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Complex conjugate eigenvalues in the spectrum of an operator for resonant activation
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We consider the exit problem for an overdamped Brownian particle in a potential undergoing dichotomic
fluctuations. The system exhibits resonant activation. We compute the corresponding exit times distribution and
show that the resonance is associated with the presence of a finite number of complex conjugate eigenvalue pairs
in the spectrum of the evolution equation. The properties of these eigenvalues and their influence on the exit
times distribution and on the possible dynamics of the system are discussed in detail.
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I. INTRODUCTION

The phenomenon of resonant activation has been investi-
gated for a number of different systems [1–15]. For a brief
review of the various models we refer the reader to Ref. [15].
The simplest model in which resonant activation occurs is
probably represented by overdamped diffusion in a potential
undergoing dichotomic Markovian fluctuations [1–4]: The
escape rate κ = κ(γ ) over the fluctuating barrier exhibits a
distinct maximum as a function of the potential fluctuation
rate γ , and it has been shown [4] that the escape process may
then be approximated by the Markovian kinetic equation in
the two limits of slow and fast dichotomic fluctuations, γ � κ

and γ � κ . The resonance phenomenon in the intermediate
fluctuation range, however, is non-Markovian, and its exact
nature in the various models still remains unclear, despite
attempts to model it using nonexponential distributions of the
random exit times [5].

The overdamped diffusion in a fluctuating potential is
described by a matrix Smoluchowski equation [1,4], which
cannot, as opposed to the ordinary equation for a static
potential [16], be recast into a self-adjoint form. Its eigenvalues
may therefore be complex. We show here by direct calculation
that at resonance the lowest nonvanishing eigenvalue is real,
and that it is followed by a finite number of complex conjugate
eigenvalue pairs. The high-order eigenvalues are again real.
The finite train of complex conjugate eigenvalues shifts to the
left at γ � κ so that in this case the several lowest eigenvalues
become real. By contrast, all eigenvalues are real if γ � κ .

II. THE SHOOTING METHOD

Our analysis of the escape problem is based on the shooting
method of adjoints [17] whose application to the diffusion
problem was described in Ref. [3]. The shooting method allows
us to compute the missing boundary value conditions in a well-
defined boundary value problem. Briefly stated, the method is
as follows: Let the set of functions yi(x) satisfy the linear
differential system

y ′
i(x) =

n∑
j=1

Aij (x)yj (x) + fi(x) (1)
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together with r initial conditions at x = x1 and n − r final
conditions at x = x2. The remaining n − r conditions at x1

and r conditions at x2 then satisfy the identity [17]

2∑
j=1

(−1)j �y(xj ) · �ξ (m)(xj ) =
∫ x2

x1

dx �ξ (m)(x) · �f (x), (2)

where the functions �ξ (m)(x), m = 1, 2, . . . , n, are solutions of
the adjoint equation

dξ
(m)
i (x)

dx
= −

n∑
j=1

Aji(x)ξ (m)
j (x) (3)

on which such n initial (resp. final) conditions are imposed
that the linear system (3) has a solution for the unknown n

boundary values at x1 and x2. The boundary value problem for
Eq. (1) then becomes a more tractable initial value problem.

III. THE EXIT PROBLEM

We define the evolution equation [4]

∂

∂t

(
P1

P2

)
=

(L+ + γ −γ

−γ L− + γ

) (
P1

P2

)
(4)

for dichotomic fluctuations between the two symmetric po-
tentials ±V (x), V (x) = V (−x). The probability distributions
Pi = Pi(x,t), where t is time and x position, and the
Smoluchowski operator [16]

L± = ∂

∂x

[
± V ′(x) + ∂

∂x

]
, (5)

where V ′(x) = dV (x)/dx, and γ is the rate of the random fluc-
tuations. The distributions Pi(x,t) satisfy absorbing boundary
conditions at x = ±1, but making use of the symmetry of
the problem it is possible to impose the mixed boundary
conditions, Pi(1,t) = 0 and P ′

i (0,t) = 0, and to solve the exit
problem on the interval 〈0,1〉. The extremal property somewhat
simplifies the problem, as can be seen by analyzing Eq. (6)
below. The normalized total probability distribution P =
P1 + P2 defines the time-dependent occupation probability
W (t |−1,1), W (0|−1,1) = 1 by assuming that the diffusing
particle is located within the interval 〈−1,1〉 at time t . Given

042101-11539-3755/2011/83(4)/042101(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.042101


BRIEF REPORTS PHYSICAL REVIEW E 83, 042101 (2011)

the symmetry of the potential and of the mixed boundary
conditions we write the identity

dW (t)

dt
= d

dt

∫ 1

−1
dx P (x,t) = P ′(1,t) (6)

= −Q(t |−1,1). (7)

The last relation defines the distribution Q of exit times out of
the interval 〈−1,1〉.

The shooting method of adjoints [3,17] allows us to numer-
ically compute the Laplace transform Q̂(p) of the distribution
(7) for an arbitrary potential V = V (x). For comparison with
the numerical results for a fluctuating potential shown below
we cite here some archetypal analytic results representing
the exit out of a static potential. The Laplace transform of
the diffusion equation may in this case be rewritten in the
form (1), with n = 2, �y = [P̂ ′(x,p),P̂ (x,p)],

A =
(−V ′ p − V ′′

1 0

)
, (8)

and �f = −P (x,0)[1,0]. According to the identity (2) the
adjoint equation (3) is then to be solved with the initial
(resp. final) conditions �ξ (m)(xm) = [0,1], m = 1 and 2. For
a piecewise constant symmetric potential with V (x) = 0 for
|x| < a and V (x) = V0 for a < |x| � 1 there is

Q̂(p) = 1

ξ (1,p)

∫ 1

−1
dx P (x,0)ξ (x,p), (9)

where ξ (x,p) = A(x,p) cosh(p1/2x) and the discontinuous
factor A−1(x,p) = 1 if |x| < a and

A−1(x,p) = 1 − (1 − a) (eV0 − 1)p1/2 sinh(p1/2a)

if a < |x| � 1. Similarly, assuming that P (x,0) = δ(x), we
obtain for the piecewise linear asymmetric potential, V (x) =
−2ω1x on 〈−x1,0) and V (x) = 2ω2x on (0,x2〉, xi > 0, the
expression

D(p)Q̂(p) = 2
2∑

i=1

�ie
−ωixi sinh �ixi,

D(p) = (ω1 + ω2) [cosh �− − cosh �+]

+ (�1 − �2) sinh �− − (�1 + �2) sinh �+,

(10)

with �i = (ω2
i + p)1/2, �± = x1�1 ± x2�2. Obviously, in

this case of an asymmetric potential, the simplified Eq. (6)
is no longer applicable.

Equation (9) qualitatively represents the decay over a
symmetric potential, while Eq. (10), which represents decay
over two unequal barriers, may approximately be regarded
as a superposition of the two unbiased results. The functions
Q̂(p) have poles along the negative real axis of the complex p

plane, and in the limit of small p they assume the Markovian
form [18]

1/Q̂(p) = 1 + p〈τ 〉 + o(p). (11)

where

〈τ 〉 =
∫ ∞

0
dt W (t |−x1,x2) (12)

is the mean first passage time [18] from within the static
potential well. For reference we also note that for V0 = 0
Eq. (9) admits analytic Laplace inversion [19]: For the singular
initial distribution P (x,0) = δ(x) we obtain

W (t) = 4

π

∞∑
k=0

(−1)k

1 + 2k
epkt , (13)

pk = −π2(2k + 1)2/4 and 〈τ 〉 = 1/2, while for the uniform
distribution P (x,0) = 1/2 there is

W (t) = 8

π2

∞∑
k=0

1

(1 + 2k)2
epkt (14)

with 〈τ 〉 = 1/3. The poles pk are the eigenvalues of the dif-
fusion equation. Remarkably, numerical studies show that the
relation pk ∝ k2 is preserved also for high-order eigenvalues
of more general static and fluctuating potentials.

For a fluctuating potential the distribution Q̂(p) must be
sought numerically. We set n = 4, �y = [P̂ ′

1,P̂1,P̂
′
2,P̂2],

A =

⎛
⎜⎜⎜⎝

−V ′ p + γ − V ′′ 0 −γ

1 0 0 0

0 −γ V ′ p + γ + V ′′

0 0 1 0

⎞
⎟⎟⎟⎠ , (15)

and �f = −[P1(x,0),0,P2(x,0),0]. For the initial conditions
2Pi(x,0) = δ(x) the shooting method then yields the sought-
after values y1(1) = P̂ ′

1(1,p) and y3(1) = P̂ ′
2(1,p) in the form

2
1∑

i=0

y2i+1(1)ξ (m)
2i+1(1) = −1, (16)

m = 1 and 2, where the four functions ξ
(m)
j satisfy the Volterra-

type integral equations

ξ
(m)
1 (x) = ξ

(m)
1 (0) +

∫ x

0
dx1 eV (x1)

∫ x1

0
dx2 e−V (x2)

× [
(p + γ )ξ (m)

1 (x2) − γ ξ
(m)
3 (x2)

]
, (17)

ξ
(m)
3 (x) = ξ

(m)
3 (0) +

∫ x

0
dx1 e−V (x1)

∫ x1

0
dx2 eV (x2)

× [
(p + γ )ξ (m)

3 (x2) − γ ξ
(m)
1 (x2)

]
, (18)

with ξ
(1)
1 (0) = ξ

(2)
3 (0) = 1 and ξ

(2)
1 (0) = ξ

(1)
3 (0) = 0. The so-

lutions of these equations vary exponentially fast and are
therefore best sought using the Piccard iterations [3].

The properties of the mean first passage time for the
symmetric fluctuating potential are well known [1–4]: The
function τ decreases with small γ till it reaches a local
minimum, and then it increases toward an asymptotic value
corresponding to the average potential [4] Vav = 0. The rate
of the initial decrease and the depth of the local minimum
increase rapidly with increasing strength of the fluctuating
potential, i.e., with the amplitude of the driving dichotomic
fluctuations.

We find that for the sample fluctuating harmonic potential
V (x) = ±ωx2/2 the properties of the function Q̂(p) are as
follows: If the dichotomic fluctuations are slow, then the
Laplace transformed exit times distribution is approximately
given by a superposition of the two static cases, and the
decay is governed by the slower of the two [4]. All poles
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FIG. 1. Distribution of the poles of the function Q̂(p| − 1,1) in
the second quadrant of the complex p plane, with p = p(1) + ip(2),
p(1) � 0, and p(2) � 0. We consider dichotomic fluctuations between
the two harmonic potentials V±(x) = ±ωx2/2, with fluctuation
rate ln γ = 2.5 close to the maximum of resonant activation. The
amplitude of the potential is ω = 3, 4 (◦), 5, 7 (◦), 8, 9 (◦), 10, 11
(◦), 12, 13 (◦), 15, 17 (◦), and 19. The connecting lines [labeled for
selected values of ω] merely guide the eye, and the alternating full
(•) and open (◦) symbols are used for easier reading of the figure.

are real, and, as expected, at sufficiently large ω the poles
satisfy the relation |p(1)

1 | � |p(2)
1 |, Im p(i) = p

(i)
2 i = 0. Apart

from rapidly decaying transients the decay is here exponentail.
With increasing γ the first pole p1 shifts along the real negative
axis to the left, and, at the same time, a finite number of
poles, beginning with the second one, splits into complex
conjugate pairs. The number of the complex conjugate pairs,
and the magnitude of their imaginary parts, increase with
increasing strength of the potential as discussed below. On

further increase of the fluctuation rate the train of complex
poles gradually shifts to the left, leaving behind a pattern
of real eigenvalues corresponding to the asymptotic average
potential [4]. In all three cases the process described by the
evolution equation (4) is Markovian by construction.

We depict a sample distribution of the complex poles of
the function Q̂(p) = Q̂∗(p∗) in Fig. 1. The selected value of
the fluctuation rate ln γ = 2.5 is close to the the maximum
amplitude of the resonant activation. As stated, the resonant
amplitude rapidly increases [3] with increasing strength of the
potential V , but a striking feature of the plot of Fig. 1 is the fact
that with increasing ω the first nonzero poles (which govern the
Markovian exponential decay) shift slightly to the left along
the real axis. In the Markov case this would imply a slight
decrease of the resonant amplitude rather than the observed
strong increase. We therefore conclude that the rapid variation
of the mean first passage time with the potential amplitude ω is
due to a contribution of a large number of poles. At ln γ = 2.5
we have numerically computed the residues [20] of the first
four poles and found them to be alternating in sign, similar
to Eq. (13); the very slow convergence of the series, however,
makes it all but impossible to compute the real time decay
probability W (t) with sufficient precision.

IV. SUMMARY

In summary, we find that the resonant enhancement of
activation rate by dichotomic fluctuations is associated with the
presence of a finite number of complex conujugate eigenvalue
pairs in the spectrum of the evolution equation (4). We also
find that the resonant decay cannot be described by a single
(first nonzero) exponent.

The presence of the complex conjugate eigenvalue pairs
suggests the possibility of resonant response to an applied
periodic field. Of particular interest here would be the ac
susceptibility of a fluctuating system with reflecting boundary
conditions at x = ±1. The infinitesimal ac field does not
disrupt the property of resonant activation, but it would be
necessary to compute first the stationary state of the fluctuating
system and the time required to reach it. However, no solvable
system of this kind is as yet known to us.

ACKNOWLEDGMENT

This research was supported by the National Science
Council Grant Number NSC 98-2112-M-002-012-MY3.

[1] C. R. Doering and J. C. Gadoua, Phys. Rev. Lett. 69, 2318
(1992).
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