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Mechanics of membrane bulging during cell-wall disruption in Gram-negative bacteria
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The bacterial cell wall is a network of sugar strands crosslinked by peptides that serve as the primary structure
for bearing osmotic stress. Despite its importance in cellular survival, the robustness of the cell wall to network
defects has been relatively unexplored. Treatment of the Gram-negative bacterium Escherichia coli with the
antibiotic vancomycin, which disrupts the crosslinking of new material during growth, leads to the development
of pronounced bulges and eventually of cell lysis. Here, we model the mechanics of the bulging of the cytoplasmic
membrane through pores in the cell wall. We find that the membrane undergoes a transition between a nearly
flat state and a spherical bulge at a critical pore radius of ∼20 nm. This critical pore size is large compared to
the typical distance between neighboring peptides and glycan strands, and hence pore size acts as a constraint on
network integrity. We also discuss the general implications of our model to membrane deformations in eukaryotic
blebbing and vesiculation in red blood cells.
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I. INTRODUCTION

In most bacteria, the peptidoglycan cell wall, a composite
of long sugar strands (glycans) crosslinked by stretchable
peptides, is the primary stress-bearing and shape-maintaining
structure [1]. In E. coli, the osmotic-pressure differential across
the cell membrane ranges from ∼0.5 to 3 atm depending
on the osmolality of growth medium [2], and the cell wall
plays an essential role in maintaining the integrity of the cell.
Importantly, the cell wall is a growing structure and bonds must
be broken to permit growth and division, potentially leading
to defects in the peptidoglycan network. Despite the potential
vulnerability of the cell, a quantitative understanding of the
sensitivity of the cell to such defects is still lacking. Such
an understanding would be particularly valuable given that
many antibiotics target the growing cell wall. In this paper,
we analyze the mechanical deformations of the membrane
resulting from pores in the cell wall.

In a recent paper, Huang et al. [3] investigated the effect
of the antibiotic vancomycin on a vancomycin-sensitive strain
of the Gram-negative bacterium E. coli [4]. In the presence of
vancomycin, cells often developed a pronounced bulge (inset
to Fig. 1), which grew with time and led eventually to cell lysis.
Such bulge formation is a typical response to perturbations
of the peptidoglycan synthesis pathway [5], and vancomycin
disrupts the formation of new peptide crosslinks [6]. We
hypothesize that the accumulation of crosslink defects in a
small region creates a pore in the cell wall. Above a critical pore
size, our model predicts that the osmotic pressure differential
drives bulging of the plasma membrane out through the pore.
Bulging is irreversible, hence once the membrane bulges out,
the cell has no mechanism for repair and ultimately loses
its viability. Our model and analysis is also relevant for a
broad spectrum of cellular phenomena, including blebbing in
eukaryotic cells [7,8], vesiculation in red blood cells [9–12],
and budding in multicomponent membranes [13].

II. MODEL AND RESULTS

To study the observed bulge formation in Gram-negative
bacteria, we model the energetics of the plasma membrane

using the functional

E = Ebend + Esurf + Epress

= κ

2

[∫
dA (2C̄ − C0)2

]
+ σA − PV. (1)

The surface integral in the first term corresponds to the Helfrich
bending energy [14], where C̄ is the local mean curvature
of the membrane, C0 is its spontaneous curvature, and κ is
the bending modulus. In the second term, A is the area of the
bulge and σ is the surface tension. In the third term, P is the
osmotic pressure differential across the membrane and V is
the volume contained in the bulge. We consider the lowest
energy conformation of a membrane constrained by a flat
external cell wall with a circular pore of radius r . For small r ,
bulging is disfavored due to the cost of bending, while for large
r turgor pressure favors the formation of a membrane bulge,
which we model as an axisymmetric truncated sphere of radius
R [15], as shown in Fig. 1. For brevity, we ignore the additional
resistance to bulging produced by the bending energy of the
neck, which depends on the details of the morphology of the
neck region.

In order to estimate the critical pore radius for large bulge
formation, we calculate the spherical portion defined by the
bulge angle θ in Fig. 1. When the surface is essentially flat and
the membrane does not protrude out of the pore, θ ≈ 0, while
for a large protrusion where the bulge tends toward a complete
sphere, θ ≈ π . R, r , and θ are not independent, but rather
satisfy the relation sin θ = r/R. The solid angle subtended by
the bulge surface is given by 2π (1 − cos θ ).

In its unbulged state, the plasma membrane typically has
excess area relative to the cell surface, including excess area
contained in membrane fluctuations. The surface tension of a
thermally fluctuating membrane is given by [16]

σ ≈ π2κ

a0
exp

[
−8πκ

kBT

(
A − Ap

Ap

)]
, (2)

where a0 ≈ 0.7 nm2 is the area per lipid, A is the total
membrane area, and Ap is the projected area. Based on the
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FIG. 1. (Color online) Schematic of a spherical membrane bulge
with radius R protruding from a circular pore in the cell wall with
radius r . The angle θ defines the portion of the sphere that has been
pushed through the pore. Inset: a vancomycin-treated E. coli cell in
late stages after bulge formation (left, arrow indicates bulge), and a
cell after lysis (right).

observation that osmotic shock causes a noticeable elongation
of E. coli cells, a lower-bound estimate estimate of (A −
Ap)/Ap ≈ 0.05 yields an overall factor of ∼10−11 due to the
exponent in Eq. (2), suggesting that unbulged membranes may
have very low surface tension. Moreover, in the analysis below,
we will demonstrate that there is typically an energy barrier
to large bulge formation that occurs for small bulges, thus
the membrane can be stabilized against bulging simply by its
resistance to bending, without the stabilizing effect of surface
tension. Therefore we initially set the surface tension to zero.

The surface area of the bulge is

A(θ ) =
∫ θ

0

∫ 2π

0
R2sin θ ′dθ ′dφ = 2πR2(1 − cosθ ), (3)

and the volume of the bulge is

V (θ ) = 1

3
πR3(2 − 3 cos θ + cos3 θ ). (4)

Neglecting the bending energy of the neck, where the surface
of the bulge connects with the flat membrane, the energy of
the bulge for σ = 0 and C0 = 0 is

E = 4πκ(1 − cos θ ) − πP

3

( r

sin θ

)3
(2 − 3 cos θ + cos3 θ ).

(5)

To determine the general dependence of the membrane
energy on pore radius, we define the dimensionless pore radius
r̃ = r/ lp, where lp = (κ/P )1/3 is the length scale associated
with the transition between the unbulged and bulged states.
The dimensionless rescaled membrane energy is then

Ẽ = E

πκ
= 4(1 − cos θ ) − 1

3

(
r̃

sin θ

)3

(2 − 3cos θ + cos3θ ).

(6)

Notice that Ẽ depends only on the dimensionless pore radius
r̃ and on the extent of bulging represented by θ .

In Fig. 2, we plot Ẽ versus θ for several values of r̃ . We find
a critical value of r̃ given by r̃c ≈ 2, such that if r̃ < r̃c, there
is a local minimum energy state at a small (nonzero) value
of θ corresponding to an almost flat membrane, separated by
an energy barrier from the bulged shapes represented by large
values of θ . As r̃ approaches r̃c, the energy barrier shrinks, and
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FIG. 2. (Color online) Energy (in units of πκ) as a function
of the bulge angle θ for several values of the dimensionless pore
radius r̃ = r/ lp. The minimum value of r̃ that allows bulges to
form spontaneously is r̃ ≈ 2. Schematics indicate the membrane
conformation at low and high values of θ .

disappears for r̃ > r̃c. Thus for r̃ > r̃c there is no metastable
state corresponding to an almost flat membrane and no energy
barrier to prevent a membrane bulge from growing. In this
sense, r̃c represents the rescaled critical pore radius. We note
that even for r̃ < r̃c, given sufficient time, there is a finite
probability of the membrane crossing the energy barrier and
bulging out due to thermal fluctuations. However, for a realistic
bending modulus κ = 20kBT at room temperature, the barrier
becomes large (∼100kBT for r̃ = 1.7), making such a process
highly unlikely within a cell’s lifetime. Thus r̃c provides a
reasonable estimate of the minimum pore size for spontaneous
membrane bulging. Using an estimated turgor pressure P = 1
atm, we find lp = (κ/P )1/3 ≈ 9 nm, and a critical pore radius
of rc = r̃c × lp ≈ 18 nm. This size is larger than the typical
pore size of a highly crosslinked cell wall [17], and corresponds
to a distance of ∼10 glycan strands measured along the long
axis of the cell.

To better understand the results in Fig. 2, we note that for
small θ , Ebend ∼ θ2 while Epress ∼ −θ . For r̃ < r̃c, the local
minimum at small θ is given by the balance between these two
contributions. More precisely, expanding to order θ3 for small
θ , Ẽ ≈ 2θ2 − r̃3(θ + θ3/6)/4.

For small r̃ , one can ignore the θ3 term to determine
the minimum in Ẽ at θ ≈ r̃3/16. Since the position of this
minimum grows as r̃3, as r̃ → r̃c the θ3 term becomes im-
portant and overcomes the positive curvature at the minimum.
Also note that as θ → π , i.e., when the bulge approaches
a complete sphere, the energy is negative and diverges as
−(4/3)[r̃/(π − θ )]3.

To determine the value of r̃c analytically, we note that for
r̃ > r̃c the slope of the curve for E versus θ is negative for
all 0 < θ < π . Thus when r̃ equals the critical value r̃c, the
maximum value of the slope ∂Ẽ/∂θ equals zero. The slope is
given by

∂Ẽ

∂θ
= 4 sin θ − r̃3

(1 + cosθ )2 , (7)
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and the condition ∂Ẽ/∂θ � 0 yields r̃3 � 4 sin θ (1 + cos θ )2.
Therefore at the critical pore radius, r̃3

c equals the maximum
value of the right-hand side, whose extrema are given by the
condition

(1 + cos θ )2 (3cos θ − 2) = 0. (8)

One trivial solution, θ = π , is a saddle point corresponding
to a complete bulge. The other solution, cos θ = 2/3, is a
maximum and determines the critical pore radius r̃c ≈ 2.02,
which agrees well with our previous estimate.

We next investigate the effect of membrane surface tension,
represented by the energy contribution

Esurf = σA(θ ) = 2πσr2(1 − cosθ )/ sin2 θ.

Note that at small θ , this term is proportional to σθ2, aside
from a constant energy. Thus for positive σ (corresponding
to an energy cost for drawing out membrane), the scaling of
Ẽ ∝ θ2 remains the same for small θ . The basic form for the
E versus θ curves is similar, though the additional energy cost
due to Esurf increases the critical pore radius. By defining the
dimensionless surface tension σ̃ = σ/(κP 2)1/3, the rescaled
bulge energy can be written as

Ẽ = 4(1 − cos θ ) − 1

3

(
r̃

sin θ

)3

(2 − 3 cos θ + cos3 θ )

+ σ̃ r̃2

cos2(θ/2)
. (9)

For r̃ � r̃c, the condition ∂Ẽ/∂θ � 0 can be expressed in the
form 0 � r̃3 + ar̃2 + br̃ + c with a = −2σ̃ sinθ , b = 0, and
c = −4sinθ (1 + cosθ )2. Treating r̃3 + ar̃2 + br̃ + c = 0 as a
cubic equation in r̃ , its discriminant, � = 18abc − 4a3c +
a2b2 − 4b3 − 27c2, can be shown to be negative definite in
the range 0 < θ < π for σ � 0. Negative � implies one real
and two complex conjugate roots, hence the inequality can be
written as 0 � (r̃ − r̃1)[r̃2 + αr̃ + β], where r̃1 corresponds to
the real root, and r̃1, α, and β are functions of θ . Since the other
two roots are complex, f (r̃) = r̃2 + αr̃ + β cannot cross the
x axis (corresponding to f = 0), and thus we find f > 0 for
all real r̃ and for 0 < θ < π . The sign of −∂Ẽ/∂θ is thus the
same as the sign of r̃ − r̃1; for r̃ < r̃c, r̃ − r̃1 changes signs as
a function of θ while for r̃ > r̃c, r̃ − r̃1 is greater than zero for
all θ (0 < θ < π ) (see Fig. 2). At r̃ = r̃c, the minimum value
of (r̃c − r̃1) is zero, implying that the critical radius can be
obtained by maximizing r̃1 as a function of θ . In Fig. 3, we plot
r̃c as a function of σ̃ . Notice that the dependence of r̃c on σ̃ is
weak at small values of σ̃ . For a typical lipid bilayer membrane
with a rupture tension of 10−2 N/m [18] and κ = 20kBT and
a turgor pressure of P = 1 atm, σ̃ ≈ 10 at rupture. Therefore,
given that we previously considered an unbulged bacterial
membrane to be at low surface tension relative to rupture,
inclusion of surface tension does not dramatically alter our
previous estimate of the critical pore radius.

If the spontaneous curvature of the membrane is nonzero,
the bending energy of the bulge becomes [19]

Ebend(θ ) = 4πκ(1 − RC0)(1 − cos θ ). (10)

Rewriting R as r/ sin θ and introducing a dimensionless
spontaneous curvature C̃0 = C0lp, we obtain the rescaled
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FIG. 3. Rescaled critical radius r̃c as a function of the rescaled
surface tension σ̃ . Inset: r̃c as a function of the rescaled spontaneous
curvature C̃0 at σ̃ = 0.

energy Ẽ. By calculating the slope ∂Ẽ/∂θ , and proceeding
as above, we obtain r̃c as a function of C̃0, as shown in the
inset of Fig. 3. The reduction of r̃c at nonzero C̃0 becomes
significant only when C̃0 > 1, i.e., when the spontaneous
radius of curvature 1/C0 is smaller than lp ≈ 9 nm. Although
this is smaller than the radius of curvature of typical bacterial
phospholipids, the plasma membrane is a multicomponent
membrane, such that aggregation of components with high
intrinsic curvature in the pore region could drive membrane
bulging by reducing the critical pore radius.

III. DISCUSSION AND CONCLUSIONS

To conclude, we estimate that for an osmotic pressure differ-
ential of 1 atm, there is a critical peptidoglycan pore radius of
∼20 nm above which the membrane will spontaneously bulge
through the pore. The critical pore radius scales as P −1/3 so
that at higher pressure the critical pore radius decreases. Since
the critical radius is large compared to the distance between
neighboring peptide and glycan strands in the peptidoglycan
network (typically 2–4 nm), a critical pore in the cell wall
would correspond to several adjacent broken or missing glycan
chains. At the same time, the critical pore radius is small
compared to the cell’s radius of ∼0.5 μm.

In most animal cells, the cortex—a network of actin,
myosin, and associated proteins—lies under the plasma
membrane and determines the shape of the cell. The cortex
enables the cell to resist externally applied stresses and to
perform mechanical work. In many physiological conditions,
transient, localized detachment of the cortex from the plasma
membrane causes the formation of a bleb (a bulge in the
plasma membrane), driven by local contractions of the actin
cortex that push the cytosol outwards and generate a pressure
difference across the membrane [7,8]. A bleb will typically
grow to a size of ∼2 μm over a time scale of 30 sec, and
then retract over the subsequent 2 min. Our analysis can be
directly carried over to model bleb generation. In the absence
of surface tension, a typical pressure difference of around
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100 Pa [7] would correspond to a critical radius of 200 nm,
which is close to the mesh size of the actin cortex [7]. This
indicates that surface tension of the plasma membrane in
animal cells may play an important role in preventing bleb
formation, by increasing the critical pore radius as shown
in Fig. 3.

The related phenomenon of budding and vesicle forma-
tion provides an important means for protein sorting and
trafficking. In intracellular trafficking, protein components of
secretory vesicles, lysosomes, and the plasma membrane are
sorted and directed to specific destinations via vesiculation of
the Golgi complex [20]. In red blood cells, the plasma mem-
brane is anchored at discrete locations to an underlying two-
dimensional spectrin-actin network known as the membrane
skeleton. Vesiculation has also been observed in red blood cells
when cells are treated with amphipathic agents, under change
of pH [10], during blood storage [12], or in diseased cells with
defects in the membrane skeleton. During vesicle formation,
the network does not fragment but instead retracts into the body
of the cell [12]. Vesiculation can also be induced in healthy red
blood cells during externally induced shape changes. While a
red blood cell has the equilibrium shape of a biconcave disk,
a variety of chemical agents can cause the cell to deform in
a systematic manner to form invaginated shapes known as
“stomatocytes” and spiculated shapes known as “echinocytes”
[10,11]. Increased concentration of echinocytic agents results
in vesiculation and shedding of plasma membrane. In this case,
budding and vesiculation are driven by spontaneous curvature
rather than by pressure difference, but our general model of
the energetics of a constrained membrane remains applicable.

In this paper, we have demonstrated that a simple model
for membrane energetics predicts a critical pore radius beyond
which spontaneous bulging will occur, which is in reasonable
agreement with the distribution of pores in a peptidoglycan
network. Our model predicts that the critical pore radius
will increase with increasing surface tension and decrease
with increasing spontaneous curvature or turgor pressure,
suggesting that bulging may depend on the lipid composition
of the membrane and the metabolic state of the cell. The
biological systems we have studied also mimic experimental
devices to measure the mechanical properties of thin films
by pressurizing the film over a pore in an etched silicon
substrate [21]. Our results elucidate the minimum length scales
at which bulging or budding can occur for the broad spectrum
of biomembranes that are typically found coupled to an elastic
matrix such as the cytoskeleton or cell wall, and provide a
mechanistic explanation for the trajectory of a bacterial cell
treated with cell-wall-acting antibiotics.
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