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Solitons induced by alternating electric fields in surface-stabilized ferroelectric liquid crystals
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(Received 30 June 2010; revised manuscript received 12 January 2011; published 7 April 2011)

Propagation of solitary waves activated in thin ferroelectric liquid crystal cells under external, sinusoidally
alternating electric fields is investigated using the electro-optic technique. It is shown that solitons give
contributions only to the loss component of the response spectrum, within rather narrow ranges of frequencies
and in sufficiently strong fields. The limit frequency, at which the amplitude of the velocity of the solitary waves
is greatest, is found to be related to material constants of liquid crystals. Measuring this threshold frequency
provides the capability to determine the elastic constant of surface stabilized liquid crystalline materials in the
bookshelf or chevron layer geometries.
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Surface-stabilized ferroelectric liquid crystal (SSFLC) sys-
tems [1] have been applied in constructing both display and
nondisplay electronic devices. The scale of commercialization
of these systems is, however, relatively small, as a consequence
of their tendency to form spontaneously structural defects
[2]. In spite of the resulting technical troubles, SSFLCs are
still considered as promising materials to develop innovative
electro-optic switching technologies [3]. This mainly follows
from the fact that field-induced switching processes between
orientational bistable states occurring in SSFLCs are very fast,
up to 1000 times faster than switching phenomena occurring in
nematics [2]. Depending on the strength of an external electric
field, the switching phenomena can proceed as a complete po-
larization reorientation [2,4] (when the field is strong enough),
or as local reorientations, for example, as soliton excitations [5]
(activated by weaker but sufficiently strong fields). Clearly,
both kinds of these molecular reorientation processes are
inherently nonlinear in nature. Furthermore, a threshold field
amplitude, above which a periodically alternated field activates
switching phenomena, depends on the field frequency.

Solitary waves in both nematic and smectic systems have
usually been described taking into account an anisotropy
contribution wa to the energy density, given by wa =
− 1

2ε0�ε(phn · phE)2 with �ε = ε‖ − ε⊥ being the dielectric
anisotropy, phn denoting the molecular director, and phE being
an external electric field [6]. However, in smectic systems,
especially in SSFLCs, the orientation of molecular electric
dipole moments is not uniform giving rise to the appearance
of the charge of density ρ = −∇ · phP, where phP is a
polarization field [2]. This yields a depolarization contribution
wd = 1

2ε0
|phP|2 to the energy density [7]. As will be shown,

orientational fluctuations of the local polarization play a more
important role in the propagation of the solitary waves in
SSFLCs under study here than their dielectric anisotropy.
Obviously, the mere excitation of solitons is conditioned not
only by the strength of applied fields, but also by a nonunifor-
mity of molecular orientations, caused, to a large extent, by
surface anchoring. Field-induced molecular reorientations can
be investigated by determining the space dependence of the
angle φ between phP and phE. In samples with the bookshelf
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or chevron geometry, this dependence can approximately be
determined using a one-dimensional dynamic field equation
(chevron slabs can roughly be treated as dynamically inde-
pendent) [2,8]. When the dielectric anisotropy is neglected
and an electric field changing cosinusoidally with an angular
frequency ω is applied perpendicular to sample plates, say in
the x direction, this equation has the form [9]

K
∂2φ

∂x2
− γ

∂φ

∂t
= PS sin φ

(
E0 cos ωt − 1

ε0
PS cos φ

)
, (1)

where K is the elastic constant describing deformations inside
smectic layers, γ is the rotational viscosity, E0 denotes the
amplitude of the electric field, and PS is the spontaneous
polarization. Note that the material parameters K and γ

occurring in the above motion equation both contain the factor
sin2 θ , where θ is the molecular tilt angle [2]. The second term
in the right-hand side of Eq. (1) represents the torque acting
on a molecule due to the existence of a depolarization field,
induced by a nonuniformity of the polarization. In the case of
the chevron geometry, an exact solitary wave solution to the
above equation can be written as

φ±(x,t) = arctan
1

sinh
(
α± + x

β
− μ

ω
sin ωt

) , (2)

with α±, β, and μ being constants (independent of space and
time). The subscripts ± refer to the lower (−) and upper (+)
slabs of the chevron structure [8]. The constants α± can be
determined assuming the appropriate boundary conditions.
The parameter β characterizes the kink width, while the
parameter μ is related to the amplitude v0 (v0 = βμ) of the
velocity of kink propagation through a sample (in the direction
perpendicular to cell plates). The relation of β and μ to the
material constants can be derived directly from Eq. (1). Then,
one obtains

β =
√

ε0K/PS, (3)

μ = PSE0/γ. (4)

Thus, the parameters β and μ are equal, respectively, to
the polar coherence length and the inverse of the time of
polarization switching in ferroelectric liquid crystals [2].
According to Eq. (2), the rotational kink can move across
the sample with the alternating velocity v(t) = v0 cos ωt ,
provided that the field frequency is large enough (at a given
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FIG. 1. (Color online) Qualitative shape of the soliton solution of
Eq. (1). The thick, solid line represents φ(x,t) at t = 0, while thin
lines refer to φ(x,t) at t = T/4 and t = 3T/4, where T = 2π/ω (i.e.,
when the kink reaches maximal and minimal positions, respectively).
Additionally, the kink width β and the distance δ (over which the
kink oscillates) are marked.

field amplitude). The kink motion through a smectic layer
is illustrated in Fig. 1, where the distance δ = 2βμ/ω, over
which a kink can move during each period of the electric
field, is also indicated. The minimal threshold frequency,
ω = ωmin at which soliton waves appear, can be deduced from
the condition that the maximal range of space oscillations
of a kink is not greater than the sample thickness D or the
thickness of one sample slab (in the cases of bookshelf or
chevron arrangements of molecules, respectively) minus the
kink width. One thus has δ � d − β, where d = D in the
bookshelf geometry while d = D/2 in the chevron geometry,
and hence

ωmin = 2βμ/(d − β). (5)

At a given, sufficiently large field amplitude, solitons cannot,
however, be excited if field frequencies are higher than an
upper threshold ω = ωmax. For ω > ωmax, the electric field
oscillates too fast to provoke sufficiently strong noncollective
molecular reorientations, necessary for the appearance of
solitary kinks. Thus, solitary waves propagating perpendicular
to the sample electrodes may appear at field frequencies
belonging to the range ωmin � ω � ωmax with both the limit
frequencies ωmin and ωmax being dependent on the field
amplitude. In contrast to ωmin, the threshold frequency ωmax

cannot simply be determined because that would require a
knowledge of an explicit nonsolitary solution to Eq. (1).

The relation (5), together with Eqs. (3) and (4), gives the
possibility to find one of the three material parameters K , γ ,
PS , if two remaining constants are known. In particular, one
can determine the parameter K , describing elastic properties
of SSFLCs within smectic layers (the constants γ and PS

are relatively easy to measure). This is of great practical
importance considering a continuing technological interest in
SSFLC systems. It should be stressed that efforts to find elastic
parameters have mainly been concentrated on measuring the
elastic interlayer coupling in smectics with the helical structure
[2,10]. The method based on the use of the relation (5) to
determine the intralayer elastic coupling (much stronger than
the interlayer one) will be shown to be very effective compared
to the approach involving the measurement of the critical
sample thickness for the helix [11]. Furthermore, the procedure
under consideration here enables experimental determination

of the parameter K directly for a SSFLC sample of a particular
thickness by measuring the threshold frequency ωmin. This can
be performed by registering response spectra ε(ω) of a liquid
crystalline sample to an alternating external field and identi-
fying a soliton contribution to these spectra. According to Eq.
(2), solitons can yield the only contribution to the imaginary
part of the response spectra. To prove that, consider the case
of the chevron geometry [2]. Then, nth harmonic components
of soliton increments of the real and imaginary parts of ε(ω)
are, respectively [8], ε′

n(ω) ∼ T −1
∫ T

0 J (ω,t) cos(nωt)dt and

ε′′
n(ω) ∼ T −1

∫ T

0 J (ω,t) sin(nωt)dt , where the voltage time

period T = 2π/ω, J (ω,t) = ∫ 0
−d

�−(x,t)dx + ∫ d

0 �+(x,t)dx

is proportional to the total (containing all possible harmonic
components) instantaneous response function, and �±(x,t) =
cos φ±(x,t) − cos φ̄±(x,t) with φ̄±(x,t) being the functions
φ±(x,t) taken at E0 = 0. Thus, using Eq. (2), one obtains
ε′
n(ω) = 0 for n = 1,2, . . . , and ε′′

1 (ω) > 0, but ε′′
n(ω) = 0 for

n = 2,3, . . ..
To illustrate the efficiency of the described procedure,

measurements of the response ε(ω) of the mixture Felix
15–100 (Clariant) to a sinusoidally alternating external electric
field have been performed by applying the polarizing mi-
croscope technique [12]. Note that the notation ε(ω) is used
below for the resulting response spectra determined by means
of the electro-optic method. Samples were prepared using
typical thin glass cells (manufactured by Linkam and EHC)
of thicknesses D = 5, 12, and 25.9 μm, and with bounding
plates coated with conducting semitransparent material (ITO).
The plates were rubbed antiparallel to each other, providing
the molecular orientation to be nearly parallel to electrodes. In
consequence of strong surface interactions and relatively small
cell thicknesses, the samples formed chevron smectic layer
structure, which remained stable for temperatures 20 � T �
50 ◦C and for relatively high applied voltages, of amplitudes
U0 = E0D � 40 V rms.

A typical Cole-Cole diagram revealing solitary waves is
shown in Fig. 2 for the first harmonic components ε′(ω) ≡
ε′

1(ω) and ε′′(ω) ≡ ε′′
1 (ω). The plot has been determined

for a sample of thickness D = 5 μm, at T = 27 ◦C, and
at ac applied voltages of the amplitude U0 = 20 V and
frequencies f = ω/2π ranging from 2 to 100 kHz. It is seen
that ε′(ω) is constant (or nearly constant) in a frequency
range. This is evidence of solitary waves traveling through
both chevron slabs, although ε′(ω) is not zero for ωmin �
ω � ωmax. Generally, solitons can be excited only in some
sample regions, while molecular motions in other sample
regions can have a nonsolitary, although strongly nonlinear,
character. Such a nonuniform dynamic behavior of liquid
crystal samples is a consequence of an inhomogeneity of
electric fields inside samples, a nonuniformity of cell plates
(and thereby an inhomogeneity of surface anchoring potential),
the occurrence of various types of defects in samples, and
so on. Due to interlayer interactions, field-induced molecular
reorientations in different system regions are not independent
of each other, and mutual perturbations affect nonsolitary
motions of molecules located even relatively far from borders
of system regions in which solitons propagate [13]. As
a result, solitary waves cause a damping of orientational
motions of molecules located in regions remaining in the
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FIG. 2. (Color online) Cole-Cole diagram obtained for a sample
of thickness D = 5 μm, at T = 27 ◦C and U0 = 20 V. Filled circles
represent measurement points. The inset depicts the diagram region
in which solitons manifest themselves [by a very weak frequency
dependence of ε′(ω)]. The limiting ordinary frequencies are given by
fmin = ωmin/2π and fmax = ωmax/2π .

nonsolitary dynamic regime. Accordingly, contributions to
the electro-optic response coming from these sample regions
are weakly dependent on the field frequency, in the range
ωmin � ω � ωmax. This explains the existence of a nonzero,
nearly constant contribution to ε′(ω) for the frequency range
in which solitary waves are excited.

The results of Fig. 2 have been obtained for the case
when solitary waves simultaneously propagate through both
parts (slabs) of chevroned smectic layers. However, one can
expect that, in some cases, solitons can be excited only within
one of the chevron slabs, as surface interactions (at sample
plates) differ, in general [4,8], and the chevron interface makes
the slabs nearly independent of each other [1,2]. In such
cases, ε′(ω) should include a frequency-independent (solitary)
contribution arising from one of the chevron slabs and a
frequency-dependent (nonsolitary) contribution coming from
the second slab. Consequently, ε′(ω) should then exhibit a
slightly stronger frequency dependence for the range ωmin �
ω � ωmax than in the case presented in Fig. 2. Indeed, such
a not very weak dependence of ε′(ω) has been found for
the same sample, at the temperature T = 30 ◦C and at the
voltage amplitude U0 = 30 V. This is illustrated in Fig. 3. It is
remarkable that the loss function ε′′(ω) initially increases as the
voltage frequency exceeds the threshold ωmax. This indicates
that the energy absorbed by the system during each voltage
cycle suddenly increases as solitary waves disappear.

The Cole-Cole diagrams can be employed to determine
the threshold frequency fmin. Then, using the relation (5),
one can calculate the elastic constant K . Values of this
constant found at different T and U0 for samples of different
thicknesses are listed in Table I. The parameters PS and γ ,
needed to calculate K , have been determined by applying
the Diamant-Drenck-Pepinsky bridge technique [14] and the
uniform switching method [15], respectively. It can easily be

FIG. 3. (Color online) Cole-Cole diagram derived from experi-
mental data (filled circles) for a sample of thickness D = 5 μm, at
T = 30 ◦C and U0 = 30 V. The inset shows a fragment of the diagram
revealing solitary molecular motions within only one of chevron slabs
(for fmin � f � fmax).

verified that, for PS and γ found for the studied systems and
for the voltages utilized in experiments, the absolute value of
the torque me = −∂we/∂φ, associated with the density of the
anisotropy energy wa is much less than the absolute value of
the torque md = −∂wd/∂φ, corresponding to the density of
the depolarization energy wd . The absolute ratio between these
torques is given by ζ = |me/md | = ε2

0�εU 2
0 P −2

S D−2. Using
the data of Table I for D = 5 μm, T = 30 ◦C, and U0 = 20 V,
as well as the dielectric anisotropy value �ε = 0.6 found for
the studied liquid crystal material (at T = 30 ◦C), one obtains
ζ ≈ 0.01. Although ζ increases as U0 grows, it still remains
very small for all voltages used in the experiments described
in this report. Furthermore, Eqs. (3), (4), and (5) imply that
ωmin is proportional to E0. As seen in Table I, the experimental
data obtained for fmin approximately reflect this relation (for

TABLE I. Elastic constant K determined for different D, T , and
U0. Appropriate values of fmin, PS , and γ are also given.

D T U0 fmin PS γ K

(μm) (◦C) (V) (Hz) (Cm−2) (Pa s) (N)

5 30 20 2760 2.9 × 10−4 0.055 1.5 × 10−9

30 4080 2.0 × 10−9

40 7660 3.7 × 10−9

50 20 5900 2.0 × 10−4 0.023 1.6 × 10−9

30 10 990 2.3 × 10−9

40 15 170 2.4 × 10−9

12 30 20 1290 2.7 × 10−4 0.055 1.4 × 10−8

40 2640 1.5 × 10−8

50 20 2190 1.8 × 10−4 0.023 7.8 × 10−9

40 5900 1.2 × 10−8

25.9 30 20 630 3.4 × 10−4 0.055 7.8 × 10−8

40 1420 9.6 × 10−8

50 20 1130 2.5 × 10−4 0.023 4.3 × 10−8
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a given temperature and voltage). However, as can easily be
verified, the threshold frequency ωmin theoretically derived
by using the method presented above is independent of E0

(contrary to the experimental results), when the dielectric
anisotropy torque term is taken into account in Eq. (1),
instead of the depolarization torque component. Therefore,
the dielectric anisotropy contribution to the energy density has
been neglected here.

A striking feature of the results obtained for the elastic
constant K is its evident dependence on the electric field. A
possible reason for this apparent dependence is the anisometric
shape of molecules forming liquid crystals and field-induced
changes in relative, time-averaged, orientations of neighboring
molecules within each smectic layer. In fact, due to a large
anisometry of liquid crystal molecules, their reorientations
under an applied electric field can lead to a dependence of K on
E0. Since the intralayer and interlayer elastic parameters differ,
in general, by two or even three orders in magnitude [11], the

dependence of effective elasticity parameters on the relative
orientation of molecules is then very strong, and thereby the
observed dependence of K on E0 can really be considered to
be rather strong. Furthermore, the data of Table I show that K

determined for samples of various cells not only is different,
but also displays a different field dependence. This suggests
that measured values of K are affected by surface interactions
at cell plates, not included in the model.

In conclusion, the investigation of solitary waves prop-
agating between boundary surfaces of SSFLCs by ana-
lyzing their high-field response spectra provides a useful
method to determine elastic interactions between molecules
within smectic layers. The only required material param-
eters are the spontaneous polarization and the rotational
viscosity.
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