stamps of the ∗ → i

events are randomly selected from the complete CDR, thus
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GIOVANNA MIRITELLO, ESTEBAN MORO, AND RUBÉN LARA PHYSICAL REVIEW E 83, 045102(R) (2011)

i → j

∗ → i

tα
t

t

τij δtij

FIG. 1. (Color online) Schematic view of communication events
around an individual i: Each vertical segment indicates an event
between i → j (top) and ∗ → i (bottom). At each tα in the ∗ → i

time series, τij is the time elapsed to the next i → j event, which is
different from the interevent time δtij in the i → j time series. The
shaded area represents the recovery time window Ti after tα .

destroying any possible temporal correlation with i → j and
effectively mimicking Eq. (1), and (ii) when the whole CDR
time stamps are shuffled, thus destroying both tie temporal
patterns and the correlation between ties. Both shufflings
preserve the tie intensity wij [19], i.e., the number of calls
and their duration and also the circadian rhythms of human
communication [16]. The result for P (δtij ) shows that small
and large interevent times are more probable for the real-time
series than for the shuffled-time series, where the PDF is almost
exponential as in a Poissonian process, apart from a small
deviation due to the circadian rhythms. This bursty pattern
of activity has been found in numerous examples of human
behavior [6] and seems to be universal in the way a single
individual schedules tasks. Here we see that it also happens at
the level of two individuals interacting, thus confirming recent
results in mobile [16] and online community [7] dynamics.
The PDF for τij is also heavy tailed, but displays a larger
number of short τij compared to the shuffled series of events.
The abundance of short τij suggests that receiving information
(∗ → i) triggers communication with other people (i → j ),
a manifestation of group conversations [11,12,14]. While the

10
-6

10
-4

10
-2

10
0

10
210

-4

10
-2

10
0

10
-4

10
-2

10
0

10
2

10
-6

10
-3

10
0

10
3

τij / δtij

P
(τ

ij
/
δt

ij
)

P
(δ
t i
j
/
δt

ij
)

FIG. 2. (Color online) Distribution of the relay time intervals
τij (main part) and of the interevent times δtij (inset) in the
i → j tie rescaled by δt ij . The open circles correspond to the real
data, while the open squares are the overall shuffled results. Open
diamonds correspond to the case in which only the ∗ → i sequence
is randomized. Only ties with wij � 10 are considered. In both graphs
the dashed line corresponds to the e−x function.

heavy tail of P (τij ) is accurately described by Eq. (1), i.e., large
transmission intervals τij are mostly due to large interevent
communication times in the i → j tie, the behavior of P (τij )
is due not only to the bursty patterns of δtij , but also to the
temporal correlation between the i → j and the ∗ → i events.
In fact, if the correlation between the i → j and the ∗ → i

series is destroyed, the probability of short-time intervals
decreases and approaches the Poissonian case (Fig. 2). In
summary, relay times depend on two main properties of human
communication that compete with one another. While the
bursty nature of human activity yields large transmission times,
thus hindering any possible infection, group conversations
translate into an unexpected abundance of short relay times,
favoring the probability of propagation.

To investigate the effect of these two conflicting properties
of human communication on information spreading, we
simulate the epidemic susceptible-infectious-recovered (SIR)
model in our social network considering the real-time sequence
of communication events [14,16] and compare the results
with the shuffled-time data. We start the model by infecting
a node at a random instant and considering all other nodes
as susceptible. In each call an infected node can infect a
susceptible node with probability λ. Due to the synchronous
nature of the phone communication, this happens regardless
of who initiates the call. However, since the same results
are obtained by considering directionality in the calls, for
computational reasons we consider the latter case. Nodes
remain infected during a time Ti until they decay into the
recovered state. For the sake of simplicity we simulate the
simplest model in which the recovery time Ti is deterministic
and homogeneous, Ti = T and T = 2 days, although different
and/or stochastic Ti can be studied within the same model. The
spreading dynamics generates a viral cascade that grows until
there are no more nodes in the infected state. We repeat the
spreading process for 3 × 104 randomly chosen seeds. Note
that our model includes the SI model simulations in Ref. [16],
where λ = 1 and T = T0, with T0 being the total duration of
the dataset.

By looking at the size of the largest cascade smax (over all
realizations) at each value of λ, we first ensure the existence of
a percolation transition [4] (see Fig. 3), which is confirmed by a
change in the behavior of smax from small to large cascades at a
given value of λ (tipping point). The same behavior is observed
for the shuffled-time data where the transition seems to happen
almost at the same value of λ, although an accurate analysis
of the percolation point is beyond the scope of this Rapid
Communication. In contrast, there is a significant difference
in the behavior of the asymptotic average size s∞ between the
real-time data and the shuffled-time data for different regimes
of λ: when λ is small, s∞ is larger for the real-time data
than for the shuffled-time data, while the opposite behavior is
observed for large λ. This difference, which can be very large
for moderate values of λ, shows the impact of the real-time
dynamics of communication on the influence of information
in society. Specifically, if information propagates easily (large
λ), the average extent in social networks is narrower than the
one expected when a Poissonian dynamics is considered. In
this sense, temporal patterns make social networks bigger than
expected at large scales. However, in most real situations λ is
very small [15] and in this case the observed behavior is the
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FIG. 3. (Color online) Average size dynamics for (a) a large and
(b) a small value of λ (left) and the maximum size (right) of the
infection outbreaks (over 104 realizations) for the real-time data (lines
with open circles) and shuffled-time data (lines with open squares)
for T = 2 days. The dashed line shows the critical point estimation of
the percolation transition given by R1[λ,T ] = 1, with R1 calculated
using Eq. (6).

opposite: despite the low propagation, information cascades
are larger in real data than in the Poisson case, which suggests
that information spreading is more efficient at small (local)
scales.

To understand this behavior, we follow the approach of
Ref. [18] by mapping the dynamical SIR model to a static
edge percolation model where each tie is described by the
transmissibility Tij , which represents the probability that the
information is transmitted from i to j and is a function of λ

and T . If user i becomes infected at time tα and the number
of communication events i → j in the interval [tα,tα + T ]
is nij (tα), then the transmissibility in that interval is Tij =
1 − (1 − λ)nij (tα ) (see Fig. 1). User i may become infected
at any ∗ → i communication event. If we assume that these
events are independent and equally probable, we can average
Tij over all the tα events to get

Tij [λ,T ] = 〈1 − (1 − λ)nij (tα )〉α. (2)

If the number of ∗ → i events is large enough we could
use a probabilistic description of Eq. (2) in terms of the
probability P (nij = n; T ) that the number of communication
events between i and j in a given time interval T is n. Thus

Tij [λ,T ] =
∞∑

n=0

P (nij = n; T )[1 − (1 − λ)n], (3)

which, in principle, can be nonsymmetric (Tij �= Tji). This
quantity represents the real probability of infection from i to
j and defines the dynamical strength of the tie. Note that Tij

depends on the series of communication events between i and
j , but also on the time series of calls received by i. In Ref. [18]
Newman studied the case in which both time series are given
by independent Poisson processes in the whole observation
interval [0,T0]. Thus P (nij = n; T ) is the Poisson distribution
with rate ρij = wijT /T0, where wij is the total number of calls
from i to j in [0,T0], and so

T̃ij [λ,T ] = 1 − e−λρ = 1 − e−λwij T /T0 , (4)
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FIG. 4. (Color online) (a) Ratio of the number of events and
(b) probability of no events as a function of the recovery time T for
the real-time (open circles) and shuffled-time ∗ → i (open squares)
data with respect to the overall shuffled data. (c) Ratio of the average
size of the outbreaks (open circles) and of R1 calculated using Eq. (6)
(dashed line).

which shows the one-to-one relationship between the intensity
wij and the transmissibility Tij in the Poissonian case: the
more intense the communication is, the larger the probability
of infection. However, as we have seen in Fig. 2, the real
i → j and ∗ → i series are far from being independent and
Poissonian and in order to investigate the effect of real patterns
of communication on the transmissibility we approximate
Eq. (2). For small values of λ we have 1 − (1 − λ)n � λn,
while for λ � 1 we get that 1 − (1 − λ)n � 1 for n > 0. Thus
the transmissibility for the two regimes is given by

Tij [λ,T ] =
{

λ〈nij 〉tα for λ 	 1

1 − P 0
ij for λ � 1,

(5)

where P 0
ij = P (nij = 0; T ). Specifically, P 0

ij can be estimated
directly from Eq. (1) for each link P 0

ij = ∫ ∞
T

P (τij )dτij since it
measures the probability of finding a relay time bigger than T .
Figure 4 shows the comparison of nij and P 0

ij (averaged over all
links) for different values of T for the real- and shuffled-time
data (denoted by a tilde). On one side, due to the correlation
between the ∗ → i and i → j time series, the number of
events in a tie following an incoming call is always larger
for the real-time data than for the shuffled-time data. This is
the reason why, for small λ, the average transmissibility (and
thus the size of the epidemic cascades) is always higher in real
communication patterns [14]. In contrast, the bursty nature
of the i → j communication makes the tail for the real-time
P (τij ) heavier than the exponential distribution found in the
shuffled-time data. Thus, if T is large enough, P 0

ij is larger in
the real-time data than in the shuffled-time data and this is why
we observe smaller cascades in that region. Note, however, that
this does not apply for very small values of T (T � 1 day),
where the causality between the ∗ → i and i → j time series
can make P0 even smaller in the real-time case.

To give a more quantitative analysis of the observed
behavior we investigate the percolation process in a social
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network in which links have transmissibilityTij . The important
quantity is the secondary reproductive number R1, which is
the average number of secondary infections produced by an
infectious individual. R1 gives information about percolation
transition in the SIR process (which happens at R1 = 1 [18]),
but also about the speed of diffusion (which is proportional to
R1 [20]) and the size of the cascades (which is an increasing
function of R1 [18]). If we assume that the Tij are given and
that the social network is random in any other respect, R1 can
be approximated as

R1[λ,T ] =
〈( ∑

j Tij

)2〉
i
− 〈∑

j T 2
ij

〉
i〈∑

j Tij

〉
i

. (6)

Note that in the homogeneous case in which Tij = T
we recover the common result in random networks R1 =
T (〈k2

i 〉/〈ki〉 − 1) [18]. Figures 3 and 4 show the accuracy of the
approximations used to get Eq. (6) to predict the tipping point
in the SIR process and the change in the average size of the
cascades in the two regimes. This suggests that the dynamical
strength of the ties Tij , defined in Eq. (2), can be effectively
used to model the real strength of human interactions in social
networks.

In conclusion, we have seen that both the bursty na-
ture of human communications and the existence of group
conversations are the two main dynamical ingredients in the
understanding of the spread of information in social networks.
These two effects compete in the spreading of information
by promoting and hindering the reach of the information
compared with the homogeneous case. Our results indicate the
necessity to incorporate temporal patterns of communication
in the description and modeling of human interaction. Actually,
we have proved an effective way of mapping the dynamics of
human interactions onto a static representation of the social
network through the concept of the dynamical strength of
ties. We believe its success in explaining information diffusion
would encourage the use of this dynamical strength in other
areas of network research that are based on information
spreading such as the determination of influence (or centrality)
or popularity [21,22], community finding [23], and viral
marketing [14,15].
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