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Noise-aided computation within a synthetic gene network through morphable and robust logic gates
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An important goal for synthetic biology is to build robust and tunable genetic regulatory networks that are
capable of performing assigned operations, usually in the presence of noise. In this work, a synthetic gene network
derived from the bacteriophage A underpins a reconfigurable logic gate wherein we exploit noise and nonlinearity
through the application of the logical stochastic resonance paradigm. This biological logic gate can emulate or
“morph” the AND and OR operations through varying internal system parameters in a noisy background. Such
genetic circuits can afford intriguing possibilities in the realization of engineered genetic networks in which the
actual function of the gate can be changed affer the network has been built, via an external control parameter. In
this article, the full system characterization is reported, with the logic gate performance studied in the presence
of external and internal noise. The robustness of the gate, to noise, is studied and illustrated through numerical

simulations.
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I. INTRODUCTION

The goal of synthetic biology is to extend or modify
the behavior of organisms as well as engineer them to
perform new tasks [1,2]. Conventional genetic engineering
approaches for solving complex problems typically focus on
single genes. Moreover, the experimental progress of recent
years has made the design and implementation of genetic
regulatory networks (GRNs) amenable to quantitative analysis.
A GRN can be visualized as composed of subsets of simpler
components (modules), interconnected trough input and output
signals (analogous to electrical circuits [3]). In the same way
that electrical engineers construct circuits, genetic network
engineers make use of the biological equivalents of inverters
and transistors to manipulate living organisms by connecting
these modules into GRNs that can control cellular functions
[4,5].

There are two important reasons for constructing synthetic
networks: (i) the reduction of the cell complexity (the inher-
ently reductionist approach of decoupling a simple network
from its native and often complex biological setting can yield
valuable information regarding evolutionary design principles
[3]) and (ii) the manipulation and monitoring of single genes
can, in the future, afford the possibility of building larger
functional systems [6].

One of the immediate strategies in the (relatively new)
field of synthetic biology has been to develop a toolbox
[7,8] of well-characterized genetic circuits and devices [2].
Recent efforts have yielded an ever-growing number of
synthetic biological devices with varied functional capabilities,
including memory devices [9], linearizer gene circuit [10],
switches [5,8,11], oscillators [12,13], amplifiers [14,15], and
time-delayed circuits [16,17]. The implementation of all these
biological circuits is possible through the regulation of cellular
functions at the gene level. To achieve this task, a theoretical
modeling of the gene expression dynamics is required. For
a complete analysis, two important ingredients cannot be
removed and have to be considered: nonlinearity and random
fluctuations. It is often assumed that noise has a negative
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influence on cellular processes and should be avoided when
engineering genetic circuits that require exquisite control; this
has been accomplished via, e.g., synthetic transcriptional cas-
cades that attenuate noise under specific conditions [10,18,19].
In general, however, the delicate interplay between noise
and nonlinearity should be well characterized for an optimal
understanding/prediction of the system performance. This is
particularly true in natural systems wherein the noise is,
quite often, the “signal” (rather than simply a laboratory
curiousity) or the driving force that lets the system change
its state [20]. As one might expect, depending on the goal,
external noise and fluctuations at the genetic level can either
be undesirable or useful. Importantly, genetic circuits (whether
naturally occurring or synthesized) have to be reliable, robust,
and predictable; this is best achieved through exploiting the
interaction between noise and nonlinearity with a view to
enhancing performance. A good example of this is the (now
well-known) scenario of stochastic resonance (SR): an optimal
range of noise intensity can enhance the system response to
weak input signals [21-23].

Noise originates from many sources and is, for simplicity,
divided in two classes: internal and external. The first one
includes fluctuations in the gene expression (transcription,
translation, and degradation), cell cycle variations, and dif-
ferences in the concentrations of metabolites. Its magnitude is
related to the system size, and its origin is often thermal [24].
External noise usually originates from extrinsic environmental
variations [25].

In this work, we propose and study the possibility of
implementing a biological logic gate that can emulate and
“morph” (i.e., switch between) the AND and OR operations,
by exploiting noise. In particular, we show how the desired
output signal occurs consistently and robustly in an optimal
range of noise values. The realization of this biological
system is obtained through the application of logical stochastic
resonance (LSR) whose general principle will be detailed in
the following section. The intriguing novelty of LSR in a GRN
is to allow a single module to be used for many different
applications via adjusting the network parameters to obtain
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specific functionalities. We are thus led to study the realization
of a biological logic gate with the requirement of maximal
flexibility. As explained in this work, with LSR we can define
a large range of values that can be adjusted to switch the gate
between the AND and OR configurations and be robust to
noise. Thus, we are proposing a synthesized GRN that can
perform the logic functions (e.g., AND/OR), can be used in
different environments, and can change its behavior after it
has been engineered.

The core of this work is to demonstrate, through simula-
tions, the real possibility of implementing LSR in a GRN.
This task has been achieved by introducing the Langevin
equation for the repressor protein concentration. We show a
robust logic gate performance in a noisy environment, and we
test the possibility of morphing between AND and OR gates.
In order to theoretically demonstrate the validity of this idea
in a GRN we study the system, first, in the presence of an
additive noise term (for modeling an external noise source)
and, second, in the presence of a multiplicative noise term
(for modeling the internal noise). We begin with a review of
the LSR paradigm [26]. Then, in Sec. III after introducing the
basic concepts of gene expression, we study in detail a single
GRN: a synthetic gene network derived from the bacteriophage
A [4,27-29]. In particular, we focus on the characterization of
the dynamics of the A repressor protein concentration. From the
analysis of the biochemical reactions we write, as our starting
point, the deterministic differential equation that displays the
bistability of the GRN in a certain parameter regime. The
complexity of this system and the allowed range of parameter
values, necessitates our introducing a new version of the LSR
paradigm (see Sec. IV). The nonlinear dynamics of the GRN,
in the presence of the internal and external sources, are studied
in the remainder of the article.

II. LOGICAL STOCHASTIC RESONANCE:
THE BASIC PRINCIPLE

For completeness, this section provides an outline of the
main features that characterize LSR; this paradigm was,
recently, put forward by Murali et al. [26,30,31]. First, consider
the basic functioning of a logic gate. Its logic input N; (where
i is the input number, in this case 1 and 2) can be either 0
or 1. We then have a four-distinct-logic input set (N,N,) =
(0,0),(0,1),(1,0), and (1,1); since in this work the two inputs
enter in the system equation as the sum N; + N, = N, the
input set reduces to three combinations, with (0,1) and (1,0)
yielding the same N. The output of the logic gate can be
either 0 or 1. In summary, for a given set of inputs (N1, N,),
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we obtain a logical output in accordance with the truth table
(Table D).

The generalized truth functions (row 4 of Table I) for the
case of an arbitrary input set (xj,x;) with 0 < x5, < 1 are
particularly, relevant in the presence of input noise and in
cases where we do not digitize the input. We note that the first
three rows of Table I directly follow from the general case.
The generalized logic function NAND(x,x,) can be obtained
from NOR(x;,x;) by simple deduction: NAND(x,x;) =
NOT[AND(x1,x2)] = 1 — AND(x,x;) = 1 — min(xj,x;) =
1 —[1 —max(1l — x;,1 — x2)] = max(1l — xy,1 — x»), where
the penultimate step is a direct consequence of deMorgan’s
Law (for all real numbers), and we have invoked the definition
NOT(x) =1 —x. A similar derivation leads to the logic
function NOR(x1,x7) = min(1 — x1,1 — xp).

We consider now a stochastic nonlinear system:

X = F(x,a,b, ...)+ N+ D,&(t), (1

where a and b are two possible parameters that characterize
the generic nonlinear function F given in the deterministic
system by the negative gradient of a potential function with
two stable attractors (in this article we consider fixed point
attractors corresponding to a bistable potential). The second
term in Eq. (1) is the input signal that can assume the values
reported in Table 1. Finally, & (¢) represents additive zero-mean
Gaussian noise with unit variance and intensity parameter D,
(typically, D, would be the standard deviation). We assume
that random fluctuations have a correlation time scale smaller
than any other reaction time scale in the system, so the noise
can be taken to be § correlated [i.e., (£(£)&(¢)) = 8(t — t)]. For
the moment we do not consider the case of state-dependent (or
multiplicative) noise; this will be addressed later in this work.

In a system underpinned by dynamics of the form (1),
the LSR paradigm affords the possibility to exploit noise in
order to get a desired logic gate performance with almost unit
probability, i.e., the operation is rendered quite reliable even in
the noisy environment. Indeed, Murali ef al. found that, in an
optimal range of noise intensity values, the performance of the
system is optimized and its output is the logical combination
of the two input signals. Thus, the LSR paradigm underpins
the realization of morphable and reliable logic gates in the
presence of noise: changing parameters such as a and b,
or applying a controllable dc asymmetrizing system to the
dynamics Eq. (1), one can switch from the AND to the OR
gate. Hence, LSR is a practical and reasonable paradigm to
be applied in computational devices wherein the noise-floor
cannot be suppressed [30].

TABLE I. Truth table of the fundamental OR, AND, NOR, and NAND logic operations. Since
the inputs are encoded as N = N; + N,, the input set reduces to three terms. For completeness, we
have shown the truth functions for a general (i.e., “fuzzy”) set of inputs with 0 < x;, < 1.

Input set (N;,N,) OR AND NOR NAND

(0,0) 0 0 1 1
(0,1)/(1,0) 1 0 0 1

(1,1 1 1 0 0

(x1,%2) max(x,x,) min(xy,x;) min(1 — x,1 — xp) max(l — x,1 — xp)
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III. BISTABILITY IN A SINGLE-GENE NETWORK

The complex functions of a living cell are carried out
through the concerted activity of many genes and gene
products. This activity is often coordinated by the organization
of the genome into regulatory networks. In this section, we will
recover the function F [in Eq. (1)] that characterizes the syn-
thetic gene network under consideration, in the deterministic
(D, = 0) regime.

For completeness we introduce, in this section, the basic
concepts of gene expression dynamics [32,33]. The DNA in
genomes does not direct protein synthesis itself but instead
uses RNA polymerase as an intermediary. In particular, the
RNA polymerase will bind in a specific segment of the DNA,
known as the promoter region. An mRNA is then produced
when the RNA polymerase molecule initiates transcription at
the promoter level, synthesizes the RNA by chain elongation,
stops transcription at a terminator, and releases both the DNA
template and the mRNA molecule. Therefore, one can speak
of the promoter as the most important point of control of a
specific gene expression. Afterward, mRNA is decoded by the
ribosome to produce a specific amino acid chain that later folds
into an active protein. Among all proteins, gene regulatory
proteins switch the transcription of individual genes on and
off. They usually bind the DNA in specific regions close to the
RNA polymerase start site and, depending on the nature of
the regulatory protein and the location of its binding site
relative to the start site, either activate or repress transcription.
The time and the place that each gene is transcribed, as
well as its rate of transcription under different conditions, are
determined by the spectrum of gene regulatory proteins that
bind the regulatory region of the gene. These reactions are
controlled by feedback loops that arise when the translated
protein is capable of interacting with the promoter(s) of
its own genes and of other genes. Feedback can occur
in the positive (activation) or negative (repression) sense
[7,10,13,19]. Typically, we can find proteins in a homodimer
or heterodimer form that is responsible for the presence of a
nonlinearity in genetic networks.

In this work we adopt an engineering approach in de-
scribing the design of a synthetic network present in the
virus bacteriophage A. Because of the complexity of the
whole system, we have focused our study on a solitary
gene network (or autoregulatory gene network) [29,34]. This
restriction has two advantages. In principle it affords the
possibility of better prediction of the system dynamics via
a mathematical formulation and, thus, an understanding of the
cellular behavior. Second, a deeper knowledge of the simple
autoregulatory network taking noise into account can lead to
several applications which exploit the noise, such as LSR.

Bacteria and their temperate phages, e.g., Escherichia coli
(E. coli) and A, exist in symbiotic relationships. After the
A phage infects the bacteria, the evolution of the A phage
proceeds down one of the two pathways: lytic or lysogenic
[4,27,28]. Each pathway depends on the controlled sequential
synthesis and subsequent activity of A-encoded proteins. Lytic
infection by the phage A results in the release of hundreds of
new phages per infected cell. The minimum set of events in
the growth cycle is, therefore, DNA replication, phage particle
synthesis, and cell lysis. The creation of new phage progeny
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can, then, infect other bacteria. In the lysogenous pathway,
the temperate phage induces a change in the phenotype of
the infected bacteria through the incorporation of the phage
DNA into the host genome. The newly integrated genetic
material, called a prophage, can be transmitted to daughter
cells at each subsequent cell division, and a later event (such
as UV radiation) can release it, causing proliferation of new
phages via the lytic cycle.

The key section of the decision between one of the two
pathways lies in the right operator region (Og), in which
three DNA-binding sites are recognized by two phage-encoded
regulatory proteins: the A repressor protein (also called CI) and
Cro. Oy, Ogy and Ogs, the three operator sites, overlap the
promoter regions of the genes that encode these same proteins:
the Prv (where RM is repressor maintenance) promoter
controls the expression of ¢/ and the P (where R is repressor)
promoter controls the expression of cro. The pattern of CI/Cro
binding to the three operator sites determines whether the
lysogenic or lytic pathway will be followed [27]. Hence, the
bacteriophage XA displays bistability in the choice of one of
two pathways, with the characteristics of its stable attractors
adjustable by externally changing the system parameters.

Here we focus our study only on the regulation of the
Pryv operator region in a DNA plasmid: an autoregulatory
network (see Fig. 1) that shows a binary decision making
through a positive feedback loop [29,35,36]. In this feedback
loop, Ogi, Og; activate transcription, while Ogs represses
transcription. The repressor protein CI binds to the DNA
in one of the three Op; sites. CI is expressed by the gene
cl and subsequently dimerizes. Depending on the binding
affinities, binding happens as follows: the dimer first binds to
the Op; site, then to Og, (where a downstream transcription
is enhanced) and, finally, to O3 (that effectively turns off the
protein production) [37,38].

For a complete comprehension of the autoregulatory gene
network described above, we have developed a quantitative
model. Consider, first, the biochemical reactions that charac-
terize our network. These reactions are very well understood
[27,38] and are categorized depending on the order of the rate

FIG. 1. Autoregulatory gene network: the promoter region con-
tains three operator sites (Ogy, Og2, and Ogs). The ¢l gene expresses
the A repressor protein, which in turn dimerizes and then binds to the
operator sites.
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at which they occur. The ones that have a rate constant of
the order of seconds (fast reactions) are considered to be at
equilibrium; such reactions are referred to as multimerization
(in this article we will consider only dimerization) or as the
binding between the dimer and the operator site. The other
reactions with rates of the order of minutes are considered
slow reactions.

Here we list the fast reactions used to describe our model:

X+X=X,, D+ X,= Dy,

2)

D1+ Xo = DDy, DyDy+ Xy, = D3Dy Dy,

where X, X», D, and D; are the repressor monomer, the
repressor dimer, the DNA promoter region, and the dimer
binding to the Op; operator site, respectively. Moreover,
each fast reaction is characterized by an equilibrium constant
(K; = ki/k—_;, where k; and k_; are the rate constant): K,
K>, Kz = 01K>, and K4 = 0, K>, in order from the first to the
fourth equation in (2). o1 and o, represent the binding strengths
relative to the dimer-Opg, strength.

In addition to (2), we have to consider the slow reactions:
transcription, degradation, and dilution. We assume that
dilution due to cell growth is, likely, slower than monomer
degradation but comparable (in time scale) to transcription.
These reactions are irreversible. In particular, if one repressor
dimer binds to the first right operator site (Og;), transcription
proceeds at the basal rate. Moreover, an amplification of tran-
scription occurs when a subsequent repressor dimer binds to
Or»: the binding affinity to the RNA polymerase is increased of
a factor . We write the reactions governing these processes as

D1+P—>D1+P+HX, D2D|+P—>D2D1+P+I’IX
X—>¢, Xo—> 9, 3)

where each of the listed reactions in (3) are characterized
by a rate constant: k, (for transcription rate while one dimer
is bound to the Opg; operator site), Bk, (for transcription
enhanced by a factor B), k, (for degradation), and k, (for
dilution). P denotes the concentration of RNA polymerase,
and 7 is the number of repressor proteins per mRNA transcript.

While the reaction rates are embodied by rate laws [as
Egs. (2) and (3)], the biochemical dynamics can be described
with differential equations. If we consider high copy-number
plasmids, the dynamics in this gene network can be described

dr (K1 Kx(nk, po — €)x? + (nk; pop — €)(K1K2)?o1x* — €0102(K 1 K2)*x6
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by the evolution of the A repressor concentration in the

monomer and dimer form as follows:

% = —2kix* 4+ 2k_1 x5 + nk, po(d; + Bd>) — k.x + edy

Xy = kix? — k_1x2 — kyxa, 4)

where we assume that the concentration of the RNA poly-

merase pg to be constant and € is the basal expression rate. In

particular, the concentrations in our system have been defined

as x = [X], x2 = [X2], dy = [D], dy = [D1], d» = [D2D1],

and d3 = [ D3 D, D1]. We next simplify the first equation in (4)

as follows:

% = =2k x* + 2k_1 x5 + nk, pody + nk, poBd, — kex + €d
= —2kix% + 2k_1x» + (nk, po — € + €)d,

+(nk; pof — € + €)dy — kyx + edy

= —2kix? + 2k_1x2 + (nk; po — €)dy + (nk; po — €)

X dy —kyx + €(dy+ dy + dy + d3) — €ds. ©)
Moreover, for the fast reactions in Eq. (2), that are considered
at equilibrium, the mathematical formulation is:

di = K\ Kydox?,  d» = 01(K{ K>)*dox*,
dy = 0102(K1K2) dox®. (6)

Xy = lez,

In addition, we also consider to be constant the total concentra-
tion of DNA promoter sites, dy (wWhere the subscript T refers
to total); this can be written as:

dr =do+d +dry+ ds @)

and at the same time e€dy = r is constant. We can now
explicitly calculate dy from (6) and (7):

dr
T 14+ K Kax? + 01(K K2)2x* + 0102(K 1 K2)3x6

The dimerization reactions are the faster reactions; this has
allowed us to simplify the system. Under these assumptions,
the first two terms of both equations in (4) will cancel. How-
ever, this will leave only one negative term on the right-hand
side of the second equation. To accurately model the evolution
of the chemical species x, we define the variable xy =
X + 2x;; this represents the total number of biomolecules in
the system, either dimer (where two molecules are consumed)
or monomer (where one molecule is consumed). Then,
Egs. (5)—(8) can be reorganized as:

do

®)

xtot = x +2x2 =

To work in terms of the repressor concentration in the monomer
form, we can, explicitly, write the left-hand side of Eq. (9):

Xior = X +2x =X +4Kixx = (1 +4K,x)x, (10)

where the relation between x and x, has been shown in
Eq. (6). We can now divide by (1 4+ 4K x) on the left- and
right-hand sides of Eq. (9). Further, without loss of generality,
we can define the dimensionless variables ¥ = x/K; K>

1 + K1 K>x? + 01(K 1 K»)?x* + 0102(K 1 K2)?x0

+r —kyx — 2K kyx?, )

and 7 = trK,/4. Under these assumptions, and after some
calculations, we obtain the dimensionless equation (we have
suppressed the overbar on x and ¢):

(¢ — Dx? + o1(af — Dx* — o109x°
(t + )1 4+ x2 + o1x* + 0102x%)

1 —yx —yyx?
T4+x ’
(11)
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TABLE II. Parameters relevant to this autoregulatory gene network.

Parameter value

g =11
Ki=5.0x10"M"!
K> =033 x 10" M

Meaning

Degree of transcriptional activation

Equilibrium constant for dimerization

Equilibrium constant for dimer-Og
reaction

o1 =2 Binding affinity for the dimer to Og,
relative to Opg

o, = 0.08 Binding affinity for the dimer to Og;
relative to Og,

where we introduce the dimensionless parameters

a =nkpodr/r, y=k/(VK1Kar), vy, =2k,/(rK>),
T = /K K,/4K;. In Eq. (11) the first term on the right-hand
side is related to the expression of the repressor protein
because of transcription. The x2, x*, and x® terms are due
to the dimerization of the A repressor and the subsequent
binding to the operator sites. The x® term represents, for
example, the occupation of all three operator sites. The second
term includes the basal expression rate (while there is no
binding to the DNA), the degradation and the dilution that
have the role of reducing the protein concentration in the cell.
Moreover, we set (and retain throughout this work) values for
the constants that are relevant to this autoregulatory network
as in Refs. [34,39—41]. The whole list of constants is detailed
in in Table II. Selecting them ensures that our calculations are
always within the space of biologically accessible parameter
ranges.

Equation (11) is the deterministic dynamical model that we
will consider throughout this work; its right-hand side is the
function F in Eq. (1), and « and y are particular examples
of the listed parameters (a and b, ...) in Eq. (1). Although
it seems complex and contains several nonlinear terms, the
potential function characterizing the system is bistable in a
particular range of parameters, as will be shown below. In other
words, the repressor concentration can assume (with a high
probability) two favorable values (the minima in the potential
function) that correspond to lytic or lysogenic pathways.

Before going further, we must interject an important
comment. The model derived in this section is not the most
general model for the A phage switch; that distinction belongs
to the model of Morelli et al. [42]. However, for the purpose of
illustrating the LSR effect (albeit through a modified paradigm
that we introduce in the next section) and demonstrating the
realizability of the fundamental logic operations in a biological
switch, the model of this section is quite adequate.

IV. A MODIFIED VERSION OF LSR

In this work, we propose a modified version of the LSR
paradigm, via a manipulation of the conventional principle re-
ported in Sec. II. The modification is necessary because of the
unique (highly asymmetric) structure of the potential energy
function that characterizes this system; the conventional LSR
paradigm yields somewhat suboptimal performance in this
case. In addition, we wish to confine our calculations to the
space of biologically relevant parameters; these parameters in-
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clude the system (additive or multiplicative) noise parameters.
We introduce two significant changes.

First, we have characterized LSR in an autoregulatory
network not only in the additive noise regime (as in Eq. (1) and
in Ref. [26]) but also in the multiplicative noise case. Therefore
the dynamical equation takes the more general form:

x = Flx,a,b,...,Dyn(t)] + D,&(¢), 12)

where 7(#) is a multiplicative zero-mean Gaussian noise with
unit variance and intensity parameter D,,. In general, this noise
can affect one or more parameters (listed with symbols a and
b above) and, consequently, the system “energy landscape.’
While the multiplicative noise intensity D,, differs from zero,
the term F will be a stochastic nonlinear function. In addition,
we have to make clear that, for a concrete application of LSR to
a biological model, the set of logic gate inputs are not added as
in Eq. (1) but are, instead, implemented through the parameter
values such as a, b, etc. [in the specific biological system of
this work, the parameters are « and y, see Eq. (11)].

Second, we tried to enhance the logic gate performance
and to enlarge the noise intensity range where it is possible to
implement LSR in this particular gene network. This necessity
is, largely, connected to the biological model we are using:
it does not yield enough dynamical range to successfully
implement the (conventional) LSR paradigm [26]. Since, in
Ref. [26], the authors were working with abstract mathematical
models, they had full control over the system dynamics, in
particular the depth and width of the potential wells; hence,
they were able to adjust the dynamical system so it neatly fit the
requirements of (conventional) LSR: the system parameters
(a, b,...) were chosen to provide well-defined bistability for
all the distinct logic input sets given in the truth table. To
illustrate this point, we have plotted, in Fig. 2, the bifurcation
diagram for the general function F in Eq. (11) versus « (that is
one of the two parameters we will use to implement the logic
gates); in this case, we obtain bistability with a concommitant
reliable implementation of the conventional LSR paradigm for
o over 10.

The new idea is to choose the parameters of the model so
the undesired well (almost) disappears and to take advantage
of stochastic resonance for the cases where one cannot, simply,
remove the unwanted well from the system potential function,

20 40 60 80 100 120
o

FIG. 2. Bifurcation diagram of the dimensionless protein concen-
tration x in Eq. (11) versus «. The bistable behavior is visible for a
fixed value of y = 50.
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FIG. 3. (Color online) Potential functions for different data inputs
for the AND gate (left panels) and the OR gate (right panels), using
the modified version of the LSR paradigm. The red (upper) curve
represents the (0,0) case, the blue (central) curve represents the
(0,1)/(1,0) cases, and the black (lower) curve is for the (1,1) case.
Values in the accessible parameter range, related to the most robust
configuration (see text), have been chosen.

U(x). This second case usually happens when the inputs are
(0,1)/(1,0). With this proposed model we simply want to
take into account all the range of the parameter values that
represents all the possible biological configurations, without
restricting our study to the bistable region. Put differently,
there is the possibility that the (0,0) or (1,1) cases can be
realized when U (x) is monostable. In Fig. 3, we have plotted
the potential function U (x) for the AND and OR gates and for
the three input sets. The red curve, that shows the (0,0) case,
is in the monostable configuration.

Through the parameter y, then, we can deepen either well
in U(x), selectively, to switch from one logic gate to the other;
hence with the appropriate amount of noise, trajectories will
switch to the deeper well and remain there, giving rise a
better performance. The modified LSR paradigm will work
in a broader range of parameters. Considering Fig. 2, the
possible working range can now be extended to o« higher
than 5.

V. ADDITIVE NOISE

Since the early 2000s, the study of cells and their inner
dynamics has revealed the presence of noise as a relevant
element for the complete characterization and knowledge of
the system itself [43,44]. In this section we will focus only
on the external noise source. If we consider our variable
x to be the repressor protein concentration as detailed in
Sec. III, we can characterize the noise as random alterations
(i.e. fluctuations) of the “background” repressor production.
For the construction of our stochastic model, we suppose
that these random fluctuations will affect the basal production
term r. Moreover, we consider that such external effects will
be small and, therefore, can be treated as a random additive
perturbation to the deterministic dynamics [see Eq. (11)]:

(¢ — Dx2 + o1(af — Dx* — 01091
(t +x)(1 + x2 4+ o1x* + 0102x%)
1 —yx —ypx?

+T+Dn§(l‘), (13)
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where £(¢) is the additive (external) zero-mean Gaussian
noise [(£(¢)) = 0], and (£(?)&(t")) = 8(¢t — '), with D, being
related to the noise standard deviation parameter (as already
introduced in Sec. II).

From Eq. (13) we can get the corresponding Fokker-Planck
equation [45] for P(x,t), the probability of finding the system
in a state with concentration x at the time 7:

OP(x,1)
ar

where F is the nonlinear function in the right-hand side of
Eq. (11). Then the steady-state probability density function is
given as:

2
_ PP + Dy Py, (14
ox 0x2

D, 5)

Ux)

Pg(x) = Naga exp [ - }
where we obtain the potential shape U (x) from the definition
of F(x)=—0U(x)/0x; the “particle-in-potential” analogy
leads us to view U(x) as an “energy landscape,” wherein
x(t) is the position of a hypothetical “particle” following the
stochastic dynamics (13). U(x) is bistable in a parameter range
(see Sec. IV) and the concentration x has fixed values at the
minima of U(x). N4 is the normalization constant resulting
from making the integral of Ps(x) over all x equal to unity.
In Fig. 3, we have plotted the potential U (x) for a particular
combination of parameter values. We can notice the (somewhat
dramatic) asymmetry of the potential function: the left and
right energy barrier heights differ, together with the curvatures
in the bottom of the potential wells.

In the presence of noise the system can, with different
probabilities, span all the allowed x values that are biologically
meaningful. If the noise intensity is very small compared to
the two energy barriers, the system mainly remains confined
in one of the two potential wells and randomly moves around
in the minimum (i.e., infrawell motion). A larger noise
intensity leads to a spreading of the distribution of the protein
concentration values that x can assume. It is only in an optimal
range of noise values, approximately when the noise intensity
is comparable to the potential energy barrier, that the system
switches to the other state and remains in the new state: from
a biological point of view, the system has chosen the other
possible pathway with respect to the one where it was prior to
the switch.

To apply this model to the modified version of the LSR
paradigm, we have chosen two parameters: one for encoding
the logic gate inputs, ¢, and the other as a control variable to
implement a morphable logic gate (in particular, in this work,
to switch from the AND to the OR gate and vice versa), y. The
plotted U (x) curves represent the most robust configuration in
the limited range of parameters, o and y, germane to the
biological system. Several simulations have been made to
exhaustively search (in the parameter space) those parameters
that yields the best logic gate performances. For the new
version of the LSR paradigm, we obtained (numerically)
o = 6.3,9.8, and 13.3 [respectively for (0,0), (0,1)/(1,0), and
(1,1)] and y = 50,36 to implement the AND and OR gates
(respectively).

After applying these o and y values to Eq. (13), the
stochastic differential equation, on the dimensionless interval
[0,7000], is integrated by the Euler-Maruyama method. In
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FIG. 4. Performance of logic gates OR and AND, using the
modified LSR paradigm, versus the additive noise intensity D,.
o and y values as in the text.

simulations, it is observed that 7000 is longer than the mean
escape time required to switch from the “wrong” to the
“correct” (depending on the desired logic outcome) well; this
time length also ensures the expected logical output for a large
number of trials. To quantify this behavior with respect to noise
in this (designed) logic gate we measured its performance as
defined as the ratio of success in realizing the desired gate
over the total number of attempts; this ratio is the probability
P(logic) of realizing the desired gate and is shown (for OR
and AND gates) in Fig. 4.

Note that, for each noise value, we have checked the
agreement between the simulated logical outputs for all the
three data inputs [(0,0),(0,1)/(1,0),(1,1)] and the respective
truth table values of the gate under study. If one of the outputs
does not realize the desired gate, we mark that as a failure.
If, for example, we consider one of the panels in Fig. 3
for each noise value the least robust potential configuration
(among the three plotted) will have the highest influence on
the performance quality of this considered gate. This procedure
is repeated 500 times. The remarkable thing here, then, is that
the output conforms to the truth tables in the presence of noise.
More explicitly, in a relatively wide window of noise intensity,
the system yields logic operations with near certainty, i.e.,
P(logic) ~ 1. We can conclude that the two gates are robust
to noise in the same range of noise and amenable to the design
of a morphable logic gate.

Finally, we note that the best performance in the logic
gates can be achieved via two possible routes: changing
the noise intensity [46,47] or the variation of the parameter
values, thereby adjusting the system dynamics to an optimal
configuration, so P(logic) ~ 1 as desired; for a nonlinear
system this is tantamount (as already noted earlier) to changing
the transfer characteristic, thereby ‘“tuning” the noise. In
Fig. 5, the gate performance is plotted versus noise intensities
and « values (setting ¥ = 50 for the AND gate and y = 36
for the OR gate). For a fixed value of noise (for example, the
one mandated by nature) it is possible to select the “best” o
value. It is interesting to note that (for our particular choice
of model parameters) if the noise parameter D, values are in
the [0.95,1.35] regime, there is a reasonably large range of «
values for which P(logic) ~ 1, as desired.

In a completely analogous way, by setting the output values
in the reverse configuration, we can realize NAND and NOR
gates in almost the same optimal noise intensity regime as the
previous case (e.g., the left well can represent the value 1 for

PHYSICAL REVIEW E 83, 041909 (2011)

105

T ST
1 2 3

Noise Intensity D

FIG. 5. (Color online) Performance of logic gates AND (top) and
OR (bottom) versus noise intensity D,,, and «. y values as in the text.

output of the NAND/NOR reconfigurable gate, instead of 0 as
set previously for the AND/OR gate).

VI. MULTIPLICATIVE NOISE

A complete GRN characterization necessitates extending
our model to the case when the system is in presence of an
internal noise source. With internal noise, we want to define all
the random fluctuations that are related to the reactions inside
the cell at the gene level; in other words the noise originates,
in this case, from the underlying biochemical reactions
rather than from external perturbations. In biochemistry, slow
reactions such as translation and transcription lead naturally to
large noise intensity; their rates are typically small and random
fluctuations are consequently more evident [33,48].

It is worth pointing out that simply having an “internal”
noise source does not imply that the noise is state dependent (or
multiplicative). An obvious example is afforded by a coupled
network of nonlinear elements (e.g., a neural network) each
one having its own intrinsic noise that is uncorrelated with the
noise floors of the other elements in the network. However,
when there is a well-defined separation of time scales in the
network, or at the onset of a bifurcation when the dynamics
can be collapsed onto a single (or a few) variable, the adiabatic
elimination process can lead to state-dependent noise in the
slow variable (this being the variable that carries all the
salient features of the dynamics). Accordingly, in this work
we, phenomenologically, introduce multiplicative noise into
the dynamics at hand. This is accomplished by considering
the Langevin equation [49] corresponding to Eq. (11) and
allowing the degradation term, y, or the transcription term,
o, to fluctuate. These two cases will be studied separately but
always in presence of an (additive) external noisy background.
It means that in our model and simulations, we will deal with
simultaneously occurring multiplicative and additive noise
terms.
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A. Noise in the degradation rate

Now consider the effect of a noise source that alters the
degradation rate. We vary this term, allowing the parameter
y in Eq. (11) to fluctuate, i.e., we set y — y — D,,n(t), in
presence of a noisy background D, & (t). In this way, we obtain
the Langevin equation describing the evolution of the repressor
protein concentration, x,

x = f(x,a,y) +h(x)Dyn(t) + D,&(1), (16)

where the term D,&(¢) has been detailed in Sec. II. The
noise term 7 is a white Gaussian noise with a zero mean
and (n(#)n(t")) = 8(t — ¢') and intensity D,,. f(x) and h(x)
represent two nonlinear functions. To investigate the effects of
the additive and multiplicative noise on the genetic regulatory
system, we will consider, for simplicity, that £(¢) and n(?) in
Eq. (16) are independent of each other, i.e.,

D) = &) = 0. a7

We now apply Eq. (16) to the autoregulatory gene network
under study [see Eq. (11)]. We obtain:

. (@ — Dx? + o1(af — Dx* — 0102x°
- (t +x)(1 + x2 4+ o1x* + 0102x%)

_[V — Dpn(D)]x i 1- Vyxz
T+x T+x

_ (0 — x>+ o(af — Dx* — o102x°
(t +x)A + x2 + o1x* + 0102x%)

+ D,&(1)

1 —yx— yyx2 D,,n(t)x
D,&(1), 18
+ T x —— + D,§@), (18)
where
£(x) (@ — Dx? + o1(af — Dx* — 01058
X) =
(T +x)1 + x2 4+ o1x* + 0102x9)
1— _ 2
I G 4 (19)
T+x
and
h(x) = (20)

T4+x

The Fokker-Planck equation [45,50] for the probability
density function P(x,t) of being in the state x at time ¢ takes
the form, using the Stratonovich prescription,

D D popent+ 2 pwpen @1
= ——/[a(x)P(x, ——[b(x)P(x,
ot 0x 2 9x2
with the drift and diffusion terms given by

B 1o, 1O oo o
aty) =)+ 7= (x)_f(x)-’_z_la[ wh(x)* + D;]

_(a— Dx? 4 o1(af — Dx* — 0105x°
(t + )1 + x2 4 o1x* + 0102x%)

l—yx—yx? 10[,, x )\ )
+———+-——\|D, |——) +D;| 22)
T+x 4 0x T+x

and

2
b(x) = D2h(x)* + D? = Dﬁ,( al ) +D.L (23
T

+x
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Equation (21) may be solved in the steady state to obtain the
long-time probability density function:

Ps(x) = Nmu_y exp[—U,(x)], (24)

where Np1_,, is anormalization term, while the potential U, (x)
takes the form,

@dy + Inb(x). 25)

Ve =2 ] 50

We have checked that, in absence of fluctuations in 7
(i.e., D,, =0), the results in Sec. V are recovered. The
multiplicative noise modifies the drift term a(x) through the
presence of the third term in Eq. (22). This means that noise not
only influences the dynamics of our biological model but also
changes the potential shape configuration: increasing or de-
creasing the depth of the wells, as well as altering the locations
of the fixed points. Moreover, it has been seen [45,51], that
multiplicative noise can yield noise-induced critical behavior
that occurs in addition to the nonlinearity-induced bistability
that just exists in the potential shape. All these rich effects, of
course, are related to particular parameter values.

In this section, we now proceed as in Sec. V: we plot
the bifurcation diagrams in the parameter ranges germane to
the biological system; subsequently, we show U,(x) for the
best @ and y values that can give a logic gate performance
[P(ogic) ~ 1] in a larger area of parameter values (several
simulations have been made to exhaustively search the most
robust configuration of parameters); finally, we plot the logic
gate performance versus the multiplicative noise intensity for
fixed additive noise values.

Before starting the whole analysis, we have tried to check
the logic gate performance for the best « and y values obtained
in Sec. V. In particular, we wanted to test if the biological
system 1is still robust to the presence of a multiplicative
noise source while o = 6.3, 9.8, and 13.3 [respectively for
(0,0),(0,1)/(1,0),(1,1)] and y = 50, 36 (see previous section).
We checked the P (logic) versus the additive noise intensity (as
in Fig. 4), for different fixed multiplicative noise intensities.
The result (not shown) is that the best & and y values, for the
additive noise case, are no longer the best ones in this new
condition (i.e., with the inclusion of multiplicative noise) for
the implementation of the LSR paradigm. Thus, we are lead
to study the logic gate performance versus the multiplicative
noise intensity.

In the presence of a random degradation rate, the system
shows regions of monostability and bistability as visible in
Fig. 6. The left panel represents the bifurcation diagram
varying the multiplicative noise intensity, D,,, and «, while y
and D, are fixed. In the central panel, we vary y and «, fixing
the other two parameters, and, finally, we plot the bifurcation
diagram versus D,, and y.

Figure 6 gives the range where one should, exhaustively,
search for the best biological system parameters. In this case,
as in Sec. V, « is the parameter used to encode the logic
gate inputs, and y the parameter for switching from the AND
to the OR gate. For the new version of the LSR paradigm,
we obtained (numerically) o« = 5, 14.5, and 24 [respectively,
for (0,0),(0,1)/(1,0),(1,1)] and y = 60, 40 to implement the
AND and OR gates (respectively). The potential functions for
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FIG. 6. Bifurcation diagram for y — y — D,n(t). In the left
panel, we varied D,, and «, fixing y = 40. In the central panel,
we varied « and y, fixing D,, = 3; and, finally, we varied D,, and y,
fixing o = 10. In all the three cases we fixed D, = 0.5. The white
area represents the bistable region, while the black area represents
the monostable region.
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FIG. 7. (Color online) Multiplicative noise. Potential functions
for different data inputs for the AND gate (left panels) and the OR
gate (right panels), using the modified version of the LSR paradigm
(see Sec. IV). The red (upper) curve represents the (0,0) case, the blue
(central) curve represents the (0,1)/(1,0) cases, and the black (lower)
curve is for the (1,1) case. Values in the accessible parameter range,
related to the most robust configuration (see text), have been chosen.
In this case the fixed multiplicative noise intensity is D,, = 3 and the
additive noise intensity D, = 0.5.
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FIG. 9. Bifurcation diagram for o« — o + D,,n(¢). In the left
panel, we varied D,, and «, fixing y = 71. In the central panel,
we varied « and y, fixing D,, = 0.8; and, finally, we varied D,, and
y, fixing o = 20. In all the three cases we fixed D, = 0.5. The white
area represents the bistable region, while the black area represents
the monostable region.

AND and OR gates for different data inputs are presented in
Fig. 7.

Finally, the AND and OR performances are plotted (Fig. 8)
versus the noise intensity D,,. All the parameter values in
Fig. 8 are the same as Fig. 7. Again we have tested that, in this
new configuration, the dimensionless time interval [0,7000] is
long enough to let the system switch from the “wrong” to the
“correct” well; the simulations in this case follow the same
method explained in Sec. V. Comparing the results in Fig. 8
with those in Fig. 4, we see, clearly, the large increment in the
optimal window of noise where P(logic) ~ 1, the estimated
range is D, = [2.7,3.5]. This is due to the potential shape
that changes with D,, for the multiplicative noise case: in
the range where the performance is around 1, D,, makes the
potential function U, (x) asymmetric in order to better perform
the AND or OR gates. The LSR in bacteriophage X is robustly
realized for high noise intensities of D,,, because the potential
barrier of the “wrong” well assumes larger values than in the
additive-noise-only case. The different panels in Fig. 8 show
that it is possible to implement LSR also in a broad additive
noise intensity range.

1,
2 08 oy
2 0.6 ,
s ; --AND GATE
04 i —OR GATE | |
o 1 2 3 4 5
Noise Intensity Dm
1,
2 08 D =0.4
g'l n
< 06 ~-AND GATE| |
0B rocrsreeeens —OR GATE
o 1 2 3 4 5

Noise Intensity Dm

FIG. 8. Performance of logic gates AND and OR versus the multiplicative noise intensity D,,; « = 5, 14.5, and 24 for the three input sets,
y = 60, 40 (to implement the AND and OR gates, respectively), for different fixed D, values.
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B. Noise in the transcription rate

In order to simulate the stochastic effects of the gene
transcription regulation, we consider the perturbation of the
parameter «. As we saw in Sec. V, « is related to the

ot D) - Dx? + o1{le + Dun(0)]1B — 1}x* — 0102x8

PHYSICAL REVIEW E 83, 041909 (2011)

transcription rate, and we set it as o — o + D,,n(t) in
the presence of a noisy term D,,n(¢).

In this case, Eq. (16) will have the following form for our
autoregulatory gene network:

1 —yx —yyx?

(t + )1 + x2 + o1x* + 0102x%)

_ (¢ — Dx2 + o1(af — Dx* — 01091

1—yx— yyx2

—— + Dn&(1)

Dyn(1)(x* + 01 8x*)

(t + )1 4+ x% + o1x* + 0102x9%)

where f(x) is the same as in Eq. (19), while h(x) is

_ x% + o Bx*

T (T4 x)( + x2 4 o1x* + 0102x5)
For a given « value, the steady-state probability distribution

P(x,t) can be obtained by transforming Eq. (26) in a nonlinear

Fokker-Planck equation [45,50], where x is the protein

concentration. Setting Eq. (21) equal to 0, we obtain the
longtime probability density function:

PS(X) - Nmul,a exXp [_Ua(x)] ) (28)

h(x) 27

where Nyl 1S anormalization term, while the potential U, (x)
takes the form,

@dy + In b(x). (29)

U, = -2
) b(y)

Because we are dealing with a noisy « value, the terms a(x)
and b(x) will have the form:

_ 1o, _ 13,00, o
a(0)=f(0) + 75-b)=F() + 7 [ D) + D]]

_ (0 — Dx>+o1(af — Dx* —o100x% 1 —yx — yyx2

Tt 420 + x2 4+ 01x* + 0102x9) T4+x

2
412 D? o+ oiprt +D?
4 9x (T4 x)(1+x2 + 01x* + 0102x%)
(30)
and
x2 + o1 Bx* >

b(x)=D? D2 (31
x) m|:(‘L' +x)(l+x2+01x4+0102x6):| +D, GD

Before plotting the performance of LSR, we exhaustively
searched for the best @ and y values that can realize the AND
and OR gates for this particular noisy condition. In Fig. 9, we
show the bifurcation diagrams and particularly the parameter
ranges where it is possible to best perform the new version of
the LSR paradigm. The obtained best values are @ = 20, 42.4,
and 64.8 (for the input sets), and y = 122,71 to implement the
AND and OR gates. The resultant potential functions U, have
being plotted in Fig. 10 for a particular multiplicative noise
value D,, = 0.8.

It is possible to notice how the left well is always smaller
than the right well. The consequence of this behavior is evident

T+x

TIo0 1 2o oo T DO, (20

in the performance graphs (see Fig. 11): P(OR) ~ 1 in a larger
range than P(AND). It means that the possibility to implement
a reliable logic gate in a large interval, mostly depend on the
possibility to realize an AND gate in presence of noise. In
Fig. 11, the AND and OR performances are plotted versus
the noise intensity D,,. Again we have tested that, in this new
configuration, the dimensionless time interval [0, 7000] is long
enough to let the system reach the correct well. The procedure
for this case is the same used in all the manuscript and it has
been repeated 500 times.

In contrast to the previous Sec. VI A, we found a difficulty
in performing the two logic gates with P(logic) ~ 1 for a large
range of D,, [in this case P(logic) ~ 1 for D,, = [0.75,0.95]
and D,, = 1]. This is due to the high nonlinearity of the A (x)
term in Eq. (27) that has resulted in a new bistable potential.
Moreover, simulations with D, ~ 0.5 were not showing a
P(logic) ~ 1: this additive noise intensity was not enough
to let the system reach the correct well. It is manly due
to the potential function: it considerably changes over the
multiplicative noise increment. Following these results, we
simulated the performance for different and fixed D,, values,
and we obtained that the logic gate performance was improving
in presence of an higher additive noise intensity: D, ~ 1 (see
Fig. 11). The reported values are still in a realistic biological
range.

400 200
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= =
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-100 "'\
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FIG. 10. (Color online) Potential functions for different data
inputs for the AND gate (left panels) and the OR gate (right
panels), using the modified version of LSR paradigm (see Sec. IV).
The red (upper) curve represents the (0,0) case, the blue (cen-
tral) curve represents the (0,1)/(1,0) cases, and the black (lower)
curve is for (1,1) case. Values in the accessible parameter
range, related to the most robust configuration (see text), have
been chosen. In this case the fixed multiplicative noise intensity
is D,, = 0.8 and the additive noise intensity D,, = 0.5.
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FIG. 11. Performance of logic gates OR (the straight line in each panel) and AND (the dashed line in each panel) using the modified LSR
paradigm versus the multipicative noise intensity D,,; « and y values as in the text, for different D, values.

The LSR in bacteriophage A is robustly realized for noise
intensities of D,, lower than the previous case (see Sec. VI A):
the change in the multiplicative noise intensity has a great
influence in the shape of the potential function. The different
panels in Fig. 11 show that it is possible to implement LSR
not only in an optimal range of D,, values but also in a broad
range of additive noise values, D,,.

VII. CONCLUSION

To summarize, we have implemented a new version of LSR
in a GRN, specifically the bacteriophage 1. We have shown
that the resultant computing device is able to work as an AND
or OR gate interchangeably in the presence of noise. In a
completely analogous way, by setting the output values in
the reverse configuration, we can realize NAND and NOR
gates in almost the same optimal noise intensity regime as
the previous case (e.g., the left well can represent the 1 for
output of the NAND/NOR reconfigurable gate, instead of O as
set previously for the AND/OR gate). Noise is critical for the
existence and operation of the gates. We have computed the
gate “performance” as a function of noise intensity and shown
that the biological system output is the logical combination
of the two data inputs for a range of noise intensities, and the
GRN phage A can switch from the AND to OR gate as desired;
this switching can be accomplished, for a fixed noise level, by
adjusting other deterministic system parameters.

In this work we, first, investigated how the presence of
an external noise source acts on the autoregulatory gene
network under consideration. In this case we modeled the

fluctuations through an additive noise term. Thereafter, we
studied internal noise as a source that affects the degradation
and the transcription rates. To accomplish this, we introduced
a multiplicative noise term setting, in separate cases, y —
y — Dyn(t) and @ — o + D,,n(t), respectively.

LSR on a GRN, that has the capability of being re-
configured, could be combined, in the near future, with
other logic modules (done by different sets of input/output
signals) to increase the computational power and functionality
of an engineered GRN. Recently, several experiments have
demonstrated the possibility of using external inducers to
control gene regulation [7,13]. For example, gene expression,
under the control of the promoter with Olac binding sites,
can be repressed by adding a gene that produces the Lacl
protein, which can in turn be inactivated by IPTG (isopropyl-
B-D-thiogalactopyranoside) quickly [7]. IPTG induction can
be applied with accurate control by using customized microflu-
idics devices [13], thereby establishing a temporal control
over the GRN. Such networks may allow predictable and
robust control in fluctuating cellular environments and thereby
have a significant impact in the design of synthetic biological
systems such as recently created bacterial cells controlled by
chemically synthesized genomes [52].
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