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Non-Gaussianity as a data analysis artifact
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Non-Gaussian effects are important features in many fields of physics, and the search for non-Gaussianity
motivates several new experiments. Here I show that an insidious form of non-Gaussianity can easily arise as
a finite-size effect in a data analysis tool that is guaranteed to be asymptotically Gaussian. This means that
experimental searches for non-Gaussianity should also include an extremely careful scrutiny of the statistical

tools used to analyze data.
DOI: 10.1103/PhysRevE.83.042103

Non-Gaussian fluctuations arise in several fields of physics
such as, for instance, in cosmology because of primordial
inflation [1,2], in glassy materials [3], in nonequilibrium
thermodynamics [4], in the interplanetary magnetic field [5,6],
and as a consequence of nonextensive phenomena in
thermodynamics [7]. The non-Gaussianity usually means that
distributions that are nearly Gaussian close to their mean
value display long tails with a power-law behavior, which is
associated to rare events. These rare events may actually spoil
the statistics of gravitational wave detectors, and at least one
experiment is actively studying them [8].

Its frequent association with the tails of distributions makes
non-Gaussianity a very delicate effect, which requires a careful
handling of data. Consider a common data-handling tool, the
least squares method (LS): in this method, we minimize the
chi-square

x> =y — A0V (y— Af), (1)

where V is the covariance matrix of the measured data y, and
where we assume that the mean value g of each measurement
y is a function of the independent input variable x:

wi(xi,0) =Y a;(x)0; = Y A6, @)
j=1

j=1

in which A;; = a;(x;), and the a’s are arbitrary functions of x
(see, e.g., [9] or [10]). Minimizing the x? in Eq. (1) to obtain
the parameters @ of model (2), we find the parameter estimate

0 =ATv'A)'ATv !y = By. (3)

Thus, the estimated parameter values are linear combinations
of the data values y;’s, and if these data have a Gaussian
distribution, the parameter estimates are Gaussian as well.
Unfortunately, this is not always the case, and data often have
different distributions. In most cases, we can still rely on the
central limit theorem, which guarantees that eventually the fit
parameters are normally distributed for a large number n of
data, although the question remains as to how large a data set
should be before we can safely assume a Gaussian distribution
for the parameter estimates. A partial answer comes from the
Berry-Esseen theorem and its variants [11], which guarantee
that, under rather mild conditions, the difference between the
actual cumulative distribution function of a linear combination
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of Gaussian variates and a true Gaussian cumulative distribu-
tion function is less than C’/+/n, where C’ is a constant; more
precisely, in its basic form, the Berry-Esseen theorem states
that, in the case of n independent and identically distributed

(i.i.d.) variates & with mean p and variance o2,

sup | P(S* < x) — b fx e 2gy| < CBE%

x " V2r ) = Jno?
where S = Y"1_ (& — w)/o, a = E|§ — |, and Cgg is a
constant (Cgg < 0.7915) [11]. The variants of this theorem
extend its validity to random variables with different variances,
etc.; however, there are no results on the specific shape of the
tails of the distributions of linear combinations of variates, so
we turn now to Monte Carlo simulation. To be more specific,
we study the LS parameter estimates with data distributed
according to a gamma distribution. The rationale of this choice
is that the gamma distribution emerges naturally in sums of
exponentially distributed variates (see, e.g., [10]), it turns up
in estimates of power spectra [12], it is the general case of
the x? distribution, it can be related to the Rayleigh and the
Weibull distributions [13], and, more generally, it often appears
wherever there are physical variables that are bounded from
below. We take a linear LS fit Sy = afi + b of the spectral
estimate Sy at frequency f;, obtained from a discrete Fourier
transform (DFT) analysis of a Gaussian white noise. Each
value of the DFT estimate has a known distribution function;
if there is no spectral averaging, then the shape parameter
of the gamma distribution is equal to 1, and we find an
exponential probability density function (PDF) for the noise
spectral estimate

4)

I’l2 }’l2
Pi(S) = = exp <——2 Sk) , 5)
o o

where o is the total mean square fluctuation of the Gaussian
white noise in the measurement frequency band, and n is the
total number of signal samples [12]. Otherwise, if the spectral
estimate is the result of m averages, we find the gamma PDF
with shape parameter m and scale parameter 0% /n?, i.e.,

n2\"  sm! n?
P (Sp) = (;) h exp <_;Sk> . (6)

The slope a is computed repeatedly in a Monte Carlo (MC)
simulation where the estimated spectral density (PSD) has no
averaging and is fitted with the linear model S; = afy + b
over 10, 20, and 30 (gamma-distributed) data points. In the
simulated data sets, the frequencies f; are evenly spaced, as
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FIG. 1. Empirical PDF of the slope estimator & in the MC
simulation described in the text, obtained from 10°® MC simulated
data sets for different numbers of data points. The dashed line is
the normal PDF with the same mean and standard deviation as the
empirical PDF. The solid line is a g-Gaussian fit. Upper panel: 10
data points; middle panel: 20 data points; lower panel: 30 data points.
The higher the number of data points, the smaller the width of the
distribution, and this means that, for a proper representation, the range
of the horizontal axis must be reduced as the number of points gets
larger. As the number of points increases, the empirical PDF gets
closer and closer to a true Gaussian PDF [and the g value of the
q-Gaussian fit approaches 1 (see Table I)].

is customary in DFT analyses. Figure 1 shows the PDF of the
estimate of the slope for a large number of MC iterations (10°)
and different numbers of data points.

While the empirical PDF of the slope estimator a has an
excellent Gaussian behavior close to the peak, it is also clear
that it has non-Gaussian tails. It is interesting to remark that
the PDF, including these tails, can be well approximated by a
g-Gaussian PDF [14]

q \ 27V
pqla) = Cq|:1 (= q)(—) ] ; (7

ao
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TABLE I. Numerical values for the g-Gaussian fits of Fig. 1. The
q value decreases significantly and approaches 1 as the number of
data points increases.

Number of points q ap

10 1.185 + 0.004 0.132 +0.002
20 1.148 + 0.004 0.0469 + 0.0005
30 1.128 + 0.004 0.0257 £ 0.0003

where C, is a normalization constant, ag is a width parameter,
and g specifies the deviation from normality (if ¢ — 1,
one recovers the usual Gaussian PDF). It has been stated
that g-Gaussians are ubiquitous and that their observations
strengthen the case for nonextensive statistical mechanics
[15,16]. However, it has also been argued that, although
g-Gaussians exhibit many interesting properties, there is no
support for the idea that they do play a special role as limit
distributions of correlated sums [17,18], and it is therefore
important to examine carefully those features of statistical
tools that may lead to wrong experimental conclusions. The
g-Gaussian fits are shown in each panel of Fig. 1 as well, and
the corresponding g values are listed in Table I. The estimator
of b is less interesting, it follows the data points, and, thus,
rather unsurprisingly, it has a skew distribution.

This is an artificial example; in this case, we know the
exact asymptotic statistics for the estimator a (we know
that it is Gaussian) and the appearance of the g-Gaussian is
clearly a finite-size effect. However, Gaussianity may not be
so obvious in more complex cases, and this simple example is
an interesting lesson. Figure 1 shows very clearly that, as the
number of data points in the data set increases, the deviation
from normality in the PDF of the slope estimator becomes less
evident, as shown numerically by the g values in Table I. The
upper panel of Fig. 2 shows that, for an even larger number of
data points, the deviation from normality is barely perceptible
(notice also that the same happens if we fix the number of data
points, but average over many data sets).

q-Gaussian PDFs have a power-law behavior for very large
deviations; however, these regions are unexplored in the plots
of Fig. 1, and the tails of the PDFs in Fig. 1 display interpolating
regions with exponential behavior. It turns out that, in the
simple example of the linear LS fit, it is possible to understand
analytically how this behavior arises. Indeed, in the case of the
linear model y;, = ax; + b, we find the LS estimate

SOSxy - SxSv
P y 8
AR &
A SeSy — Sc Sy
h="1r T (8b)
SyxSo — 82
where
1 Xk Yk
S - Y S)CZ T S = T
2
X Xk Yk
Sxx = _k’ Sx = 5
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FIG. 2. Upper panel: Empirical PDF of the slope estimator a for
a larger number of data points (200) obtained from 10° MC simulated
data sets. The dashed line is the normal PDF with the same mean and
standard deviation as the empirical PDF. The solid line is a g-Gaussian
fit to the empirical PDE. A nearly identical empirical distribution is
obtained if we keep 20 data points, but assume 10 averages (and thus
a gamma PDF with shape parameter 10). Lower panel: Residuals of
the g-Gaussian fit. Although the fit looks good, the residuals show
that the g-Gaussian PDF deviates significantly from the numerical
simulation data.

and the estimate of a [Eq. (8a)] can also be written in
the form

1

Soxk — Sx
a= : 9)
SexSo — 82 Xk: o F

If the y;’s are i.i.d., exponential variates such as the white
noise spectral data in the example discussed above, with PDF
p(y) = 7-1e¥/7 and we rewrite the sum (9) in the shorthand
form

a=Yy v (10)
k

we see that the characteristic function (CF)! for the PDF
of ais

1
2(2) = =[]———. 11
fa(@) 1:[fk<ckz) 1:[1_1%Zr (11)

where fi(z) = f(z) = (1 —izr)"! is the CF of p(y). There
are some subtleties in the evaluation of this sum and general

'The characteristic function f(z) for a PDF p(x) is defined by
f@) =E@E™) = [T px)e'=dx.
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discussions can be found in [19-21]. For simplicity, here we
assume that all the ¢;’s are different and positive, then the
product can be expanded in partial fractions:

o 1 _ Ay
fa®) = l_[ 1 —ickzt B Xk: 1 —icizT (12)

k

and the values of the A;’s can be found by multiplying both
expressions times 1 — icyz7, and taking z =i /(c;7), i.e.,

A =] (13)

e —
ktj ST

Mathematically, the CF is just a Fourier transform, and now
the inversion of the CF is straightforward, and the PDF is a
weighted distribution of exponentials

A _,
p@)=y_ e, (14)

CrT
& k

It is important to remark that this result can be extended to
negative c;’s, as in the present case: indeed, the differences
Soxxy — Sy in Eq. (9) are both positive and negative. To
appreciate the meaning of Eq. (14), we take a very simple
example, with two i.i.d. exponential variates with T = 10
and c; =1, ¢, = 1.1. Then, A; = —10, A, = 11, so that the
PDF of the sum s = c1y; + c2y» is p(s) = —e /10 4 g=8/11
i.e., it has the generic functional shape —e*'* 4+ ¢=*2% with
A1 > Xp. We can rearrange this expression as follows for
A —2)s K It

P(s) = —e ™M1 e = TR (] — TR
~ e (0 — A)s, as)
so that
In p(s) & —Azs + Ins + In(r; — 1y), (16)

and we see that the tail of the distribution has a region that
is nearly linear in a logarithmic plot and reproduces the
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FIG. 3. Empirical PDF of the estimated slope a for a single data
set of 20 points, with different measurement errors, and unevenly
spaced values of the independent variable. The empirical distribution
has been obtained with 10° bootstrap resamplings. The dashed line
is the normal PDF with the same mean and standard deviation as the
empirical PDF. The solid line is a g-Gaussian PDF adapted to the
empirical PDF. Now, in addition to the long tails of the distribution,
there is also some asymmetry, however, the g-Gaussian still provides a
better fit. Itis interesting to notice that this non-Gaussianity disappears
when the independent variable has evenly spaced values.
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intermediate region with the exponential decay displayed in
Figs. 1 and 2.

Non-Gaussianity can also arise in other subtle ways;
even with Gaussian data, the LS method can yield non-
Gaussian tails if we somehow “forget” the original Gaussian
distribution. This happens, e.g., in analyses that use the
statistical bootstrap [22]. Indeed, the usual MC bootstrap
procedure resamples data points from a single data set, and
the resampling procedure does not retain any memory of the
original distribution of data points. An example is shown
in Fig. 3, which shows the empirical PDF of the slope a
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in a straight line fit problem similar to the one discussed
above.

The g-Gaussians obtained in the fits of Figs. 1, 2, and 3
are all artifacts due to finite-size effects in the data analysis.
A careful scrutiny also shows that the g-Gaussians slightly
deviate from simulation data, as shown in the lower panel
of Fig. 2. The similarity that g-Gaussians bear to several
experimental results thus calls for great caution, and finite-size
effects such as those observed in this paper may be an
additional explanation of the frequent occurrence of good
g-Gaussian fits [18,23].
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