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Periodic three-dimensional assemblies of polyhedral lipid vesicles
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We theoretically study the structure of periodic bulk assemblies of identical lipid vesicles. In our model, each
vesicle is represented as a convex polyhedron with flat faces, rounded edges, and rounded vertices. Each vesicle
carries an elastic and an adhesion energy and in the limit of strong adhesion, the minimal-energy shape of cells
minimizes the weighted total edge length. We calculate exactly the shape of the rounded edge and show that it
can be well described by a cylindrical surface. By comparing several candidate space-filling polyhedra, we find
that the oblate shapes are preferred over prolate shapes for all volume-to-surface ratios. We also study periodic
assemblies of vesicles whose adhesion strength on lateral faces is different from that on basal or apical faces. The
anisotropy needed to stabilize prolate shapes is determined and it is shown that, at any volume-to-surface ratio,
the transition between oblate and prolate shapes is very sharp. The geometry of the model vesicle assemblies
reproduces the shapes of cells in certain simple animal tissues.
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I. INTRODUCTION

Shapes of biological cells and their spatial arrangements
are a fascinating topic that has long been pondered over [1].
Some theories propose that cell shape in certain tissues such
as the mammalian epidermis is determined by the dynamics
of cell division and rearrangement [2–4]. On the other hand,
several types of compact cells, such as those seen in the
early stages of embryonic development [5], in epithelial and
epidermal tissues [6], and in Drosophila retina [7], have been
likened to soap bubbles [1,8], thereby rationalizing their shape
in terms of an equilibrium mechanical model. This analogy
accounts for the round, convex shape of these cells and for
their propensity to form more or less close-packed aggregates
or tissues. At the same time, it identifies the surface tension
as the possible effective physical force responsible for the
observed morphologies and the minimal-area principle as its
geometric manifestation [9]. But the scope of this analogy is
limited: Minimizing the surface area at a given cell volume
readily generates isometric shapes but cannot reproduce the
flattened or the elongated cells seen, e.g., in squamous and
columnar epithelia [10]. A different, more complex theoretical
framework is needed to explain the phenomenology of cells in
these tissues.

Recent studies, fueled by the growing interest in the
physical origin of animal morphogenesis, have exposed two
mechanisms contributing to the effective surface tension of
cells. One is the cortex contractility [11–14], which tends to
minimize the area of the cell membrane. On the other hand, the
cell-cell adhesion between cells in a close-packed aggregate
favors a membrane area as large as possible [15]. Within
this framework, the behavior of cells depends on the relative
magnitude of the cortex tension and the adhesion strength.
At small adhesion strength the cells behave like soap bubbles
and the equilibrium area of the cell is as small as possible
consistent with the volume constraints. But if adhesion is
strong the cell area would expand indefinitely. This unphysical
behavior is regularized by introducing a restoring term which
penalizes large cell area and is typically proportional to
area squared [11,14]. This results in cells having a preferred

surface area. Together with either a prescribed or a preferred
amount of protoplasm [14,16], this model accommodates the
tendency of cells to favor a certain membrane area and cell
volume as two very important morphometric parameters. It
is the strong adhesion variant of this theory that is relevant
for the description of tissues and other cell aggregates. But
the fixed-area and fixed-volume constraints alone generate
too broad a spectrum of shapes: In particular, they do not
distinguish between the prolate and the oblate shapes. Clearly
another mechanism is needed to determine whether cells in an
assembly are elongated or flattened. The so-called differential
adhesion hypothesis (DAH) [17,18] proposes that the adhesion
strength is nonuniform across the cell surface, which may
explain the observed cell geometry [19]. But it is possible
that some other mechanical force can reproduce the same
phenomenology without resorting to DAH.

Here we explore the role of the membrane bending elasticity
in this context. Following the suggestions of Ref. [20] we
keep the model simple and consider the limit where both
cell area and volume are fixed; when combined with the
bending energy, these constraints naturally correspond to lipid
bilayer vesicles [21]. We theoretically study the geometry of
periodic three-dimensional assemblies of identical vesicles:
By considering model polyhedral vesicles, we first show that
the optimal shapes should minimize the weighted total edge
length. The analysis of a set of candidate shapes based on
space-filling polyhedra shows that the preferred shape of cells
in such an assembly is oblate. However, the extended version
of the model where the adhesion strength depends on the
orientation of a face does stabilize assemblies of prolate cells
provided that the adhesion anisotropy is large enough.

This paper is organized as follows: In Sec. II we describe
the model, Sec. III introduces the set of candidate shapes that
we examine, and in Sec. IV we analyze the shape of a rounded
3-valent edge as the most common edge. Section V discusses
the stability of a set of vesicle assemblies derived from
polyhedral partitions of space. By comparing their respective
energies, we calculate the phase diagram, which is then further
elaborated in Sec. VI where we study the effects of adhesion
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FIG. 1. An example of the model periodic three-dimensional
vesicle assembly, which consists of a regular arrangement of identical
rounded polyhedra. Shown here is a part of two adjacent layers of a
stack of prolate regular hexagonal prisms. Each vesicle is a convex
space-filling polyhedron with rounded edges and vertices (top inset).
The lower inset shows the cross section of a regular 3-valent edge.

anisotropy. In Sec. VII we compare the predictions of the
model with the structure of simple animal tissues and discuss
possible extensions of this work. Section VIII concludes the
paper.

II. MODEL

Our model periodic bulk vesicle assemblies consist of
convex polyhedral shapes with flat faces and rounded edges
and vertices (Fig. 1). The flat-face assumption is based on the
observation of the shape of contact zones in linear assemblies
where vesicles are arranged on top of one another like a stack of
coins so that each vesicle has two neighbors. At small adhesion
strengths, the vesicle-vesicle contact zones are curved but at
large enough adhesion strengths they are planar [22,23]. Given
that the three-dimensional assemblies of vesicles are expected
to be stable in the large-adhesion regime, it is thus reasonable
to expect that they too consist of flat-faced shapes [24]. The
areas of all vesicles are identical and so are their volumes; their
roundedness is described by the reduced volume

v = V

4πR3
c /3

= 6
√

πV

A3/2
, (1)

where A is vesicle area, V is its volume, and

Rc =
√

A

4π
(2)

is the radius of a sphere of area A. In any shape, v varies
between 0 and 1; in the sphere, v = 1. Within the Helfrich
theory [25], each vesicle is assigned an elastic energy due
membrane deformations [25,26]:

Wb = K

2

∮
(C1 + C2)2dA. (3)

Here K is the bending modulus and C1 and C2 are the local
curvatures. Within the bilayer-couple model [26], Wb would be
minimized at fixed reduced volume v and at fixed reduced lipid
monolayer area difference �A. But in the strong-adhesion
limit, the monolayer-area-difference constraint does not apply
because the adhesion-induced flip-flops of lipids within the
membrane relax �A [27] so that it is no longer considered
fixed. In adhering vesicles described by the area-difference-
elasticity theory [21,23,28], the magnitude of the adhesion

energy is typically much larger than that of the nonlocal
bending energy and any variations from shapes with relaxed
monolayer area difference are very unfavorable. Thus the
nonlocal bending energy associated with the deviation of
the monolayer area difference from a preferred value is
subdominant for very large adhesion strengths and can be
neglected. As a result, the elastic energy of the vesicles
comprises the local bending energy [Eq. (3)] alone.

We model the adhesion energy by a contact potential

Wa = −�Ac

2
(4)

proportional to the area of contact zones, as in other models
[11–14]. Here � is the adhesion strength, Ac is the total area of
the vesicle’s contact zones, and each of the vesicles in contact
is assigned a half of the adhesion energy associated with a
pair of neighboring vesicles. The dimensionless total energy
per vesicle relative to the bending energy W

sph
b = 8πK of a

sphere is thus

wtot = wb + wa = 1

4

∮
(c1 + c2)2da − 1

2
γ ac, (5)

where c1 = C1Rc, c2 = C2Rc, dA = 4πR2
c da, Ac = 4πR2

c ac,
and reduced adhesion strength

γ = �R2
c

2K
. (6)

In the limit of strong adhesion, it is reasonable to approximate
the regular1 rounded edges by parts of a cylinder (as we show
in Sec. IV) and the rounded vertices by parts of a sphere of
radius R. The adhering membranes experience a discontinuity
of meridional curvature �c at the point where they detach
from each other [29,30]; the reduced discontinuity is given by

�c =
√

2γ . (7)

In our model, the contact zones are flat and so the reduced
curvature of the rounded edges approximated by a cylindrical
surface coincides with the reduced curvature discontinuity
itself: c = �c. Thus the radius of the rounded edges reads
R = Rs/�c = Rs/

√
2γ . Because the curvature of all rounded

parts is identical, the contact area can be written as

Ac = A − 4πR2 − 2πR
∑

i

di

2i/(i − 2)
, (8)

where di is the total length of i-valent edges of the polyhedron.
The denominator in the last term takes into account that the
valency of an edge determines the angle between the faces
meeting at this edge. For all space-filling polyhedra that we
will examine i = 3,4, and 6. Thus the reduced adhesion energy
of shapes with regular edges is

wa = −γ

2
+ γ

2c2
+ γ

4c
λ. (9)

The first term, which is negative, represents the adhesion
energy that the vesicle would have if all of its surface were
in contact with the neighboring vesicles. The second and the

1In a regular 3-valent edge all faces meet at angle 120◦. In a regular
4-valent edge they meet at 90◦.
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third terms are the adhesion energy deficits associated with the
rounded vertices and edges, respectively. Here

λ = 1

Rc

(
d3

6
+ d4

4
+ d6

3

)
(10)

is a weighted reduced total edge length, where weights
are obtained by taking into account that edges of different
valence represent different lengthwise sections of a cylindrical
surface. The elastic energy consists of two terms; the energy
concentrated in the rounded vertices, W vert

b = 8πK , and the
energy of the rounded edges, W

edg
b = πKCRcλ. The total

reduced bending energy reads

wb = 1 +
√

2γ

8
λ; (11)

the first and the second terms correspond to vertices and edges,
respectively. In the limit of strong adhesion, γ � 1, most of
the bending energy is carried by the edges. After combining
wa and wb, the total dimensionless energy can be written as

wtot =
(

1 − γ

2
+ γ

2c2

)
+

(√
2γ

8
+ γ

4c

)
λ (12)

and favors space-filling polyhedra that minimize the weighted
total edge length λ at a given vesicle area and volume.

This formulation of the question of optimal vesicle shape in
a periodic assembly somewhat resembles the Kelvin problem
of partitioning space into cells of equal volume such that
the area is minimal. It is also reminiscent of the so-called
Melzak or waste storage problem of finding the polyhedron
of unit volume (but arbitrary area) of least total edge length
[31–33]. None of these problems has been solved so far. The
best-known area-minimizing partition is the Weaire-Phelan
structure; Kelvin’s orthic tetrakaidecahedron has long been
regarded as the solution [34]. For the Melzak problem, the best
shape found so far is the equilateral upright triangular prism
whose height is equal to the side of the base [35]. Despite the
similarity, the Melzak problem differs from ours in three ways:
(i) it pertains to a single polyhedron rather than to a partition
of space, (ii) the polyhedron area is not fixed, and (iii) the
edge length to be minimized is unweighted. Still the solutions
of Kelvin and Melzak problems and their derivatives are of
relevance in the present context: The former, for example, are
characterized by a reduced volume larger than that achievable
by prismatic shapes.

III. CANDIDATE SPACE-FILLING POLYHEDRA

We seek the optimal structure of vesicle assemblies that
minimizes weighted total edge length λ among a set of 10
candidate shapes based on space-filling polyhedra2 [36]. The
simplest shapes studied are the oblate and the prolate right

2Interestingly, polyhedral shapes are expected not only in adhering
vesicles but also in isolated vesicles whose membrane is composed of
two types of lipids. As in our model, the energy of such shapes resides
primarily in the edges, and the experimentally observed optimal shape
is icosahedral [37,38]. In a theoretical analysis of the problem, the
snub dodecahedron was singled out as the energetically favorable
shape among the 112 convex polyhedra that were examined [39].

(a) (c) (e)

(b) (d) (f)

FIG. 2. (Color online) Three shapes derived from a rhombic
dodecahedron. The first prolate shape shown in panel b is obtained by
cutting the rhombic dodecahedron (panel a) along the mirror plane
perpendicular to the three-fold axis (red line labeled by the scissor
symbol) and inserting a regular hexagonal prism. This produces a
prolate shape whose reduced volume depends on the height of the
inserted prism. The second prolate shape (panel d) is constructed
by cutting the rhombic dodecahedron in panel c along a plane
perpendicular to the four-fold axis (red line labeled by the scissor
symbol) and inserting a square prism. The oblate shape based on
the rhombic dodecahedron is derived from the prolate shape with
four-fold axis extended such that the four hexagonal lateral sides
are regular (panel e). This shape is cut along two parallel planes
equidistant from the mirror plane containing the four-fold axis. The
central part is removed and the two caps form the oblate shape
whose reduced volume is controlled by the thickness of the central
part (panel f). For simplicity we refer to shapes in panels b, d,
and f as 3-elongated rhombic dodecahedron, 4-elongated rhombic
dodecahedron, and flattened rhombic dodecahedron, respectively.

regular triangular prisms, right square prisms, and right regular
hexagonal prisms. We initially studied arbitrary triangular and
quadrilateral right prisms, but it turns out that equilateral
triangular prisms as well as square prisms are energetically
favorable. In these shapes, all edges are regular: The angles
between the faces meeting along the 3-, 4-, and 6-valent edges
are 120◦,90◦, and 60◦, respectively. Thus their energy is well
described by the above theory, and the same applies to the
three shapes that we derive from the rhombic dodecahedron
(Fig. 2). Two of them are prolate: One is obtained by cutting
the rhombic dodecahedron [Fig. 2(a)] along the mirror plane
perpendicular to the three-fold axis and inserting a regular
hexagonal prism of a suitable height so as to generate a body

Although the isolated polyhedral vesicles studied in Refs. [37,38] do
minimize an edge energy similar to that described by Eq. (11), the
minimization is not subject to the fixed-volume constraint (because
of the pores in the membrane) and the shapes need not fill the space as
in a periodic assembly of adhering vesicles. Our model does include
these two restrictions as well as the vesicle-vesicle adhesion energy,
which is why its solutions discussed below depart from those reported
in Refs. [37–39].
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of desired reduced volume [Fig. 2(b)]. The other prolate shape
is created by a similar transformation except that the rhombic
dodecahedron is cut along the mirror plane perpendicular to the
four-fold axis and a regular square prism is inserted between
the caps [Fig. 2(d)]. The oblate derivative shape is obtained
by taking the shape in Fig. 2(d) and cutting out some
volume along the mirror plane that contains the four-fold
axis [Fig. 2(f)]. These transformations preserve the geometry
of all edges so that they remain regular as in the rhombic
dodecahedron itself. As we show in Sec. IV, we can calculate
the exact energy and shape of an arbitrary rounded edge, thus
keeping the edges regular when deriving various shapes is not
necessary. But the regular edge has minimal energy, which is
why keeping them regular seems reasonable.

Another shape that we consider is a flattened variant of
Kelvin’s truncated octahedron or the orthic tetrakaidecahedron
[9,40], also obtained by angle-preserving transformations
producing a shape of two large parallel regular hexagonal
faces and a total of six hexagonal and six rectangular lateral
faces. In a regular space-filling stack of such polyhedra, the
angles between adjacent faces along an edge are approximately
125.25◦-125.25◦-109.5◦. These edges deviate from the regular
120◦-120◦-120◦ geometry and describing them as parts of a
cylinder is no longer valid. They carry an energy different from
that of a regular 3-valent edge and in order to evaluate the
energy of a flattened body based on the truncated octahedron,
we need to investigate the exact shape of rounded edges of a
given geometry described by the angles between the faces.

Each space-filling polyhedron discussed here is associated
with a Bravais lattice. The right square prism (shapes b and
g in Fig. 6 in Sec. V) corresponds to the simple tetragonal
lattice; the cube as its limiting case corresponds to the simple
cubic lattice. Right regular hexagonal prisms (shapes d and
j in Fig. 6) form the hexagonal lattice and so do the right
regular triangular prisms (shapes a and f in Fig. 6; the unit
cell consists of a pair of prisms sharing a lateral face).
The rhombic dodecahedron (shape k in Fig. 6; panel a in
Fig. 2) belongs to the face-centered cubic lattice and the
3-elongated rhombic dodecahedron (shape e in Fig. 6; panel
b in Fig. 2) is a polyhedron based on the trigonal lattice.
The 4-elongated rhombic dodecahedron (shape c in Fig. 6;
panel d in Fig. 2) and the flattened rhombic dodecahedron
(shape i in Fig. 6; panel f in Fig. 2) correspond to the
body-centered tetragonal and the body-centered orthorhombic
lattice, respectively. The trigonal lattice is represented by
the flattened truncated octahedron (shape h in Fig. 6) whose
limiting case—the truncated octahedron—corresponds to the
body-centered cubic lattice. The only Bravais lattices not
considered here are the monoclinic and the triclinic.

IV. SHAPE OF EDGES

The edges occurring in the set of candidate vesicle shapes
described in Sec. III are 3-, 4-, and 6-valent. Except in the
flattened truncated octahedron, all edges occurring in the trial
shapes studied here are regular so the only type of irregular
edge that we need to analyze in detail is the 3-valent edge,
which is a closed planar contour with three cusps (Fig. 3). We
break the loop into sections and first focus on one of them, for
example the arc AB in Fig. 3.

A B

C

D
E

F

FIG. 3. Cross section of a 3-valent edge of arbitrary geometry
parametrized by the angles among the contact zones φ1,φ2, and
φ3 = 2π − φ1 − φ2. Sections corresponding to the contact zones
(DA, EB, and FC) are straight lines and HZi denotes the corresponding
Hamiltonians. The Hamiltonians of the noncontact zones (AB, BC,
and CA) are denoted by Hi .

The bending energy of this section is

Wb = L
K

2

∫ B

A

C2dS = l
4πK

2

∫ B

A

c2ds, (13)

where L is the length of the edge in the direction perpendicular
to the plane of cross section, dS is the arclength of the contour,
and LdS = 4πlR2

c ds. Apart from the bending energy, the
edges also carry an adhesion energy deficit [Eq. (9)]

W def
a = L

�

2

∫ B

A

dS = l
4πR2

c�

2

∫ B

A

ds. (14)

The total dimensionless energy of arc AB per unit edge length
is then

w̃AB = Wb

8πKl
+ W def

a

8πKl
= 1

4

∫ B

A

c2ds + γ

2

∫ B

A

ds (15)

and the equilibrium shape of the contour from A to B is a
stationary state of the functional w̃. Since a planar continuous
contour can be described by the angle between the tangent on
the contour and the x axis denoted by ψ(s) (see Fig. 3), we
rewrite the functional as

w̃AB = 1

4

∫ B

A

ψ̇2
i ds + γ

2

∫ B

A

ds. (16)

After combining w̃AB with w̃BC and w̃CA, we use variational
calculus to obtain a set of differential equations that need to be
solved to get the stationary ψ(s) of each section. The analysis
also gives the boundary conditions that must be satisfied at
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FIG. 4. (Color online) Cross- sections of the rounded edges for a few sets of (φ1,φ2): φ1 = 90◦,φ2 = 90◦–135◦ (steps of 15◦) (left panel);
φ1 = 120◦,φ2 = 70◦–120◦ (steps of 10◦) (middle panel); φ1 = 150◦,φ2 = 65◦–105◦ (steps of 10◦) (right panel). The cross sections are color
coded to indicate the fractional increase of the edge energy per unit length relative to the regular 3-valent edge with φ1 = φ2 = 120◦. As long
as none of the angles is small, the energy increase due to a deviation from the regular configuration is moderate: the T-shaped 90◦-90◦-180◦

edge carries an energy 27.3% larger than the regular edge whereas the 60◦-120◦-180◦ edge is just short of 40% above the regular edge. The
magnitude of the reduced adhesion strength γ affects only the length scale of the curved noncontact arcs of edge cross section but not their
shape. Thus the cross sections shown here are the same in all edges of a given geometry specified by φ1 and φ2: The shape of an edge is
independent of γ and so is the fractional increase of energy.

the cusps (points A, B, and C). These conditions read (see the
Appendix)

ψ̇2
1A + ψ̇2

3A = 4γ,

ψ̇2
2B + ψ̇2

1B = 4γ, (17)

ψ̇2
2C + ψ̇2

3C = 4γ,

where ψ̇1A and ψ̇3A are the dimensionless curvatures at point
A of contours 1 and 3, respectively, etc. A similar condition
was obtained in a study of rouleau-like vesicle assemblies
[22] where the discontinuity in the membrane curvature at the
point where two membranes detach from one another equals√

2γ . Thus Eq. (17) can be regarded as a generalization of the
previously derived boundary conditions [22,30] for the case of
unequal discontinuities, provided the contact zones are flat.

We solve the differential equations for a given set of angles
φ1, φ2, and φ3 = 2π − φ1 − φ2 numerically and obtain the
energy and the shapes of the contours. The results show
that the optimal configuration of a 3-valent edge is indeed
the regular geometry where φ1 = φ2 = φ3 = 120◦ and the
contours are parts of a circle. Our assumption that the regular
rounded edges in periodic bulk lipid vesicle assemblies are
cylindrical is thus justified a posteriori. Figure 4 shows
the contours of a few irregular edge geometries along with
the corresponding energies measured relative to the regular
3-valent edge. Although the energy cost for an irregular edge
configuration increases rather slowly as the angles deviate from
the optimal 120◦-120◦-120◦ geometry, it becomes significant
in the limiting configurations such as the T-junction (left panel
in Fig. 4), which has an energy density that exceeds the energy
density of a regular edge by 27.3%.

Figure 5 shows the edge energy landscape near the
minimum at φ1 = φ2 = 120◦, which emphasizes that the
energy cost of an irregular edge increases rather slowly as
φ1 and φ2 depart from 120◦. For example, a 3-valent edge
in the Kelvin space-filling polyhedron, where faces meet at

angles 125.26◦-125.26◦-109.47◦, carries an energy density that
exceeds that of a regular angle configuration by a mere 1.03%.
Along the line φ1 = φ2 (dashed line in Fig. 5) the relative
energy landscape is well approximated by the parabolic profile
given by 0.036(φ1 − 120)2.

V. COMPARISON OF SPACE-FILLING POLYHEDRA

After having dissected the structure of the edges, we can
compare the energies of the model vesicle shapes presented
in Sec. III. Figure 6 shows the reduced edge length of all
candidate shapes as a function of reduced volume v; the
main message of the comparison is that the oblate shapes
are preferred over the prolate ones. For example, in a
prolate square prism of v = 0.3, the weighted reduced edge
length is λ = 8.26, whereas in an oblate square prism of

130o

110o

120o

115o

125o

130o110o 120o115o 125o

4.5%

0%

1.5%

3.0%

FIG. 5. (Color online) Close-up of the energy landscape of a
3-valent edge in the vicinity of the regular configuration with φ1 =
φ2 = 120◦. For deviations smaller than 10◦, the fractional increase of
the edge energy does not exceed 4.5%.
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FIG. 6. Reduced edge length λ as a function of reduced volume v for the different polyhedra examined: elongated equilateral triangular prism
(a), elongated square prism (b), 4-elongated rhombic dodecahedron (c), elongated hexagonal prism (d), 3-elongated rhombic dodecahedron
(e), flattened equilateral triangular prism (f), flattened square prism (g), flattened truncated octahedron (h), flattened rhombic dodecahedron (i),
flattened hexagonal prism (j), and rhombic dodecahedron (k). Shape k is represented in the graph as a point at v = √

π/21/4
√

3 � 0.861 and
λ = 4.215. The polyhedron with maximal reduced volume v is the truncated octahedron with v = 0.868. The oblate shapes are energetically
favorable across the whole range of v; the hexagonal prism is the overall optimal shape. The inset shows the reduced edge length of the three
shapes with almost identical energy: flattened hexagonal prism (j), flattened rhombic dodecahedron (i), and flattened truncated octahedron (h).
Note that the energies of shapes b and d are only slightly lower than those of shapes c and e, respectively.

identical v, λ = 4.79. Among the polyhedra that we examined,
the hexagonal prism is the optimal shape across a broad
range of reduced volumes v. It is closely followed by a
flattened rhombic dodecahedron and a flattened Kelvin cell,
where the energy cost due to irregular edge geometry was
taken into account. These three shapes share a pair of large
parallel hexagonal faces but their lateral sides are not the
same. In a similar fashion, the weighted reduced edge lengths
of an elongated square prism and the 4-elongated rhombic
dodecahedron are almost identical (curves b and c in Fig. 6).
These two shapes are both characterized by a four-fold
symmetry but their caps are different. The same holds for
the caps of the elongated hexagonal prism and the 3-elongated
rhombic dodecahedron; the main axis of these two shapes is
not the same but their total edge lengths are very close (curves
d and e in Fig. 6). Based on these observations, we conclude
that the polyhedra can be classified according to the overall
symmetry imposed by the shape of their largest faces (in oblate
bodies) or the number of lateral sides (in prolate bodies) and
that the energies of polyhedra belonging to the same class are
generally very similar.

In Fig. 6, we plot the reduced edge length of the candidate
shapes against their reduced volume in the limit of γ → ∞
where the area of the noncontact part of the vesicle membrane
vanishes (so that the edges and vertices are sharp). This is
consistent with the formulation of the minimal-edge-length
problem as proposed in Sec. II. However, at finite adhesion
strength γ edge length λ is slightly smaller than that of
the limiting shape at γ → ∞ due to rounded edges and
vertices. At γ = 100 this effect does not exceed a few percent
and of course decreases with increasing γ . It is of similar
magnitude for all candidate shapes and does not alter the
above qualitative conclusions.

VI. ANISOTROPIC ADHESION

The phase diagram of the model discussed above is rather
plain: For reduced volumes smaller than 0.777, the stable
shape is the flattened hexagonal prism, whereas for 0.777 <

v < 0.811 it is the flattened rhombic dodecahedron (shape i
in Fig. 6), and for 0.811 < v < 0.845 it is the 4-elongated
rhombic dodecahedron (shape c in Fig. 6) and for v beyond
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0.845 it is the flattened truncated octahedron (shape h in Fig. 6;
note that in this regime, the degree of flattening is negligible).
It seems quite natural to ask under what conditions would the
prolate shapes be preferred to the oblate shapes. Given the
clear distinction between the lateral and basal or apical faces
seen in all candidate polyhedra, the simplest extension of the
model that may generate stable prolate shapes is the hypothesis
of anisotropic adhesion, where the adhesion strengths on the
lateral and the basal or apical faces are not identical. A suitable
way of parametrizing the discrepancy of the two adhesion
strengths is by the adhesion anisotropy

α = γL

γBA

, (18)

where γL and γBA are the adhesion strengths on the lateral
and the basal or apical sides, respectively. While anisotropic
adhesion may be difficult to induce in pure lipid vesicles, which
are a passive system, it is characteristic of many animal cells
where it is caused by rearrangements of proteins that regulate
adhesion [41].

Since the polyhedra can be classified in terms of their over-
all symmetry, we now only examine hexagonal, square, and tri-
angular prisms, which simplifies the analysis. In the model ex-
plored here, the cross section of a rounded edge is constructed
using elliptical rather than circular arcs to allow for the dissim-
ilar adhesion strengths on the contact zones radiating from the
edge. Rounded vertices are described by parts of a spheroid.

As in the isotropic variant of the model, each vesicle is
assigned an elastic and an adhesion energy. But the total energy
functional is much more complex because the rounded edges
consist of elliptical arcs and because minimization of the total
reduced edge length λ competes with maximization of areas of
faces with large adhesion strength. For each value of adhesion
anisotropy α, we construct an energy diagram analogous to
Fig. 6 to determine the stable shapes across the whole range
of reduced volumes, and we plot the phase diagram of stable
shapes as a function of adhesion anisotropy α and vesicle
reduced volume v (Fig. 7). Hexagonal prisms are optimal in
the whole region where oblate shapes are preferred, whereas
triangular, square, and hexagonal prolate prisms take turns in
the prolate region of the diagram. It takes a fairly large adhesion

FIG. 7. Phase diagram of prismatic shapes as a function of
adhesion anisotropy α and reduced volume v. Oblate hexagonal
prisms are optimal at small values of adhesion anisotropy (shaded
region), whereas prolate prisms are stable at large α.

anisotropy for the prolate shapes to win over oblate ones at
reduced volumes v < 0.2, but such vesicles are extremely
deflated; the more relevant regime is at v values beyond 0.3
or 0.4. For v > 0.5, the boundary between prolate and oblate
shapes is roughly independent of reduced volume v and is at
around α = 1.5.

To quantitatively characterize the oblate and prolate shapes,
we introduce the aspect ratio as

ξ = b

d
, (19)

where b is the vesicle height and d is the diameter of the circle
whose area is identical to the area of the base of the prism.
In Fig. 8, we plot ξ versus adhesion anisotropy α at fixed
reduced volumes v = 0.25,0.45,0.65, and 0.777. The aspect
ratio is a steplike function of adhesion anisotropy, the steps
corresponding to the transitions between the different shapes.
The largest discontinuity occurs at the oblate-prolate transition
and its magnitude decreases with v. Given the steplike shape of
the curves in Fig. 8, it seems reasonable to characterize them
by the value of ξ below and above the main oblate-prolate
transition (ξo and ξp, respectively). In Fig. 8(b) we plot ξo and
ξp as a function of the reduced volume. This diagram contains
the main information on the aspect ratios of vesicles in the low
and high adhesion anisotropy

(a)

(b)

FIG. 8. (a) The aspect ratio ξ of stable prismatic shapes of v =
0.25, 0.45, 0.65, and 0.777 as a function of adhesion anisotropy
α showing that the magnitude of discontinuity in ξ decreases with
reduced volume. (b) The aspect ratio of the oblate ξo and the prolate
ξp vesicles stable in the small and large adhesion anisotropy regimes,
respectively. As v is increased, the difference in ξ between the two
branches decreases; shapes at large v are fairly isometric, neither
flattened nor elongated.
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regime at a given v. For example, at v = 0.5 the prolate shape
with aspect ratio ξp = 2.9 is stable at large α and the oblate
shape with ξo = 0.2 is optimal at small α. The difference
between ξp and ξo decreases as reduced volume v is increased,
both limiting to 1 at v = 0.778, which is the largest reduced
volume occupied by a right regular hexagonal prism. However,
the aspect ratio of the prolate shape ξp also approaches 1
at v = 0.63 and v = 0.72, which corresponds to the largest
reduced volume occupied by a right square prism and right
regular triangular prism, respectively.

The geometry of the prismatic space-filling shapes is
controlled by the vesicle reduced volume and not by the
energy to be minimized. At any given reduced volume, there
exists one oblate and one prolate prismatic shape of a certain
symmetry and their aspect ratios depend exclusively on v. But
their relative stability is determined by the various types of
mechanical energy. The above results show that in our model,
anisotropic adhesion is needed to stabilize the prolate shapes.
This would also happen in a model stripped of the bending
energy provided that the adhesion strength on lateral faces
is sufficiently larger than that on basal or apical faces. A
simple calculation shows that in a membrane of no bending
rigidity, oblate hexagonal prismatic shapes are stable at α < 1
whereas prolate hexagonal prismatic shapes are stable at α > 1
irrespective of reduced volume v. By comparing the threshold
with the phase diagram shown in Fig. 7, we find that the
effect of bending rigidity of the lipid membrane is to extend
the region of stability of the oblate shapes. Specifically, in
vesicles of reduced volume larger than about 0.5, the threshold
is increased from α = 1 to α ≈ 1.5 roughly independently of
reduced volume.

VII. DISCUSSION

The geometry of animal tissues relies on a range of intra-
and extracellular structures, interactions, and processes much
more complex that those discussed here, and we cannot
expect that a model as simple as ours could be relevant for
their description. But there exist some tissues which consist
of convex polyhedral cells of reasonably regular polyhedral
shape; this typically holds for tissues with a small amount of
extracellular matrix. Notwithstanding the above reservations,
we find it instructive to compare our results with selected
animal tissues discussed below.

A. Mammalian epidermis

The most direct and the most ordered example of a bulk-like
tissue consisting of flattened cells that we are aware of is the top
part of the mammalian epidermis, which consists of polyhedral
keratinized cells stacked in interdigitated columns. Figure 2 in
Ref. [40] exposes the cells in mouse ear epidermis, which are
very similar to the flattened truncated octahedron discussed
in Sec. V. Their two largest faces are hexagonal whereas the
shape of the lateral faces is somewhat less regular; yet the
cell is clearly not prismatic. From Fig. 2 in Ref. [40], one
can estimate the reduced volume v of cells, which is around
v ≈ 0.6 ± 0.1, and the aspect ratio ξ ≈ 0.25 ± 0.05. These
values are consistent with the shapes predicted by either the
isotropic-adhesion or the anisotropic-adhesion variant of our

FIG. 9. (Color online) Scanning electron microscope (SEM)
image of hepatocytes in mammalian liver: The roughly isometric
cells are polyhedral but not identical in shape. The dilations between
some cells are the bile canaliculi. Despite the irregularity of the
polyhedral shape of cells, their columnar stacking demonstrates a
certain degree of cell positional order. A column of cells is outlined
and colored (shaded) to emphasize the polyhedral shapes and should
merely serve as a guide to the eye. Image courtesy of Dr. R. Wagner,
University of Delaware.

model; in the latter case, the adhesion anisotropy α should be
smaller than 1.37.

B. Hepatocytes

Hepatocytes in liver are another example of an assem-
bly of polyhedral cells. These cells are compact, devoid
of any protrusions, and roughly isometric. In Fig. 9, the
predominantly flat faces and the convex polyhedral shapes
of hepatocytes are clearly seen. However, hepatocytes are
separated by the dilations called bile canaliculi so that they
do not constitute a truly space-filling packing. In addition, the
shape of hepatocytes varies from cell to cell so that while
the columns of cells can be easily identified, the overall
regularity is not as pronounced as in epidermis. The diversity
of observed cell shapes, whose reduced volume is clearly
large because they are isometric, is consistent with the small
energy differences between the various space-filling polyhedra
predicted by our model at large v. Figure 6 shows that, for
v > 0.7, the energies of the trial shapes differ by no more than
a few percent. As a result, some variation in shape as well as the
associated positional disorder is expected in any experimental
realization of our model.

C. Epithelia

The three main classes of epithelial tissues include squa-
mous, cuboidal, and columnar epithelia [10]. The first two
types consist of oblate and isometric cells, respectively, which
are generally similar to those discussed in Secs. VII A and
VII B. A columnar epithelium, on the other hand, is made
of prolate cells. The simple columnar epithelium is a single
sheet of closely packed prolate cells lying on the basement
membrane and facing lumen. Such an epithelium can be
regarded as a layer of a limiting case of a bulk stack with
infinitely large adhesion anisotropy so that the adhesion
between the adjacent layers is vanishingly small compared
to the intralayer adhesions.

An example of a simple columnar epithelium is shown
in Fig. 1 of Ref. [42]. From this image one can estimate the
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reduced volume of cells, which is 0.6 ± 0.1, and the cell aspect
ratio ξ ≈ 4.5 ± 1.0. Such a large aspect ratio is consistent
with a very large adhesion anisotropy α [19]. For v ≈ 0.6,
the anisotropic-adhesion variant of our model predicts a cell
aspect ratio of ξ � 3.8 provided that α > 30. It remains to be
verified whether such an adhesion anisotropy is reasonable.

At this junction, we note that it is not easy to imagine
that a large adhesion anisotropy could exist in truly bulk
tissues unless cells themselves were anisotropic; in this case,
anisotropic adhesion would be the result rather than the
cause of a specific cell shape. But if the most common bulk
aggregates are characterized by isotropic adhesion, they should
consist of either flattened or isometric cells depending on the
reduced volume. This conclusion seems to agree with the
fact that the stratified, multilayer epithelia typically consist
of squamous or cuboidal cells whereas the stratified columnar
epithelia are rare.

VIII. CONCLUSIONS

Using the Helfrich membrane bending energy and the
contact-potential model of vesicle-vesicle adhesion, we
have theoretically explored the structure of periodic three-
dimensional assemblies of identical lipid vesicles. We have
shown that at a given vesicle area and volume, the optimal
shape of members of such an assembly minimizes the weighted
total edge length. Across a broad range of reduced volumes,
the equilibrium vesicle shape in assemblies held together by
isotropic adhesion is an oblate hexagonal prism. We have
extended the model by introducing adhesion anisotropy which
distinguishes between the lateral and the apical or basal faces
of vesicles, and we have have determined the threshold value
of the anisotropy needed to stabilize the prolate shapes.

With these techniques for preparation of sizable quantities
of monodisperse vesicles [43], our predictions can be readily
verified experimentally. We also find that the bending elasticity
of the vesicle membrane enhances the stability of flattened
shapes compared to the model based on cortical tension and
intercellular adhesion alone. In our model, the energy of the
assembly is directly associated with the edges of the polyhedral
vesicle shapes. This framework may provide a tractable way
of computing the elastic moduli of an assembly, thereby
constituting a coarse-grained description of the mechanics of
simple tissues such as epithelia [44].

The set of polyhedra studied here is limited to single-cell
partitions of space. Given that all low-energy shapes share the
same overall features, it seems unlikely that the more complex
space-filling structures consisting of two or more dissimilar
polyhedra per unit cell would be considerably better than
those discussed above. Nonetheless, we note that, at very large
reduced volumes, structures based on the A15 lattice [34] or
its variants [45] should be considered simply because at v >

0.868 there exists no single-cell polyhedral partition of space.
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APPENDIX

To determine the shape and the energy of a 3-valent rounded
edge of arbitrary geometry, we break the loop that describes
the edge into sections (Fig. 3). The total dimensionless energy
per unit length of arc AB is given by Eq. (15) and a similar
functional corresponds to each section of the loop. If we
describe the arc by function y(x),

w̃ =
∫ B

A

Ldx, (A1)

where L(x,y,y ′) is the Lagrange function

L = 1

4

y ′′2

(1 + y ′2)5/2
+ γ

2

√
1 + y ′2. (A2)

The corresponding Euler-Lagrange equation yields a fourth-
order differential equation,

−5y ′′3 − 20y ′′′y ′′y ′

(1 + y ′2)7/2
+ 35y ′′3y ′2

(1 + y ′2)9/2
+ 2y(4)

(1 + y ′2)5/2

+ 2γy ′2y ′′

(1 + y ′2)3/2
− 2γy ′′

(1 + y ′2)1/2
= 0, (A3)

which is solved along with the boundary conditions in points
A(xA,yA) and B(xB,yB),

y(A) = kAxA, y ′(A) = kA, (A4)

y(B) = kBxB, y ′(B) = kB, (A5)

that come from the fact that points A and B lie on the two
contact zones which are lines with coefficients kA and kB that
are determined by φ1. For a given set of angles φ1, φ2, φ3 =
2π − φ1 − φ2, and points A, B, C, the contours of all three
sections are obtained by solving Eq. (A3). But coordinates of
points A, B, and C are yet to be determined. The condition that
yields A, B, and C that minimize the total energy is obtained
using variational calculus.

A two-dimensional contour can also be described by ψ(s),
the angle between the tangent on the contour and the x axis.
In this case, the reduced energy per unit length for section i is

w̃ = 1

4

∫ B

A

ψ̇2
i ds + γ

2

∫ B

A

ds, (A6)

and thus the Lagrange function for this section is

Li = 1

4
ψ̇2

i + γ

2
(A7)

and the Hamilton function is

Hi = −Li + q̇i · pi , (A8)

where qi = (xi,ψi) and pi = (∂Li/∂ẋi ,∂Li/∂ψ̇i). Advanced
variational calculus gives the condition that must be satisfied
at points A, B, and C (Fig. 3):

[H2δs2 − p2 · δq2]CB + [H1δs1 − p1 · δq1]BA
+ [HZ1δsZ1 − pZ1 · δqZ1]AD + [H3δs3 − p3 · δq3]AC
+ [HZ3δsZ3 − pZ3 · δqZ3]CF + [HZ2δsZ2 − pZ2 · δqZ2]BE = 0.

(A9)
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The positions of points A, B, and C are varied along the
three radial lines determined by φ1, φ2, and φ3. In any of the
three points δψ = 0, whereas δxi = δsicosψi . The variations
of arclengths are not independent:

δs1B = −δsZ2B = −δs2B,

δs1A = δsZ1A = −δs3A, (A10)

δs3C = δsZ3C = −δs2C.

Because points A, B, and C are independent of each
other, the condition in Eq. (A9) at, e.g., point B can be

rewritten as

−H2B + HZ2B − H1B = 0, (A11)

which gives

ψ̇2
2B + ψ̇2

1B = 4γ. (A12)

Here ψ̇2B and ψ̇1B are the dimensionless curvatures of contour
2 and 1, respectively, at point B. A similar condition is obtained
for points A and C. For a given set of angles φ1, φ2, and φ3, the
coordinates of points A, B, and C satisfy these constraints. In
this way we obtain the energy and the shapes of the contours
for arbitrary φ1, φ2, and φ3 = 2π − φ1 − φ2.

[1] D. W. Thompson, On Growth and Form (Cambridge University
Press, Cambridge, 1917).

[2] H. Honda, M. Tanemura, and S. Imayama, J. Invest. Dermatol.
106, 312 (1996).

[3] B. Dubertret and N. Rivier, Biophys. J. 73, 38 (1997).
[4] M. C. Gibson, A. B. Patel, R. Nagpal, and N. Perrimon, Nature

(London) 442, 1038 (2006).
[5] S. F. Gilbert, Developmental Biology (Sinauer Associates,

Sunderland, 2006).
[6] F. T. Lewis, Anat. Rec. 38, 341 (1928).
[7] T. Hayashi and R. W. Carthew, Nature (London) 431, 647 (2004).
[8] K. J. Dormer, Fundamental Tissue Geometry for Biologists

(Cambridge University Press, Cambridge, 1980).
[9] D. N. Menton, J. Invest. Dermatol. 66, 283 (1976).

[10] B. Alberts, A. Johnson, J. Lewis, M. Raff, T. Roberts, and
P. Walter, Essential Cell Biology (NY Garland, New York, 2004).
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