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Postfragmentation density function for bacterial aggregates in laminar flow
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The postfragmentation probability density of daughter flocs is one of the least well-understood aspects of
modeling flocculation. We use three-dimensional positional data of Klebsiella pneumoniae bacterial flocs in
suspension and the knowledge of hydrodynamic properties of a laminar flow field to construct a probability
density function of floc volumes after a fragmentation event. We provide computational results which predict
that the primary fragmentation mechanism for large flocs is erosion. The postfragmentation probability density
function has a strong dependence on the size of the original floc and indicates that most fragmentation events
result in clumps of one to three bacteria eroding from the original floc. We also provide numerical evidence
that exhaustive fragmentation yields a limiting density inconsistent with the log-normal density predicted in
the literature, most likely due to the heterogeneous nature of K. pneumoniae flocs. To support our conclusions,
artificial flocs were generated and display similar postfragmentation density and exhaustive fragmentation.
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I. INTRODUCTION

In modeling the flocculation dynamics of bacterial and other
biological and cellular aggregates in flowing aqueous environ-
ments, three important phenomena arise: growth, aggregation,
and fragmentation [1]. Though much attention has been given
to the dynamics of floc aggregation since von Smoluchowski
published his coagulation equations in 1916 [2], the research
into floc breakup has been less successful as the complex,
stochastic nature of shear-force-induced fragmentation makes
the mathematics of floc breakup significantly more challenging
than that of aggregation [3]. Simulations of the breakup process
have been completed (e.g., Refs. [4-6]), though the focus
of these studies were on aggregates held together through
short-range van der Waals attractions. The extension and
rupture of polymer networks differs fundamentally from the
breakup of flocs whose structure is due to these short-range
attractions [7]. Direct observation of the fragmentation process
is challenging, though it has been visualized for flocs in
extensional [8—11] swirling and contraction [12] flows. Various
strategies have also been proposed to infer floc strength
indirectly including microscale cantilever beams [13], atomic
force microscopy [14], and traditional particle sizer techniques
[15,16] (augmented by modeling).

This paper considers a representative example of a bac-
terial species, Klebsiella pneumoniae, that commonly grows
in an aggregate community. Klebsiella pneumoniae is an
aggregate and biofilm forming organism common to fresh
water environments and is also frequently encountered as a
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human pathogen [17,18]. In human disease it is an important
cause of biofilm-based intravenous catheter infections and
therefore a common cause of disseminated bloodstream
infections. Klebsiella is a typical member of the family
Enterobacteriaceae, to which belong a number of problematic
species for mankind, including Escherichia coli (causing
food borne diarrheal and urinary tract illnesses), Salmonella
and Shigella (causing water borne diarrheal illness), Yersinia
(plague), and Erwinia (an important group of agricultural
pathogens). Relevant to the current discussion, a recent study
(by the Younger and Solomon labs) carried out high-resolution
confocal microscopic imaging analysis of K. pneumoniae
aggregates (data on file). It is from these results that the current
analysis proceeds.

A vital component of the fragmentation kernel for mathe-
matically modeling K. pneumoniae flocculation dynamics is
the probability density of floc sizes after a fragmentation event
[the postfragmentation probability density, I'(x;y)], which
defines the density function for producing a daughter floc of
size x from a floc of size y. Many different functional forms
of the postfragmentation probability density are used in the
literature and we direct the interested reader to the extensive
reviews in Refs. [19-22]. The same forms commonly appear
for use in modeling both animate (e.g., algae [23,24], bacteria
[1], yeast [25]) and inanimate (polymer [19,22]) material.

The two most prominently used functional forms are
binary and log-normal densities. The binary density typically
assumes that any fragmentation event results in two equally
sized daughter flocs, i.e., the mean field approximation to
a B fragmentation process. The log-normal is derived from
assuming that an unlimited cascade of fragmentation events
will result in many small and a few large daughter flocs.
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Kolmogoroff [26] showed the log-normal density to be the
limiting density for repeated, exhaustive fragmentation, and
Lu and Spielman [27] and Pandya and Spielman [28] adopted
this result for repeated floc erosion. One assumption which
yields a log-normal density is homogeneity and does not hold
for our bacterial flocs. The predictions from our computations
suggest that neither are binary fragmentation symmetric nor
does exhaustive fragmentation yield a log-normal size density.

The focus of this paper is to construct a postfragmentation
particle size probability density function for bacterial aggre-
gates based on high-resolution structural measurements of
K. pneumoniae. We focus on particles in linear, laminar flow
primarily for analytic simplicity, but note the potential rele-
vance of this particular flow regime to one of Klebsiella’s most
troublesome features, the tendency to invade the bloodstream
of critically ill patients.

Section II describes the method used to construct the post-
fragmentation density function from the three-dimensional
(3D) positional data. Section III reports the results of the
simulated floc breakup and discusses the implications of the
findings. Section III also supports our results by comparing
them with those of artificially generated flocs. Section IV
summarizes the conclusions of the work.

II. MODEL AND METHODS

Our goal is to develop an analytic strategy for identifying
breakage locations, calculating the associated stress due the
hydrodynamic forces at work, and then using that information
to predict if a fragmentation event will occur. This process
must consider both the geometry and the material properties of
the floc as well as the hydrodynamic environment. Aggregates
are discretized into a countable number of bacteria that are
assumed to be nonbreakable. Klebsiella pneumoniae is a
cylindroid, roughly twice as long as wide, and we assume
that this shape does not significantly impact our results. While
we have data on the 3D locations and orientation of the bacteria
that constitute a given floc, the density and extent of the
extracellular polysaccharides (EPS), or biofilm, are unknown.
We assume an EPS layer of uniform thickness encapsulating
each bacterium, and no additional strength or structure is
attributed to any overlapping regions. Last, note that in our
analysis we do not consider the possibility of an EPS fragment
(without bacteria) separating from the mother floc.

A. Description of the data

The 3D structural data of 39 aggregates were collected
and imaged in the Younger and Solomon labs [29]. In brief,
bacterial aggregates were obtained by growing organisms in
defined media under gentle hydrodynamic conditions. These
structures were fluorescently stained and then imaged with
confocal microscopy to produce 3D image volumes containing
each bacterium in an aggregate. Image analysis software [30]
identified the Cartesian coordinates of the center of mass of
each cell. Note that we use all 39 aggregates in the estimation
of I'(x; y).

B. Breakage location identification

Our analysis of possible fragmentation locations is based
entirely on the relative positions of the bacteria that constitute
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a given floc. The discretized nature of the bacteria allows us
to characterize the aggregate as an undirected graph where the
centers of mass of the individual bacteria are the nodes and
the pairwise connections between the centers of mass are the
edges. Each edge is given a weight corresponding to the dis-
tance between the two bacteria it connects. A spanning tree
of a graph is any subset of edges with no closed loops where
the edges connect all the nodes in the graph. The minimum
spanning tree (MST) is the spanning tree that minimizes the
sum of the weights of the constituent edges and is unique for
graphs with distinct edge weights. Further information on the
MST and its properties can be found in Ref. [31].

By finding the MST using distances as the edge weights,
we identify the smallest total distance needed to connect all the
bacteria in the floc. We assume the longest edge in the MST
is the most likely to fragment first because it indicates the
largest distance between neighboring bacteria. Conceptually,
if the uniform EPS layer were reduced in thickness until a
separation occurred, the first separation would be located on
the longest edge of the MST.

We use Kruskal’s algorithm [32] for finding the MST
and consider each edge in the MST as a candidate for
fragmentation. The fragmentation plane is taken to be the
perpendicular bisector of the edge and separates the floc
into two daughter flocs. A sample floc from our data set,
its bacterial centers of mass, and the corresponding MST are
depicted in Fig. 1(a), while an alternative view with a candidate
fragmentation plane P, is depicted in Fig. 1(b).

C. Simplification of the model

Flocs come in all shapes and sizes, and this spatial variation
makes calculating the exact hydrodynamic forces at work on
the effective surface of the floc challenging. We therefore
use an approximation which facilitates calculation while still
capturing the general shape of the floc.

Optical observations [8] find that simple shear flow leads
to rotation of the floc, and its motion can be understood
by the behavior of a solid ellipsoid. We approximate the
aggregate by an ellipsoid tumbling in a linear flow field as
is assumed in Refs. [8,9,12] and validated in Refs. [15,16]. To
find a hydrodynamically equivalent ellipsoid, we use principle
components analysis (PCA) on the spatial data for centers of
mass of the bacteria in the floc. PCA yields an orthogonal linear
transformation that maps data to a new coordinate system
such that each principle component sequentially accounts
for as much of the variability as possible. On spatial data,
PCA simply performs a coordinate rotation that aligns the
transformed axes with the directions of maximum variance.
Further information on PCA can be found in Ref. [33].

The floc is rotated to align the longest semiaxis (with
length a;) with the x axis, the next longest (with length
ap) with the y axis, and the shortest (with length a3) with
the z axis. For visualization purposes, we depict in Fig. 2
the rotated centers of mass and semiaxes for an equivalent
ellipsoid. We chose the magnitude of the semiaxes as twice
the standard deviation along the principal components, though
note that the calculation of the hydrodynamic forces depends
only upon the ratio of the semiaxis lengths and not upon the
lengths themselves (see Sec. II D). The surface of the aligned
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FIG. 1. (Color online) (a) Sample floc, enveloped by the effective surface of a uniform EPS layer (3D reconstruction). The red circles are
the centers of mass of the bacteria in the floc and the blue lines are the edges that constitute the minimum spanning tree (MST) of the centers
of mass. (b) Alternate view of the same floc shown with a sample fragmentation plane P, determined by the edge in the MST identified by an

arrow. Axes are in pm.

ellipsoid is denoted D and described by D: ;“—z + Z—z + ;—z =1,
where a; > a» > as. l ’ ’

Our focus is primarily on medium to large flocs, but for
completeness small flocs are included in our analysis. Our
results take the size of the mother floc into consideration, and
we note the impact of finite-size effects in small flocs. When
any semiaxis length is found to be less that 1 pm, the value
is replaced with 1 pum to allow for the presence of the EPS.
When only two bacteria make up a floc, using PCA to find
the equivalent ellipsoid fails due to the lack of any variance
of the data in the second and third principle directions. In this
case, we assume the length of the first semiaxis to be half the
distance between the two bacteria plus an additional 1-um
buffer for the EPS, and we assume the length of the second
and third semiaxes to be 1 um.

D. Hydrodynamic forces

The forces on the surface of an ellipsoid in a linear
flow field are well understood [34,35] and our criteria for
floc breakage is determined by comparing floc strength to

20

=30 20 x

FIG. 2. (Color online) Sample floc depicting the centers of mass
of the bacteria in the floc, the corresponding MST, and the semiaxes
of a hydrodynamically equivalent ellipsoid as determined using PCA.
Axes are in pm.

hydrodynamic forces. While the energy-based approach
advocated in Refs. [36,37] is more general, we consider only a
laminar flow environment and not one with turbulent mixing.
Thus the energy dissipation rates and the potential energy
associated with the rupture need not be formulated for our
case.

We consider the floc immersed in a linear shear flow field,
represented by a 3 x 3 matrix, G, where the (1,2) element is y
and all other elements are zero. The parameter y is the constant
fluid shear rate along the y axis.

The center of mass of the floc is assumed to be moving
with the flow, so the only hydrodynamic forces acting on
the ellipsoid are due to rotation (Jeffery [38] provides a
formulation for this force). We assume the fluid’s pressure on
the ellipsoid is negligible. The rotational force on the surface
of the ellipsoid is given by

3
fr = 4y (A -3 xkAk,kI) n, )
k=1

where u is the viscosity of the fluid, n is the normal vector to
the surface of the ellipsoid, y; are elliptic integrals involving
the semiaxis lengths, and A is a matrix linearly dependent
on G and the semiaxis lengths. The formulations for x; and
A can be found in the equations in Appendix A, adapted
from Blaser [35]. Last, note that fr depends only on the
ratios of the semiaxis lengths and not on the semiaxis lengths
themselves.

If we constrain the net hydrodynamic torque to be zero, we
can use the Jeffery equations to find the angular velocity, w,
of the ellipsoid. We assume the semiaxis a3 and the vorticity
vector of the shear flow are constant, reducing the Jeffery
equations to a single equation for the angular velocity around
the z axis:

2 2

—QL,+4 "D p 2

w3=Qi2+ 55— Ei2, 2)
ajy +a,

where E; ; and €2; ; are the (i ,k)-th entries of the rate-of-strain
tensor E = %(G + GT) and the vorticity tensor Q = %(G —
G").

The formulation for the force is given in the body-fixed
frame and the velocity gradient given in the laboratory frame
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FIG. 3. (Color online) Sample floc depicting the centers of mass
of the bacteria in the floc, the corresponding MST, a hydrodynami-
cally equivalent ellipsoid, and sample ellipsoid surface force vectors
(in Newtons) per unit area (longer vectors denote larger magnitude
forces). Note that this figure is a projection of the data onto the
xy plane. The force vectors have no z component because of the
ellipsoid’s alignment with the flow and the largest forces occur around
the ellipsoid’s equator (the a; x a, plane). Axes are in pum.

G’ must be rotated using the transformation G = R G’ RT.
Since we assume only rotation about the z axis, the rotation
matrix is given by

cos¢p sing O
R=|—sin¢g cos¢p O], 3)
0 0 1

where ¢ is the counterclockwise angle of rotation measured
from the positive xaxis. The motion of the ellipsoid is then
related to the angular velocity by the equation ¢’ = ws.

The forces calculated through this method are vector
quantities of stress (force per unit area) on the surface of the
ellipsoid and are visualized in Fig. 3. Note that this formulation
accounts for all shear-flow-induced forces on the surface of the
ellipsoid.

E. Construction of a postfragmentation probability
density function

This section describes the procedure we use to con-
struct the postfragmentation probability density function,
['(x;y), from the data. After finding the MST for one floc
(Sec. IIB), we find a hydrodynamically equivalent ellipsoid
(Sec. IIC) and calculate the stress on the surface of the
ellipsoid (Sec. II D).

The longest edge in the MST is the largest distance between
neighboring clusters of bacteria, and thus the perpendicular
bisector (P, ) of that edge is a candidate separation plane for
the floc. This plane divides the ellipsoid into two pieces, and
integration of the forces normal to P, over each piece of the
ellipsoid yields the total tensile force:

Fl:)// fRnJ_dA“i“// fR-nLdA', 4@
D>P, D<P,
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where n, is the unit normal to P,. Because the ellipsoid is
in a laminar shear field, it rotates and we calculate the force
over one period of motion, using the maximum value in the
calculation of the maximum tensile stress, opax-

When the rupture stress, o,, of the EPS is exceeded, we
say a fragmentation event has occurred. If oy, for the longest
edge in the MST does not exceed o,, we recursively consider
Omax for the next longest edge in the MST as a candidate
for separation until o, is exceeded. When a fragmentation
event occurs, the edge under consideration is removed from
the MST, creating two disconnected graphs which represent
the two daughter flocs formed by the fragmentation. Each
daughter floc is then considered to be a new floc for potential
fragmentation and analyzed as such. If o, is never exceeded
along any edge in the MST, we say the floc does not
fragment.

The algorithm is outlined by the following pseudocode
to facilitate understanding. A more detailed version of the
algorithm can be found in Appendix B.

(1) INPUT = Flocs = List of flocs

(2) WHILE i < (No. of flocs in Flocs)

(3)  Find MST for Flocs(i)

(4)  Find equivalent ellipsoid for Flocs(i)

(5) FOR =k =1:(No. of edges in MST)

(6) Find P, for k" longest edge (separation plane)

@) Omax = Max tensile stress for separation plane
(8) IF = omax 2 o
) — Fragmentation Event

(10) Add daughters to Flocs

(11 GOTO 14

(12) END IF
(13)  END FOR
(14) i=i+1
(15) END WHILE

We repeat this process for each floc and construct a
normalized histogram of the daughter floc sizes relative to the
mother floc. This relative size is determined from the fraction
of the number of bacteria in the mother floc that are in each
daughter floc. To allow for future laboratory comparison, we
apply the algorithm to selected combinations of fluid shear
rates and feasible biofilm rupture stresses. We allow the biofilm
rupture stress (o, ) to vary between 1 and 150 Pa and the fluid
shear rate () to vary between 10 and 500 s~'.

III. RESULTS AND DISCUSSION

We investigated the postfragmentation density functions,
I"(x; y), for various combinations of fluid shear rate and biofilm
rupture stress. In all cases we explored, the resultant density
functions predominantly exhibit fragmentations resulting in
one daughter floc significantly larger than the other. This
suggests that the primary type of fracture occurring is the
erosion of small clumps of bacteria off the mother floc, where
we define erosion to be any fracture where one daughter
floc is at least threefold the size of the other daughter floc.
In the following sections we investigate the dependence of
the postfragmentation density function on the size of the
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FIG. 4. Sample postfragmentation density function I'(x; y) (o, =
10 Pa, y = 100 s™") considering (a) all mother flocs, (b) only mother
flocs with 15 or more bacteria, and (c) only mother flocs with fewer
than 15 bacteria. The x axis is the size of a daughter floc as a fraction
of the size of the mother floc.

mother floc and different combinations of fluid shear rate and
biofilm rupture stress. We also examine the density of particle
sizes after exhaustive fragmentation, which we define to be
the result of repeated fragmentation until the hydrodynamic
forces are insufficient to fragment any remaining flocs. Finally,
we support our results by comparing then with artificially
generated flocs with statistical properties similar to flocs
acquired in the laboratory.

A. Dependence on mother floc size

The density I'(x;y) depends heavily on the size of the
mother floc since it is dramatically different when 1 or 2
bacteria fragment from a mother floc with 100 bacteria than
from a mother floc with 5 bacteria. According to our definition,
erosion is only possible for flocs with 4 or more bacteria
and flocs consisting of 2 or 3 bacteria are unable to have
any fragmentation event result in erosion. An example of a
postfragmentation density function using mother flocs of all
sizes (o, = 10 Pa, y = 100 s~!) is shown in Fig. 4(a). The
same density is also shown having been separated into mother
flocs with 15 or greater bacteria [Fig. 4(b)] and those with
fewer than 15 bacteria [Fig. 4(c)].

If we consider only mother flocs with 15 or more bacteria,
over 90% of the fractures can be classified as erosion. Even for
mother flocs as small as 5 bacteria, over 80% of the fractures
are due to erosion. The resulting shape is distinctive, with the
highest probability occurring on either end of the domain and
the lowest occurring in the center [similar to Fig. 4(b)]. For
smaller mother flocs, the density is more uniform, with spikes
at the even fractions where it is possible to produce daughter
flocs. For example, there are spikes at ; and 3, reflecting
mother flocs with 3 bacteria fracturing into daughter flocs
with 1 and 2 bacteria, respectively.

PHYSICAL REVIEW E 83, 041911 (2011)

The inclusion of mother floc size as a parameter in the
density is common practice in the literature. For example,
a uniform density function for producing a daughter floc of
size x from a mother floc of size y can be represented by
I'(x;y) = y~! for x € [0,y] (see Ref. [19] for a summary of
forms).

We examine the heavy dependence on the mother floc size
more closely by considering it as a parameter in the post-
fragmentation density function. While the number of mother
flocs of a specific size varies in our data, there is enough
resolution to see the general shape of the density evolve with
the size of the mother floc [Fig. 5(a)]. For small mother flocs,
we observe large spikes at fractions of the mother floc size.
As the mother floc size increases, the largest of these spikes
moves toward the edges of the domain, similar to several of
the experimental results in Ref. [13] for densely packed flocs.
This migration is indicative of the trend for daughter flocs
with a small number of bacteria to erode from the mother floc
[Figs. 5(b)-5(d)].

B. Dependence on fluid shear rate and biofilm rupture stress

As mentioned, there are slight differences in the density
functions for different combinations of fluid shear rate and
biofilm rupture stress. Figure 6 depicts sample combinations
of y and o,. A combination of high rupture stress and low fluid
shear rate (depicted in Fig. 6 upper right, o, = 15 Pa, y =
50 s~1) reduces the number of small mother flocs and thus the
corresponding I'" more closely resembles the density for only
larger mother flocs seen in Fig. 4(b). Fewer fragmentations
occur because the hydrodynamic forces acting on the floc are
weaker. Conversely, a combination of low rupture stress and
high fluid shear rate (depicted in Fig. 6 lower left, o, = 5 Pa,
y = 150 s71) increases the number of fragmentations of small
flocs, resulting in a density resembling I" for only small mother
flocs [Fig. 4(c)].

When considering a constant rupture stress value and al-
lowing the shear rate to increase, we see similar fragmentation
behavior among all stresses. The shift from large mother floc
to small mother floc densities occurs near y = 100,. We
also notice a large increase in the number of fragmentation
events that occur, depicted for various (o,,y) combinations in
Fig. 7. For high rupture stresses, the number of fragmentations
can increase by a factor of 1000 as the shear rate increases
from 10 to 500 s~'. For low rupture stresses, there is little
difference since even small stresses will cause a fragmentation
to occur and the number of fragmentations is limited primarily
by the number of bacteria present. Whenever more than
1000 fragmentation events occur, the density function is well
represented by the example shown in Fig. 5(a), and typically
the number of fragmentations exceeds 1000 when y > 100,.

C. Particle density after exhaustive fragmentation

Many different functional forms of the postfragmentation
probability density have been used in the literature. As
mentioned earlier, the two most common are binary and
log-normal. For exhaustive fragmentation, our results do not
convincingly match the log-normal density. We denote the
exhaustive density as I'gx, the size density of daughter flocs
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FIG. 5. Sample postfragmentation density function I'(x; y), depicting dependence on mother floc size, y. (a) Contour plot of the density.
The y axis is the mother floc size and the x axis is the size of a daughter floc as a fraction of the size of the mother floc. Also shown are (b)

I'(x;4), (¢) I'(x; 10), and (d) I'(x; 30).

after repeated fragmentation. Our computations suggest that
'ex exhibits many small and few large flocs. Figure 8(a)
depicts a sample comparison between ['gx and a discretized
log-normal density fit to I'gx for o, = 10 Paand y = 150 s7!.
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FIG. 6. Postfragmentation densities for various combinations of
fluid shear rates and biofilm rupture stresses. As fluid shear rate
increases, the number of fragmentations increases (Fig. 7) resulting
in many small flocs fragmenting and a more centralized density
function. Increasing rupture stress has the opposite effect, decreasing
the number of fragmentations and resulting primarily in erosion.

The Hellinger distance [39] between I'gx and the fitted
log-normal density ranges between 0.13 and 0.74. While the
asymptotic tails of I'gx and the log-normal densities do match,
the majority of the probability in I'gx is not captured by
log-normal.

Note that to allow comparison between I'gx and the log-
normal, we discretized the log-normal density over a partition
of the domain chosen to match the I'gx bins. Naturally, this
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FIG. 7. Total number of fragmentations that occur for different
values of biofilm rupture stress (o,) and fluid shear rate (y).
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(b) DLA—generated flocs
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FIG. 8. (Color online) Sample floc size density (o, = 10 Pa, y = 150 s~!) after exhaustive fragmentation I'zx (blue circles), along with
fitted, discretized log-normal densities (red stars). Densities are shown for (a) laboratory-acquired flocs and (b) DLA-generated flocs. The
x axis is the number of bacteria in a remaining floc and the y axis is probability. I'gx reaches a lower bound near flocs of size 20 in the
laboratory-acquired flocs and size 40 in the DLA-generated flocs due to the finite number of flocs present. Note the underprediction of single
bacteria flocs and flocs larger than 8, and the overprediction of flocs between these values.

does introduce some error, but it is on the order of the bin
widths. Furthermore the derivation of the log-normal density
assumes homogeneity of structure. As can be seen in Fig. 1,
K. pneumoniae flocs are heterogeneous; the fractal dimensions
for our flocs range between 1.8 and 2.4.

D. Comparison with similar
diffusion-limited-aggregation-generated aggregates

To explore the possible effects on our results of having
a sample size of 39 flocs, we artificially generated flocs for
analysis and comparison with the laboratory-acquired flocs.
An extension of Witten’s and Sanders’s diffusion limited ag-
gregation (DLA) algorithm [40] was implemented to construct
these additional flocs. The DLA algorithm was modified in
two ways. First, the restriction that particles be placed on a
simple cubic lattice was removed, allowing new particles to be
placed freely in space. Second, we allow the distance between
particles as they are placed to vary, with the specific distance
for each new placement being drawn from the distribution
of edge lengths in the MSTs of the original 39 flocs. We do
not consider the spatial distribution of edge lengths, allowing
long edges to appear throughout the floc as is observed in our
laboratory flocs. For further details on DLA, we direct the
interested reader to Refs. [40,41].

From more than 10 000 DLA-generated aggregates, we
chose 1159 for analysis by comparing the distribution of edge
lengths in their MST to that of our laboratory-acquired flocs.
We found the Hellinger distance between the edge-length
distributions of each DLA-generated floc and the laboratory
flocs. The range of Hellinger distances was 0.16 to 0.36, and
we selected the flocs where the distance was less than 0.21.
The fractal dimension was also checked to ensure it lay in the
range of fractal dimensions present in the laboratory-acquired
flocs. The selected DL A-generated aggregates were then used
in our algorithm for generating a postfragmentation density
function.

The resulting density function depicted in Fig. 9(a) is
consistent with the density function based on our laboratory-
acquired flocs. All DLA-generated flocs showed the predom-
inant fragmentation mechanism to be erosion. The Hellinger
distance between the postfragmentation density function for
the laboratory-acquired flocs and that for the DLA-generated
flocs for each mother floc size is shown in Fig. 9(b). The
increase in this value as the mother floc size increases can be
attributed to the small number of mother flocs of a specific
size in our laboratory data. The DLA-generated flocs clearly
have the same fragmentation behavior as the laboratory-
acquired flocs and support our results.

The DLA-generated flocs were also used to construct the
density of particle sizes after exhaustive fragmentation, and
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FIG. 9. (a) Contour plot of the postfragmentation density function constructed by our algorithm for 1024 DLA-generated flocs. The y axis
is the mother floc size and the x axis is the size of a daughter floc as a fraction of the size of the mother floc. (b) The Hellinger distance between
the postfragmentation density functions of the laboratory-acquired flocs and the DLA-generated flocs as a function of mother floc size. The

y axis is the mother floc size and the x axis is the Hellinger distance.

these results are consistent with those of the laboratory-
acquired flocs [Fig. 8(b)]. For the example densities shown
in Fig. 8, the Hellinger distance between the data and the
fitted log-normal curve is 0.29 for the laboratory data and
0.26 for the artificial data, while the Hellinger distance
between the densities for the laboratory and artificial data is
merely 0.01.

IV. CONCLUDING REMARKS

We propose a methodology to predict bacterial floc
fragmentation in laminar flow. We apply our method to
K. pneumoniae flocs and construct a postfragmentation den-
sity. Numerical results suggest that the primary fragmen-
tation mechanism for medium to large biological flocs is
erosion and not the splitting of the original floc into two
similarly sized daughter flocs, as is commonly assumed in the
literature.

We also investigate the limiting density of floc sizes
Iex after exhaustive fragmentation and find our results
to be inconsistent with the log-normal density frequently
employed in the literature [27,28]. Our results are supported
by applying our algorithm to artificially generated flocs with
statistical properties similar to the flocs acquired in the
laboratory.

Much of the previous work on floc fragmentation is based
on the breakup of flocs whose structure is due to short-
range van der Waals attractions. Conversely, the structure
of bacterial flocs is based on polymer networks secreted by
the bacteria themselves, and the deformation and rupture of
polymer networks is fundamentally different [7]. We find that
rupture stress, shear rate, and floc shape all have minimal
impact on the postfragmentation density function. While we
acknowledge that our treatment of the flocs as brittle is
simplistic, our proposed methodology forms the foundation for
more accurate modeling of fragmentation. Accordingly, future
efforts will be directed toward experimental validation and
mathematical investigation of the density identification inverse
problem.

APPENDIX A: FORMULATIONS OF y, AND A

The following formulations for x; and A were adapted
from Blaser [35]. For the ellipsoid D: x—i + é + ; =1,
aj a asz

2 and r3 = 1. Then

where a; > ap > a3, let r| = % r =2

the quantity yy is given by

udu

I (7 + ) /(7 + ) (3 +2) (3 + )

(Al)

Xk =
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To define the matrix A, let us first define the additional
quantities y; and x;’:

, o0 u (r,f + uz) du
Xk = / 3/2° (A2)
o [(rf +u)(r} +1u2)(r3 +u?)]
o) 3 2 2
X,y 2/ u (rk +u )du . (A3)
o [(F +u) (3 +12)(r +u)]

Using these definitions, the elements of A are given by

3
1 "
A= 7 ;ak Xk Ekk

—xj Eij 1l xi(Quj + o)

SRR v =i on B
kef{l23), k#ij
where
2, k=i,
"‘k:{—l, k# 1,

d=6 (X]H Xz// + Xé/ Xé/ + Xl// Xé/) )

APPENDIX B: ALGORITHM PSEUDOCODE

The following pseudocode is a more detailed description
of the algorithm from Sec. II E used to construct the postfrag-
mentation density functions from the 3D positional data for

PHYSICAL REVIEW E 83, 041911 (2011)

the flocs.

(1) INPUT = Flocs = list of flocs
(2)  y = fluid shear rate
(3) o, = biofilm rupture stress
4 i=0
(5) WHILE i < (No. of flocs in Flocs)
(6) X = centers of mass for bacteria in Flocs(i)
(7) dist =vXxXT
(8) Edges = MST(X,dist)
9 [A, var] =PCAX)
(10)  semiaxes = /var;
(11) D = ellipsoid(semiaxes)
(12)  fr = forces(D, y)
(13) FOR =k =1:(No.of edges in Edges)
(14) Edge; =Xk'" longest edge
(15) P, = 1 bisector of Edgey
(16) n; =normal to P
(17 F, = |ffD>plfR'nld0|+|ffD<plfR'nLdU|
F

(18) Omax = Wﬁm

(19) IF=0 > o,

(20) REMOVE Edge; from Edges
21 ADD daughter flocs TO Flocs
(22) BREAK

(23) END IF

24) IF £k = (No. of edges in Edges)

(25) ADD Flocs(i) TO Unfragmented Flocs
(26) END IF

(27) END FOR

28) i=i+1

(29) END WHILE
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