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Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons
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The random transitions of ion channels between conducting and nonconducting states generate a source of
internal fluctuations in a neuron, known as channel noise. The standard method for modeling the states of ion
channels nonlinearly couples continuous-time Markov chains to a differential equation for voltage. Beginning
with the work of R. F. Fox and Y.-N. Lu [Phys. Rev. E 49, 3421 (1994)], there have been attempts to generate
simpler models that use stochastic differential equation (SDEs) to approximate the stochastic spiking activity
produced by Markov chain models. Recent numerical investigations, however, have raised doubts that SDE
models can capture the stochastic dynamics of Markov chain models.

We analyze three SDE models that have been proposed as approximations to the Markov chain model: one
that describes the states of the ion channels and two that describe the states of the ion channel subunits. We show
that the former channel-based approach can capture the distribution of channel noise and its effects on spiking
in a Hodgkin-Huxley neuron model to a degree not previously demonstrated, but the latter two subunit-based
approaches cannot. Our analysis provides intuitive and mathematical explanations for why this is the case. The
temporal correlation in the channel noise is determined by the combinatorics of bundling subunits into channels,
but the subunit-based approaches do not correctly account for this structure. Our study confirms and elucidates the
findings of previous numerical investigations of subunit-based SDE models. Moreover, it presents evidence that
Markov chain models of the nonlinear, stochastic dynamics of neural membranes can be accurately approximated
by SDEs. This finding opens a door to future modeling work using SDE techniques to further illuminate the
effects of ion channel fluctuations on electrically active cells.
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I. INTRODUCTION

Hodgkin and Huxley’s mathematical model of action
potential dynamics [1] is a cornerstone of computational neu-
roscience. This system of equations provides a conductance-
based framework for describing the dynamics of the mem-
brane potential of a neuron. The essential features of the
Hodgkin-Huxley (HH) model are quantitative descriptions
of the permeability of a neuronal membrane to ion-specific
currents (conductances) coupled to a current-balance equation
that characterizes the voltage across a neural membrane. The
physical basis for this empirical model is that conductances are
determined by the proportion of ion channels in a conducting
(i.e., an open) state, and that the states of the ion channels
are determined by the configuration of components of the ion
channels, referred to as subunits, particles, or gates (see [[2],
e.g.]). The HH equations produce a deterministic description
of neuronal dynamics and can be interpreted as a model of the
mean behavior of the ion channels and their subunits.

Advances in single-channel recording techniques [3]
demonstrated that individual ion channels can transition
between open and closed states in an apparently random
manner. This can generate an internal source of noise, known as
channel noise, which adds fluctuations to ionic conductances
[4]. Channel noise, which is distinguished from external
sources such as synaptic events [[5], e.g.] and stimulus noise,
can have important effects on neuronal dynamics and coding.
It can alter the firing threshold [6–8], spike timing [9,10],
interspike interval statistics [11], the amount of stochastic

resonance [12,13], and influence synaptic integration [14].
Channel noise can also contribute to the overall variability
in the nervous system, which in turn may pose constraints on
the fidelity of the motor and sensory systems of an animal
[7,15–18] and limit neuron miniaturization [19].

The classical HH formalism is deterministic, so alternative
models have been proposed to account for channel noise. These
models assume that the activity of ion channels is governed
by random transitions among a number of possible channel
conformations, which leads to intrinsically stochastic models
of neuronal dynamics. Although a variety of models of this
type have been proposed, including those that capture fractal
properties of patch-clamp data [20] and history dependence
in the activity of ion channels [21], the most widely used
channel noise model is the Markov chain (MC) model. MC
models assume that the state of an ion channel is described by
a discrete-state, continuous-time Markov chain, where each
state in the chain represents a particular configuration of the
ion channel. The Markov property requires that a channel’s
transition from one state to the next depends on its current
state alone, thus the transition rates are determined solely
by the state of the channel and the voltage potential of the
membrane. As a consequence, all channels are coupled due to
their common dependence on the membrane potential. For a
recent review of MC models in computational neuroscience,
see [22].

MC models are valuable tools for investigating the effects
of channel noise on neural dynamics and coding, but these
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models are computationally expensive to simulate and are
difficult to analyze mathematically. As a result, there has
been widespread interest in formulating stochastic differential
equation (SDE) models of channel noise. This line of research
was initiated by Fox and Lu [23,24] and has been applied
extensively to HH-type neuron models as well as models of
calcium release from IP3 receptors [25] (see [26] for a review
of past applications of this approach). The SDE model that
is most commonly used extends the original HH equations
by including noise terms in the differential equations that
describe the gating variables. Computationally, this model can
be orders of magnitude faster than the MC model [24,27], so
it has often been used in place of, or as an approximation to,
the MC model. Simulation studies have shown, however, that
the SDE approach does not accurately replicate the stochastic
response properties of the MC models [26–30] and it has been
suggested that SDE models are inadequate for simulations of
channel noise [31] or must be modified to correctly reflect the
stochastic properties of the MC models [26].

Despite recent numerical indications that the commonly
used SDE model does not approximate the behavior of the
MC model, there has been no definitive study detailing the root
cause of discrepancies between the MC and SDE approaches.
Moreover, other SDE models that have been proposed [23,25]
have never been tested to gauge whether there may be
alternative, and more accurate, reduced models of channel
noise. There are several possible reasons as to why an SDE
model may not closely approximate a MC model. The system
size expansion that produces an SDE model is an asymptotic
method that is formally valid in the limit of a large number
of channels; it is possible that there are too few ion channels
in a realistic model neuron for these approximate methods
to be accurate. Another possible discrepancy between the
two approaches could be numerical error in the simulation
algorithms [29]. Finally, it could be that the widely used
SDE models are formulated in a manner that neglects, or
distorts, important dynamical and stochastic structure in the
MC model.

In this paper, we will demonstrate that the formulation of
the SDE is critical for preserving the stochastic characteristics
of MC models. In Sec. II, we describe three SDE models
that have been proposed in the literature. Among these, we
distinguish between channel-based and subunit-based SDE
models and provide an intuitive explanation for why the
channel-based approach is the more appropriate framework.
We use a combination of mathematical analysis (Sec. III) and
simulation results (Sec. IV) to show that the MC model can be
well approximated by a channel-based SDE model that was
first introduced by Fox and Lu [23]. To our knowledge, ours is
the first numerical implementation of the channel-based Fox
and Lu model [32]. Prior studies have provided numerical
evidence that a widely used subunit-based model does not
accurately approximate the MC model [26–30], and our
analysis confirms and elucidates these findings. We conclude
that properly defining the structure and dynamics of ion
channels is critical to formulating SDE models in a way that is
consistent with MC models. We provide additional evidence
for this conclusion by formulating reduced, quasistationary
models based on our analytical results. Simulations of these
models show that temporal correlation in the noise, which is

shaped by the structure of ion channels, is critical for accurately
approximating responses of the MC model.

II. CONDUCTANCE MODELS BASED ON ION CHANNELS
AND THEIR SUBUNITS

We consider the HH model throughout this study. Our anal-
ysis, however, is applicable to any conductance-based model
with ion channels governed by linear, voltage-dependent
kinetics. The membrane potential of an HH neuron is modeled
as

C
dV

dt
= −gNa(V − ENa) − gK(V − EK)

−gL(V − EL) + I, (1)

where C is the membrane capacitance, ENa,EK, and EL

are reversal potentials for Na+, K+, and leakage currents,
respectively, and I is the applied current. Our central question
is how to appropriately define the ion channel conductances
(gNa for sodium and gK for potassium) when one wants to
include channel noise. Generally, one defines the conductance
based on the fraction of open channels. For instance, the
K+conductance is gK = ḡKf , where f is the fraction of
K+channels that are open, and ḡK is the maximal conductance
per ion channel. The problem of appropriately reproducing
K+channel behavior reduces to computing the evolution of
f . In the following, we will describe a number of methods
for computing f . We outline the standard MC model of
ion channel kinetics [6,33] and highlight how this approach
relates to the classical (deterministic) HH model. We will then
consider three distinct approaches for defining SDE models:
two that were proposed by Fox and Lu [23] and a variant
suggested by Shuai and Jung [25].

Capturing the kinetics of a single subunit is the starting
point for all of the models considered here. In the standard HH
model, the K+channel has four independent identical subunits,
traditionally given the symbol n, that must all be in an open
state for the channel to be in the conducting state [2,23]. The
kinetics of an individual subunit is described by a two-state
process:

Closed
αn

�
βn

Open, (2)

where the voltage-dependent transition rates are [1]

αn(V ) = 0.01(10 − V )

exp [(10 − V )/10] − 1
,

βn(V ) = 0.125 exp(−V/80).

To simplify the notation, we will often omit the explicit
dependence on V and write only αn and βn.

The Na+channels are modeled using two different subunit
types, traditionally labeled m and h, where each is described by
an open-closed kinetic scheme. The analysis of the two channel
types is fundamentally the same, but entails significantly more
notational complexity for the Na+channel. For conciseness, we
will present a detailed analysis of the K+channel, and display
analytical and simulation results for both channel types in the
relevant figures. In the remainder of this section, we review
how the two-state subunit has been used as a building block to
construct models of the K+conductance.
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A. Markov chain ion channel model

The kinetic scheme in Eq. (2) can be used to define a
Markov chain that describes the behavior of a single subunit
that randomly transitions between two states [[2], e.g.]. If we
let psub be the probability that the subunit is in the open state,
then the evolution of this probability satisfies

dpsub

dt
= αn(1 − psub) − βnpsub. (3)

This equation follows from Eq. (2) and the fact that the
probability of a subunit being closed is 1 − psub. Since the
K+channel is assumed to consist of four statistically identical
and independent subunits, its configuration can be modeled
as a five-state Markov chain, where each state indicates the
number of open subunits at a given instant in time:

0
4αn

�
βn

1
3αn

�
2βn

2
2αn

�
3βn

3
αn

�
4βn

4. (4)

The channel is said to be in the open or conducting state if
all four subunits are open simultaneously. Let p be a column
vector where the ith element represents the probability at time
t that a channel has i open subunits, then this probability
distribution evolves in time according to the master equation

dp
dt

= Ap, (5)

where the matrix A is⎡
⎢⎢⎢⎣

−4αn βn 0 0 0
4αn −(3αn + βn) 2βn 0 0

0 3αn −2(αn + βn) 3βn 0
0 0 2αn −(αn + 3βn) 4βn

0 0 0 αn −4βn

⎤
⎥⎥⎥⎦ .

The conductance for a population of K+channels is determined
by the proportion of the channels in the open state, gK = ḡKf ,
where ḡK is the conductance per K+ channel and f is the
fraction of open K+ channels.

B. Deterministic conductance models

If we consider an idealized neuron with an infinite number
of statistically identical and independent channels, we can
obtain a deterministic description of the fraction of open
channels f . In this limit, the fraction of open channels is
equivalent to the probability that any one channel will be
open. In other words, Eq. (5) also defines a deterministic
model of conductance where gK = ḡKp4 and p4 is given by
the solution of the system of ordinary differential equations
in Eq. (5).

At first glance, the deterministic definition of gK appears
to differ from that in the classical HH model, in which gK =
ḡKn4. As discussed in [2], however, these two models are
equivalent: first, note that psub in our notation can be identified
with the gating variable n in the HH model because both satisfy
the differential equation (3) and both represent the proportion
of subunits that are open. Next, observe that the entire system of
differential equations in Eq. (5) can be derived from the single
HH gating variable by making the following substitutions:

pi =
(

4
i

)
(1 − n)4−ini, where i = 0, 1, 2, 3, or 4.

For instance, setting p4 = n4, we find

dp4

dt
= d

dt
[n4]

= 4n3 dn

dt

= 4n3 [αn(1 − n) − βnn]

= αnp3 − 4βnp4.

This equation is identical to the final row of Eq. (5). The
remaining equations in that system, as well as those for Na+,
can be derived in a similar manner.

C. SDE conductance models

1. Channel SDE model

In the previous section we arrived at a deterministic
model for K+conductance because we considered the case
of infinitely many channels. If we define the number of
K+channels to be finite, however, we can derive stochastic
models using a system-size expansion [34]. Fox and Lu first
applied this method to the HH model by [23]. Following their
notation, we define xi to be the proportion of K+channels
that have i open subunits. Since we are dealing with a finite
population, the proportion of channels in a particular state xi

is no longer a measure of probability pi . Rather, the number of
open subunits fluctuates from one realization to the next, which
inevitably leads to a stochastic description of the channel. The
system-size expansion provides a formal method for deriving
a SDE model based on the master equation (5). Fox and Lu
showed that the SDE for the K+channel is

dx
dt

= Ax + Sξ, (6)

where x is a vector of the xi , A is the matrix in Eq. (5), ξ is
a vector of five independent Gaussian white noise processes
with zero mean and unit variance, and S is the matrix square
root of the diffusion matrix D,

D = 1

N

⎡
⎢⎢⎢⎢⎣

4αnx0 + βnx1 −(4αnx0 + βnx1) 0 0 0
−(4αnx0 + βnx1) 4αnx0 + (3αn + βn)x1 + 2βnx2 −(3αnx1 + 2βnx2) 0 0

0 −(3αnx1 + 2βnx2) 3αnx1 + 2(αn + βn)x2 + 3βnx3 −(2αnx2 + 3βnx3) 0
0 0 −(2αnx2 + 3βnx3) 2αnx2 + (αn + 3βn)x3 + 4βnx4 −(αnx3 + 4βnx4)
0 0 0 −(αnx3 + 4βnx4) αnx3 + 4βnx4

⎤
⎥⎥⎥⎥⎦ , (7)

in which N is the number of channels. To our knowledge,
neither Fox and Lu nor other researchers have implemented
this channel-based SDE model [32]. We will mathematically

analyze it under voltage clamp conditions and perform
numerical simulations to show that it accurately replicates the
stochastic properties of the MC model. We refer to this model
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as the channel SDE model because the variable x is defined
based on the states of the ion channels.

2. Subunit SDE models

Unfortunately, the channel SDE model above does not
preserve the dynamical structure of the classical HH equations:
closed states are distinguishable and are modeled with distinct
random processes. This expands the dimensionality of the
system beyond the four dimensions of the deterministic HH
model. In an attempt to avoid this increase in complexity, one
can apply the system-size expansion procedure to the subunits
rather than to the states of the channels. This leads to stochastic
models that resemble the classical HH model, but includes
noise in the equations governing the subunit variables m, n,
and h. We refer to such approaches as subunit SDE models. The
subunit approach leads to the following SDE for the proportion
of open subunits n [23,25]:

dn

dt
= αn(1 − n) − βnn + σn(V )ξ (t), (8)

where the stochastic term ξ (t) is a Gaussian white noise
process with zero mean and unit variance that is scaled in
a voltage-dependent manner by σn(V ):

σ 2
n (V ) = αn(1 − n) + βnn

N
. (9)

The model for the channel population is then built from
the subunit populations. Since each K+channel is composed
of four statistically identical and independent subunits, Shuai
and Jung proposed a model in which the proportion of open
K+channels is defined as the product of four independent
realizations (denoted ni) of solutions to the SDE in Eq. (8) [25].
This defines the K+conductance to be gK = ḡKn1n2n3n4. We
refer to this as the independent subunit model, InS. Shuai and
Jung did not implement this method. Instead, they followed
a method introduced by Fox and Lu [23] in which only one
realization of a solution to Eq. (8) is computed (denoted n),
and this realization is raised to the fourth power. This defines
the K+conductance to be gK = ḡKn4, built out of four identical
subunit populations. We refer to this as the identical subunit
model, IdS. In the limit of an infinite number of K+channels,
both of the subunit models converge to the deterministic HH
model.

D. Distinction between subunit and channel models

The fundamental difference between the channel SDE
model in Sec. II C 1 and the subunit SDE models in Sec. II C 2
is that in the former, one first groups subunits together to
construct a channel and then defines the dynamics of the
proportion of channels in each state. In the latter, one defines
the dynamics of subunits first, before grouping the subunits
together to compute the conductance of the channel. We
note that the deterministic model in Sec. II B derived from
the master equation is a channel-based approach while the
classical HH model is a subunit-based approach. Nonetheless,
as discussed above, the two models are equivalent. It is
tempting therefore to conclude that both the channel and
subunit SDEs will also produce identical stochastic models.
As we will show in the remainder of this study, these two

Channel
–based

(a)

Independent
subunits

(b)

Identical
subunits

(c)

FIG. 1. Illustration of conceptual differences between channel-
based and subunit-based models. In this example, each channel
consists of two subunits, “�” and “◦.” (a) In the channel-based
model, subunits are first grouped together to form channels (vertical
rectangles) and the ionic conductance is determined by the fraction
of channels in the conducting state. (b) In the independent subunits
(IdS) approach, the subunits are divided into two classes (horizontal
rectangles) and the fraction of open subunits is computed by averaging
over all subunits in each class. The proportions of open subunits in
each class are then used to approximate the fraction of channels in
the conducting state. (c) Identical subunit (InS) models also average
across all subunits in a class, but assume that both subunit classes are
identical.

approaches generate distinct stochastic processes: the channel-
based SDE model can approximate the channel noise and
spiking statistics of the MC model, but the subunit-based SDEs
cannot.

To gain some intuition for how the subunit and channel
SDE approaches differ, consider the following example of
a neuron with N channels, where each channel consists
of two statistically identical and independent subunits. This
configuration is illustrated in Fig. 1(a). The analysis can be
extended to the four subunit K+channel, but for illustrative
purposes we consider the simpler case of two subunits. At
a given instant in time, define the state of the ith subunit in
each class by the binary random variables zi1 and zi2 . These
variables take the value of 1 with probability psub and are
0 otherwise. The probability that the ith channel is open is
determined by the probability that both subunits are open, p2

sub.
A channel-based approach defines the conductance from the
proportion of open channels, so we average over all channels
to obtain the proportion of open channels:

fchan = 1

N

N∑
i=1

zi,1zi,2. (10)

The products zi,1zi,2 define identical and independent binary
random variables that take the value 1 with probability p2

sub,
thus their sum is binomially distributed with the following
mean and variance:

E[fchan] = p2
sub,

Var[fchan] = 1

N
p2

sub

(
1 − p2

sub

)
.

Instead of grouping subunits into predefined channels, the
subunit approach first computes the fraction of open subunits

041908-4



STOCHASTIC DIFFERENTIAL EQUATION MODELS FOR . . . PHYSICAL REVIEW E 83, 041908 (2011)

by averaging over each class of subunits, as shown in Fig. 1(b).
The proportions of open subunits in the two subunit classes
are

fsub,j = 1

N

N∑
i=1

zi,j , where j = 1 or 2.

If we assume that each subunit class is independent and define
the proportion of open channels f̃chan to be the product of the
fsub,1 and fsub,2, then we can write the proportion of open
channels as

f̃chan = 1

N2

N∑
i,j=1

zi,1zj,2.

The proportion of open channels under the subunit approach
is an average of N2 binary random variables, as opposed to
N random variables as in Eq. (10) for the channel approach.
The probability that the product zi,1zj,2 is equal to 1 is p2

sub,
so the expected value of E[f̃chan] = p2

sub, identical to E[fchan].
The variance in the two models, however, is different. To see
this, write the variance of f̃chan as the sum of covariances:

Var[f̃chan] = 1

N4

N∑
i,j,k,l=1

Cov(zi,1zj,2,zk,1zl,2).

This sum is over all of the N4 possible pairings of
zi,1,zj,2,zk,1, and zl,2. To leading order in N , the dominant
contribution to this sum is among pairings that have one index
in common. There are N2 possible pairs of zi,1 and zj,2, and for
any given pair there are 2(N − 1) ways to choose the indices
of zk,1 and zl,2 such that i = k or j = l. To leading order in
N therefore there are 2N3 of these terms, and the variance of
f̃chan can thus be written as

Var[f̃chan] = 2

N
ρVar[zi,1zj,2] + O(N−2),

where ρ is the correlation coefficient between random vari-
ables of the form zi,1zj,2 and zk,1zl,2 for either i = k or j = l.
The product of two independent z variables is a Bernoulli
random variable. It follows that Var[zi,1zj,2] = p2

sub(1 − p2
sub)

and the above equation can be rewritten as

Var[f̃chan] = 2ρVar[fchan] + O(N−2). (11)

In Appendix A, we show that ρ = psub

1+psub
. Since psub takes

values in [0,1], ρ is bounded between 0 and 1/2. Equation
(11) implies therefore that the variance of the fraction of open
channels using the subunit-based averaging is not larger than
the variance in the channel-based approach. Moreover, the
variance decreases as psub decreases. This implies that the
subunit method underestimates the variance when psub is small.

An assumption in the above analysis is that there are two
independent classes of subunits. This can be thought of as
the analog of the InS SDE model. Another variation of the
subunit approach, used in the IdS SDE, is to assume that the
two subunit classes are identical. This approach is illustrated
in Fig. 1(c). Since both subunit classes are identical, we
drop the second subscript and define a random variable zi

that represents the state of the ith subunit in both classes.

The proportion of open channels, after averaging across all
subunits, is

f̃chan = 1

N2

N∑
i,j=1

zizj .

The expected value of f̃chan in this case is composed of N (N −
1) terms of the form E[zizj ] for i �= j and N terms of the
form E[z2

i ]. To leading order, E[fchan] = p2
sub, but there is

an O(N−1) difference between the expected value of open
channels for this approach and the channel-based averaging
method.

The variance is

Var[f̃chan] = 1

N4

N∑
i,j,k,l=1

Cov(zizj ,zkzl).

To leading order in N it suffices to consider the covariance
of pairings that share one index in common. There is no dis-
tinction between the two subunit classes, so Cov(zizj ,zizk) =
Cov(zizj ,zkzi). There are therefore twice as many such terms
as in the previous subunit approach, and we find

Var[f̃chan] = 4ρVar[fchan] + O(N−2) (12)

with the same correlation coefficient ρ = psub

1+psub
.

This analysis illustrates how averaging across channels and
averaging across subunits leads to fundamentally different
probabilistic descriptions of the proportion of open channels.
In particular, since psub

1+psub
� 1

2 , Eq. (11) guarantees that the
variance of the proportion of open channels given by the
subunit model with two independent classes of subunits will
never exceed the variance given by the MC model. Equation
(12) shows that the variance in the subunit model with identical
subunit classes will always be twice as large as the variance
in the independent subunit model. Depending on whether

psub

1+psub
is smaller or larger than 1/4 therefore the variance in

the subunit model with identical subunit classes can be either
smaller or larger than the variance of the MC model. These
differences are a direct consequence of how each approach
aggregates the channels’ subunits. Importantly, we observe
that the differences between these approaches will persist
for any finite number of channels. In the limit of infinitely
many channels, the variance goes to zero, so all of the
modeling approaches discussed here become equivalent. It is
a straightforward exercise to extend this analysis to the case
of four subunits (i.e., the K+channel), and a similar discrep-
ancy between the channel and subunit approaches holds in
that case.

The three methods for grouping subunits that we have con-
sidered represent the three different approaches to performing
a system-size expansion that have been proposed by Fox and
Lu [23,24] and Shuai and Jung [25]. These combinatorial
arguments provide an intuitive understanding for why the
three SDE approaches that we are studying will lead to
channel noise models with different statistical properties. We
now confirm this by directly analyzing the SDE and MC
models.
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III. VOLTAGE CLAMP ANALYSIS OF STOCHASTIC
MODELS

A. Stationary distribution

We seek to characterize the probability distribution of the
fraction of open channels f . To simplify the analysis, we
will mimic the experimental technique of voltage clamp and
perform our analysis while holding the membrane potential
constant.

1. Markov chain model

In the MC model, each K+channel consists of four subunits
that transition between open and closed states. Under voltage
clamp, the stationary distribution for the number of open
channels can be completely determined because this process is
homogeneous in time [34]. We are primarily interested in the
stationary probability that all four subunits are open because
this is equivalent to the probability that the channel itself is
open. From Eq. (3), the equilibrium value of psub is αn

αn+βn
. The

probability that the K+channel is open is therefore

pchan = α4
n

(αn + βn)4
.

All K+channels are assumed to be statistically identical and
independent, so the distribution of the total number of open
K+channels at a given time is a binomial distribution with
population parameter N (the total number of K+channels) and
bias parameter pchan. To define the distribution of the fraction
of open channels f , we rescale the binomial distribution by
1/N . The mean and the variance of this stationary distribution
are

EMC[f ] = pchan
�= μchan (13)

VarMC[f ] = pchan(1 − pchan)

N

�= σ 2
chan, (14)

which we define as μchan and σ 2
chan, respectively, as a shorthand.

Note that these quantities are functions of V , even though
we do not explicitly include this dependence in our notation.
Equation (13) shows that the mean does not depend on the
number of channels and Eq. (14) shows that the variance scales
with 1/N . The mean and standard deviation of the fraction of
open channels are shown by the solid black lines in Fig. 2. The
mean and variance for the Na+channel can be computed in a
similar fashion and Fig. 2 includes those results. The results
shown are for a membrane area of 10 μm2, which corresponds
to 180 K+and 600 Na+channels.

2. Channel SDE model

To analyze the channel SDE model for the K+channels
[Eq. (6)], we apply the simplification suggested by Fox and
Lu: we set values of the state variables in the diffusion matrix
[Eq. (7)] to their mean equilibrium values. We refer to this
approximation as the equilibrium noise approximation and
show in Appendix C that, for the voltage clamp case, it holds to
O(N−2). In principle, the values of each xi should be confined
to [0,1] since they represent proportions of open channels,
but to simplify the mathematical analysis we do not impose
this condition. Under these simplifications, the SDE model
is a multivariate Ornstein-Uhlenbeck (OU) process that, by
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FIG. 2. Analytical (lines) and numerical (symbols) results for
means and standard deviations of the fractions of open channels in
voltage clamp. The membrane area is 10 μm2 (600 Na+channels
and 180 K+channels). The abscissa gives the voltage clamp value.
(a) Results for Na+channels. (b) Results for K+channels. Analytical
results for the channel SDE model are not shown because they are
identical to those of the MC model.

definition, has a Gaussian stationary distribution. The fraction
of open channels f is defined as the fraction of channels that
have all subunits open. In the notation of Eq. (6), f is given
by x4 for K+. The mean and variance of f , which can be
calculated directly using standard methods [34], are identical
to the values found for the MC model in Eqs. (13) and (14).
The stationary distribution of the fraction of open K+channels
therefore is given by

p(f ) = 1√
2πσ 2

chan

e−(f −μchan)2/2σ 2
chan . (15)

This is the expected result for a system-size expansion since,
in the limit of a large number of channels, the binomial
distribution for the MC model can be approximated by a
Gaussian distribution with mean μchan and variance σ 2

chan.
Any description of channel noise that aims to reproduce the
behavior of the Markov state model should have this as its
limiting distribution, so this result is our first confirmation that
the channel SDE model provides an accurate approximation
to the MC model.

3. Subunit SDE models

To analyze the subunit-based SDE models for the
K+channels, we apply similar approximations as before: we
replace n in the equation for σ 2

n [Eq. (9)] with its mean value
at equilibrium and do not restrict the values of n to the interval
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[0,1]. As was the case for the channel SDE, this allows us to
rewrite the SDE for n [Eq. (8)] as an OU process:

dn

dt
= 1

τn

(μsub − n) + σnξ (t), (16)

where τn = 1
αn+βn

, μsub = αn

αn+βn
, and σ 2

n = 2αnβn

N(αn+βn) . The
stationary distribution of the fraction of open subunits n

is therefore Gaussian with mean μsub and variance σ 2
sub =

αnβn

N(αn+βn)2 . Note that σ 2
sub is scaled by 1/N ; for simplicity we

report analytical results to O(N−1).
In Sec. II C 2 we discussed two methods for defining

the proportion of open K+channels based on the stochastic
dynamics of the subunits. If we follow the approach of
Shuai and Jung and combine four statistically identical and
independent solutions to Eq. (16), the stationary distribution
for the proportion of open channels is defined by the product of
four independent and identically distributed Gaussian random
variables:

pInS(f )

=
∫

dn1 · · · dn4

⎡
⎣ 4∏

j=1

e−(nj −μsub)2/2σ 2
sub√

2πσ 2
sub

⎤
⎦δ

⎛
⎝f −

4∏
j=1

nj

⎞
⎠.

Unlike the channel SDE distribution in Eq. (15), in the limit of
a large number of channels, this distribution does not approach
a Gaussian. The InS model therefore is fundamentally incom-
patible with the MC model. Furthermore, it is straightforward
to compute the mean and variance of this distribution directly
from the first two moments of the subunit distribution. We find

EInS[f ] = μ4
sub (17)

= μchan,

VarInS[f ] = 4μ6
subσ

2
sub + O(N−2) (18)

�= σ 2
chan.

This leading order result for the moments can also be obtained
following the combinatorial approach outlined in Sec. II D.

If we go further and assume that all four populations of
subunits are identical and perfectly correlated (i.e., following
the approximation proposed by Fox and Lu), then the station-
ary distribution for the fraction of open K+channels is the
distribution of a Gaussian random variable raised to the fourth
power, which has the closed form

pIdS(f ) = 1

4
√

2πσ 2
sub

f −3/4e−( 4√f −μsub)2/2σ 2
sub .

This distribution also does not limit to a Gaussian and is
fundamentally incompatible with the MC model. As above,
we can compute the mean and variance of n4:

EIdS[f ] = μ4
sub + 6μ2

subσ
2
sub + O(N−2) (19)

= μchan + O(N−1),

VarIdS[f ] = 16μ6
subσ

2
sub + O(N−2) (20)

�= σ 2
chan.

Equations (17) and (19) show that the mean fraction of open
channels computed with the subunit approaches agrees with

the MC model in the limit of a large number of channels. The
variance, however, is poorly described. For instance, the ratio
of the open channel variance of the MC model [Eq. (14)] to
that of the IdS model [Eq. (20)] is

σ 2
chan

VarIdS(f )
= 1 + μsub + μ2

sub + μ3
sub

16μ3
sub + O(N−1)

,

where we have used the facts that σ 2
chan = μ4

sub(1−μ4
sub)

N
and

σ 2
sub = μsub(1−μsub)

N
. For subthreshold values of V , μsub is small

and therefore the IdS model drastically underestimates the
magnitude of the channel noise.

These analytical results for the two subunit SDE models are
plotted in Fig. 2 with dotted (independent subunit populations;
InS) and dashed (identical subunit populations; IdS) lines.
We observe that standard deviations in the open channel
distributions are underestimated by both subunit models for
V near the resting potential of 0 mV.

B. Autocorrelation in voltage clamp

We now analyze temporal correlations in the proportion of
open K+channels for a given voltage clamp level. As in prior
sections, equations presented here depend on voltage potential
V , but to simplify notation we do not explicitly indicate this.
If we denote the time series of the proportion of open channels
as f (t), then the autocorrelation function for f (t) is

R(t) = E [f (t)f (0)] − E[f (0)]2

Var[f (0)]
.

We assume that R(t) does not depend on the initial time since
our analysis is restricted to the stationary distribution of open
channels in voltage clamp.

1. Markov chain model

Let ci(t) denote the state of the ith channel at time t , where
ci(t) = 1 indicates an open channel and ci(t) = 0 indicates
that the channel is closed. The autocorrelation for the fraction
of open channels then becomes

RMC(t) =
E

[
1

N2

∑N
i,j=1 ci(t)cj (0)

]
− μ2

chan

σ 2
chan

(21)

= E [ci(t)ci(0)] − μ2
chan

μchan(1 − μchan)
.

This simplification is possible because the MC model assumes
that all channels are statistically identical and independent.
The only unknown term in Eq. (21) is E [ci(t)ci(0)]. Since ci

is a binary random variable, the expected value of ci(t)ci(0) is
equal to the probability that the channel is open at the initial
time and is also open at the later time t . This probability can
be determined by solving the master equation (5), which is
possible in voltage clamp because this system of ordinary
differential equations is a linear equation with constant
coefficients. The probability that the channel is open is given
by p4 in Eq. (5), so E [ci(t)ci(0)] is equal to the entry in the
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FIG. 3. Analytical (lines) and numerical (symbols) results for
autocorrelations R(t) of the fractions of open channels in voltage
clamp. The voltage clamp is set to 0 mV and the membrane area
is 10 μm2 (600 Na+channels and 180 K+channels). (a) Results for
Na+channels. (b) Results for K+channels. Analytical results for the
channel SDE model are not shown because they are identical to those
of the MC model.

last row and the last column of the matrix exponential of the
matrix in Eq. (5). We find

RMC(t)

= 4α3
ne

−t/τn + 6α2
nβne

−2t/τn + 4αnβ
2
ne

−3t/τn + β3
ne

−4t/τn

(2αn + βn)(2α2
n + 2αnβn + β2

n)
,

(22)

where τn = 1
αn+βn

. The solid black line in Fig. 3(b) shows
this function for a voltage clamp value of V = 0 mV. The
same analysis was applied to the Na+channel, the result of
which is also shown in Fig. 3(a). Temporal correlations in the
fraction of open Na+channels decay rapidly within the first
millisecond, whereas the temporal correlation in the fraction
of open K+channels persists for nearly 10 ms.

Equation (22) reveals an important feature of the MC
models—the structure of the channel defines the temporal
profile of the channel noise statistics. In the case of the
K+channel, the transitions between the five possible channel
configurations induce correlations on four time scales, the first
four multiples of 1/τn. The Na+channel has eight possible
channel configurations because it has three m subunits and
one h subunit, so the autocorrelation function for the fraction
of open Na+channels has seven time scales.

2. Channel SDE model

Using the same approximations that allow the channel
models to be described as a multivariable OU process, we
can compute the autocorrelation function for the proportion of
open channels using known analytical results for OU processes
[34]. We find that the autocorrelation function is identical to
Eq. (22) and thus do not include it in Fig. 3.

3. Subunit SDE models

We compute the autocorrelation for the InS and IdS models
using the OU approximation of n in voltage clamp. Using the
Ito calculus, the known solution for long time behavior of the

OU process in Eq. (16) is [34]

n(t) = μsub +
∫ t

0
σ̄ne

−t−u/τndW (u). (23)

To calculate the autocorrelation in the InS model, we take the
expectation of the product of four independent solutions of the
form of Eq. (23) and normalize by the voltage clamp mean and
variance shown in Eqs. (17) and (18):

RInS(t) = E[�4
i=1ni(t)ni(0)] − EInS(f )2

VarInS(f )

= 4μ6
sube

−t/τn + 6μ4
subσ

2
sube

−2t/τn

4μ6
sub + 6μ4

subσ
2
sub

+ O(N−2). (24)

For the IdS model, we instead take a single solution of the
form of Eq. (23) and raise it to the fourth power and normalize
it by the voltage clamp mean and variance from Eqs. (19) and
(20). The autocorrelation is

RIdS(t) = E[n(t)4n(0)4] − EIdS(f )2

VarIdS(f )

= (2μ6
sub + 12μ4

subσ
2
sub)e−t/τn + 9μ4

subσ
2
sube

−2t/τn

2μ6
sub + 21μsubσ

2
sub

+O(N−2). (25)

Calculation of the higher-order terms shows that the same
exponential time scales (the first four multiples of 1/τn) are
present in R(t) for all of the models, but the coefficients
are different. In particular, Eqs. (24) and (25) show that, to
leading order in 1/N , the subunit models lack the faster time
scales of the K+channel. As a result, temporal correlations in
the subunit-based channel noise models persist longer than in
either the MC model or the channel-based SDE model. Figure 3
displays these differences in the autocorrelation functions
of the subunit models for voltage clamped at V = 0 mV.
The dotted line shows the result for the InS model (inde-
pendent subunit populations) and the dashed line shows the
result for the IdS model (identical subunit populations), with
autocorrelation in the Na+channel displayed in panel in (a)
and the K+channel in panel (b).

IV. NUMERICAL SIMULATIONS

In this section we report results from numerical simulations
of the MC model as well as the three SDE models analyzed
above. We first verify the results of our analysis of voltage
clamp statistics and then measure the statistics of interspike
intervals in order to test how well the SDE models replicate
the stochastic features of the MC model when voltage is
allowed to evolve freely according to Eq. (1). In all simulations
we use the parameter values listed in Table I. We perform
simulations for three different membrane areas: 1, 10, and
100 μm2. The corresponding channel counts are shown in
Table II.

A. Methods

Sample FORTRAN code used to simulate the four stochastic
models is available online in the ModelDB repository (acces-
sion number 128502) [35]. All simulations used a time step
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TABLE I. Parameter values from [1]. Note that resting potential
has been shifted to 0 mV.

Symbol Definition Value (units)

C membrane capacitance 1 (μF/cm2)
ḡNa maximal sodium conductance 120 (mS/cm2)
ḡK maximal potassium conductance 36 (mS/cm2)
gL leak conductance 0.3 (mS/cm2)
ENa sodium reversal potential 115 (mV)
EK potassium reversal potential −12 (mV)
EL leak reversal potential 10.6 (mV)
ρNa sodium channel density 60 (μm−2)
ρK potassium channel density 18 (μm−2)

of size 0.01 ms. We define a spike using two conditions: the
membrane potential must exceed 60 mV and it must have
remained below 60 mV for the previous 2 ms (approximately
the width of a spike). To generate Gaussian random num-
bers, we first produced uniform random numbers using the
Mersenne Twister algorithm [36] and then transformed these to
Gaussian random numbers using the Box-Muller method [37].

In Sec. IV C, we characterize the spiking response of the
different models in response to stimuli of the form

I (t) = IDC + Inoiseξ (t), (26)

where ξ (t) is a Gaussian white noise process with zero mean
and unit variance. This type of input is commonly used
to characterize the response of stochastic Hodgkin-Huxley
models [ [11,30], e.g.]. The additive white noise term can
be interpreted as a simplified method for representing the
combined effect of numerous synaptic inputs that neurons in
cortex and other networks receive in vivo; see, for instance,
[38]. We simulate spike trains for varying membrane area,
DC input IDC, and input noise Inoise. We report the mean
and coefficient of variation (CV) for the first 2000 interspike
intervals (ISI) for each spike train, where the CV is defined
as the standard deviation of the ISIs divided by the mean
value.

1. Markov chain model

The Markov chain describing each K+channel is shown
in Eq. (4). The Markov chain that governs the state of each

TABLE II. Membrane areas and corresponding channel counts
used in numerical simulations

Membrane area No. of channels

(μm2) Na+ K+

1 60 18
10 600 180
100 6000 1800

Na+channel includes three m subunits and one h subunit and
is therefore described by an eight-state Markov chain:

0,0
3αm

�
βm

1,0
2αm

�
2βm

2,0
αm

�
3βm

3,0

αh↓↑βh αh↓↑βh αh↓↑βh αh↓↑βh

0,1
3αm

�
βm

1,1
2αm

�
2βm

2,1
αm

�
3βm

3,1.

(27)

The channel is in the conducting state when all three m subunits
and the h subunit are open. The voltage-dependent transition
rates for the m and h subunits are [1]

αm(V ) = 0.1
25 − V

exp( 25−V
10 ) − 1

,

βm(V ) = 4 exp

(
− V

18

)
,

αh(V ) = 0.07 exp

(
− V

20

)
,

βh(V ) = 1

exp( 30−V
10 + 1)

.

The Markov chains in Eqs. (4) and (27) define the possible
states of each individual channel. Rather than simulating
individual channels in the membrane patch, however, it is more
efficient to track the number of channels in each state using
the Gillespie algorithm [39,40]. At each time step, the fraction
of open Na+channels fNa and K+channels fK is computed
and the voltage is updated using the forward Euler algorithm
applied to Eq. (1).

2. Channel SDE model (IdS)

The channel SDE model is a system of 12 differential
equations derived by Fox and Lu [23]. In matrix form, it can
be written as

C
dV

dt
= −ḡNay31(V − ENa) − ḡKx4(V − EK)

−gL(V − EL) + I,

dx
dt

= AKx + 4αnx0e1 + SKξK, (28)

dy
dt

= ANay + 3αmy00e1 + αhy00e4 + SNaξNa.

The vector x is made up of entries xi (i = 1,2,3,4) that
represent the proportion of K+channels with i open n subunits.
The entries of y are denoted yij (i = 0,1,2,3 and j = 0,1)
and represent the proportion of Na+channels with i open m

subunits and j open h subunits. The vectors ei are column
vectors with a 1 in the ith entry and 0 elsewhere. Following Fox
and Lu, we use the fact that

∑4
i=0 xi = 1 and

∑3
i=0

∑1
j=0 yij =

1 to define x0 and y00. This allows us to reduce the dimension of
the system of SDEs from 14 to 12. We note that this reduction
of dimension is exact, following from properties of the A and
S matrices. The matrices ANa, AK, SNa, and SK are defined in
Appendix B.

The elements of x and y represent proportions of channels
in a particular configuration so they should lie within five-
dimensional and eight-dimensional hypercubes bounded by
the intervals [0,1]. Moreover, since the xi and yij each sum
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to 1, the values of these variables should in fact lie on
hyperplanes within these hypercubes. If, in the course of
numerical simulations, there are excursions of x and y off
of these high-dimensional bounded surfaces, then the solution
will lack biological meaning because a value that represents
the proportions of channels should not be negative or exceed 1.
Another numerical difficulty arises if these variables do not lie
on the proper bounded hyperplanes. To define SK and SNa, one
needs to take matrix square roots of diffusion matrices in every
time step. If the x and y do not lie on the bounded surfaces,
then the diffusion matrices, which depend on the values of x
and y, will no longer be guaranteed to be positive semidefinite,
which may make it impossible to compute real valued matrix
square roots.

In principle, it may be possible to incorporate a projection
or a reflection into the numerical method to ensure that x
and y remain on these bounded, high-dimensional surfaces of
admissible values. We demonstrate that a simpler approach in
which the individual values of the xi and yij are not confined
within [0,1], but rather are free to evolve without boundary
conditions, gives an adequate numerical approximation to
the interspike interval statistics of the MC model. With
this simplification, there is no longer a guarantee that real
matrix square roots of the diffusion matrices will exist, so we
replace the values of xi and yij in the diffusion matrices with
their equilibrium values. The validity of this approximation
is discussed in Appendix C. After implementing the above
simplifications, we solved the resulting system of SDEs using
the Euler-Maruyama method [41]. Comparing our results with
implementations that bound the SDE solutions would be an
interesting subject for future work, but is beyond the aims of
this paper.

3. Subunit SDE models

The two subunit SDE models that we study are the
independent subunit (InS) model:

C
dV

dt
= −ḡNam1m2m3h(V − ENa) − ḡKn1n2n3n4(V − EK)

−gL(V − EL) + I,

dmi

dt
= αm(1 − mi) − βmmi + σm(V )ξmi

(t),where i = 1,2,3,

dh

dt
= αh(1 − h) − βhh + σh(V )ξh(t),

dni

dt
= αn(1 − ni) − βnni + σn(V )ξni

(t),where i = 1,2,3,4

(29)

and the identical subunit (IdS) model

C
dV

dt
= −ḡNam

3h(V − ENa) − ḡKn4(V − EK)

−gL(V − EL) + I,

dm

dt
= αm(1 − m) − βmm + σm(V )ξm(t),

dh

dt
= αh(1 − h) − βhh + σh(V )ξh(t),

dn

dt
= αn(1 − n) − βnn + σn(V )ξn(t).

The difference between these two models is that, in the former,
we compute multiple independent realizations of the n and
m type subunits and the product of these terms enter into
the equation for V whereas in the latter, all subunit classes
are assumed to be perfectly correlated so only one SDE is
solved for each subunit type and the solution is raised to the
appropriate power (4 for n and 3 for m). The gating variables
represent proportions of open subunits so we enforce boundary
conditions that prevent the values of the gating variables from
exceeding 1 or becoming negative.

We note that the form of σ 2
x (x = m,h, or n) that we use

is given in Eq. (9). In particular, the noise terms depend on
voltage as well as the subunit variables themselves. We do not
apply the equilibrium noise approximation in our simulations
of the subunit SDEs, although this approximation has been
used in past simulation studies [23,26,30]. We solve these
systems of SDEs using the Euler-Maruyama method [41].

B. Simulation results: Voltage clamp

In Figs. 2 and 3, we compare results from numerical
simulations for a membrane patch size of 10 μm2 against
the analytical calculations presented in Sec. III. To simulate
the voltage clamp condition, we fix V at a particular value
and keep it constant throughout the simulation. Figure 2
shows the mean and standard deviation of the proportion of
open Na+and K+channels as a function of the voltage clamp
value. In most cases, the values computed from numerical
simulations (symbols) match the analytical results (lines). Of
particular note is the fact that the computed values for the
MC model (circle) and the channel model (x) are virtually
indistinguishable.

The only deviation between the numerical results and the
analytical solutions occurs in the subunit models for the mean
values of the Na+channels at high voltage values. The cause of
this discrepancy is that the analytical treatment assumes that
the proportions of subunits are Gaussian-distributed whereas
in the numerical methods the values of m and h are bounded
between 0 and 1. For high voltage values of V , the proportion
of open m-type subunits is very small and the variance
is nonzero, so approximating the distributions of m as a
Gaussian will allow m to take negative values. This cannot
occur in the numerical simulations, thus the theoretical value
for the mean fraction of open Na+channels will be less
than the simulated value. As the number of channels increase,
the variance of the fraction of open m subunits decreases,
which decreases the probability that a Gaussian-distributed
m will take negative values. The discrepancy between the
analytically and numerically calculated values for the mean
fraction of open Na+channels decreases therefore as the
number of Na+channels increases.

C. Simulation results: Interspike intervals

Figure 4 shows mean and CV (left and right columns,
respectively) of ISIs for three membrane areas that increase
from top to bottom in each column. The input to the model
is a constant DC input [Inoise = 0 in Eq. (26)]. The value of
IDC is shown on the x axis. In general, these simulations show
that the rate and regularity of spiking activity produced by the
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FIG. 4. Means and coefficients of variation (CV) of first 2000
interspike intervals as a function of the DC level (abscissa) for a
constant current input. (a) Results for a membrane area of 1 μm2.
The inset magnifies the ordinate to illustrate the difference in mean
ISIs between the MC and channel SDE models. (b) Results for a
membrane area of 10 μm2. (c) Results for a membrane area of 100
μm2.

MC (black line) and channel (gray line) models are in close
quantitative agreement whereas the IdS (dashed line) and InS
(dotted line) models produce, on average, dramatically longer
ISIs. The behaviors of the models are most disparate for low
stimulus levels and larger membrane areas. In these cases,
the stimulus is not sufficiently strong to drive regular firing,
so spike events are predominantly determined by stochastic
fluctuations in the conductances due to channel noise. As the
DC level is increased, the models respond to the external
stimulus and there is a smaller effect of channel noise on
spike timing. This leads all models to exhibit similar mean
ISI and CV values at high current levels. As the membrane
area increases, spiking events become increasingly rare at low
current levels. This is consistent with the fact that, for large
channel numbers, the behavior of all models will approach
that of the deterministic Hodgkin-Huxley equations, which are
known to transition from quiescence to repetitive firing when
DC input is increased beyond approximately 6.2 μA/cm2

[42].

The mean ISIs for the subunit SDE models exceed those of
the MC model for all stimulus conditions and membrane areas.
This has been previously observed for the IdS model [30]. In
the voltage clamp analysis we found that the variance in the
proportion of open K+and Na+channels for V near the resting
potential of 0 mV is smaller for both of these models than for
the MC model. This lack of conductance fluctuations leads to
reduced spike rates at low stimulus levels, relative to the MC
model.

Overall, the results for the channel model show that it is
possible to approximate the MC model with SDE and still
obtain quantitatively accurate results, even for small numbers
of channels. This is an important and a nontrivial result—the
system-size expansion is formally valid only in the limit of
infinitely many channels, but we show here that it can be
applied to a small number of channels, where membrane
fluctuations have a major impact on spiking statistics. More-
over, the equilibrium noise approximation and treatment of
boundary conditions do not appear to substantially degrade
solution accuracy over a wide range of stimuli.

Nevertheless, there are some discrepancies between the
channel and MC models. At the smaller membrane areas
(1 μm2 and 10 μm2), the mean ISIs for the channel model tend
to be longer than the MC model ISIs. This point is highlighted
in the inset of Fig. 4(a). At the largest membrane area tested, for
the case of weak or no input current, this trend is reversed and
the channel model has shorter mean ISIs than the MC model.
A possible source for these differences between the channel
and MC models is our treatment of the boundary conditions in
the channel model and the equilibrium noise approximation.
Further investigation of this approximation is needed, but the
similar ISI statistics obtained with the channel and MC models
suggest that this approximation may be suitable in many cases.

Figure 5 shows results obtained for two different levels
of input noise added to the DC stimulus with current level
shown on the x axis. We only present ISI statistics for the
membrane size of 100 μm2 because the smaller membrane
areas produce the same qualitative differences among the
models. Overall, the effect of the stimulus noise is to reduce
the mean ISIs. Importantly, the ISI statistics of the responses
of the MC and channel SDE models to these noisy stimuli
remain quantitatively similar. In fact, the stimulus fluctuations
elicit spikes even at low or no DC levels, so the differences
in the mean ISIs between the MC and channel SDE models
become less apparent. This result indicates that the equilibrium
noise approximation does not break down in the presence
of a rapidly fluctuating external stimulus. Finally, the results
for the subunit SDEs show, once again, that the stochastic
dynamics and spiking activity of these approximate models do
not accurately replicate the statistics of the MC model.

V. DISCUSSION

Beginning with the work of Fox and Lu [23,24], the ques-
tion of whether SDE models of channel noise can accurately
approximate MC models has been explored. SDE models of
membrane voltage fluctuations in HH models have several
attractive features, including possible improvements in the
speed of numerical simulations and the opportunity to analyze
these models using nonlinear SDE theory [[43], e.g.]. In recent
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FIG. 5. Means and coefficients of variation (CV) of first 2000
interspike intervals as a function of the DC level (abscissa) for a
current input of the form IDC + Inoiseξ (t) where ξ (t) is a Gaussian
white noise process with mean zero and unit variance. Membrane
area is 100 μm2. (a) and (b) show results for Inoise = 1 and 2 μm2,
respectively.

years, however, the SDE approach has come under increasing
scrutiny. Numerical simulations of the most commonly used
SDE model, which we have called the identical subunit model,
have shown that this approach produces weaker conductance
and voltage fluctuations than the corresponding MC model
[26,31]. As a consequence, the firing rates of this SDE model
are substantially lower [30] (and, equivalently, the mean ISIs
are longer [28]), there is less variability in the occurrences and
timing of spikes in response to a brief pulse of current [27], and
information is transmitted at a higher rate [30]. Furthermore,
these discrepancies persist even as the number of channels
increases [26,28,30]. In short, there is an emerging consensus
in the literature that the MC model cannot be approximated
accurately using a subunit system of SDEs.

We have demonstrated in this paper that an alternative SDE
approach that is based on the multistate structure of each ion
channel can approximate the channel noise effects that are
present in the MC model, even for relatively small numbers of
channels, as long as the system-size expansion that is used to
derive the SDE model is carried out properly. If one first defines
the structure of a channel and then defines the dynamics of the
proportions of channels in each configuration, one arrives at
the channel-based SDE model (see discussion in Sec. II D
and equations in Sec. IV A 2). If, instead, one approximates
the proportion of subunits in the open or closed states with
an SDE, then one obtains a subunit-based SDE model (see
discussion in Sec. II D and equations in Sec. IV A 3). Through
our analysis of the stationary statistics of the proportion of
open channels in voltage clamp, we have shown that the
former approach, which we call channel based, can provide a
quantitatively accurate approximation to the MC model. We

have also confirmed that the latter, subunit based, approach
should not be considered an approximation of the MC model
because its stochastic properties are fundamentally different
from those of the MC model. We conclude that the SDE
approach is a valid approximation of the MC channel noise
model, but that it is necessary to properly define the system of
SDEs based on the structure of each channel. In particular, one
cannot include noise in the subunit equations in the manner
suggested by Fox and Lu and expect results that are consistent
with the MC ion channel model.

We present numerical results for the channel SDE model
at three membrane areas (1, 10, and 100 μm2, as in [30]),
where the number of Na+channels range from 60 to 6000
and the number of K+channels range from 18 to 1800. Our
simulation results show that, in most cases, the ISI statistics
for this model in response to constant and noisy current inputs
are in close quantitative agreement with the MC model (see
Figs. 4 and 5). This finding is encouraging because the channel
SDE model was derived by Fox and Lu using a system-size
expansion [23,24] that is formally valid only in the limit of a
large number of channels. Although we found some evidence
that the approximation is imperfect for the smallest populations
of ion channels tested, we note that in many applications, the
channel counts are in fact much higher. For instance, Rowat
suggested that typical channel numbers in spike initiation
zones may be on the order of 104–106 [11]. The channel counts
used in the present study may be relevant to applications in
which small patches of neural membrane can drive spiking
activity. For example, a node of Ranvier of the auditory nerve
fiber can produce a spike in response to cochlear implant
stimulation. Typically, the nodes have surface areas of a few
square micrometers [44] and are usually modeled with 1000
or fewer Na+channels [44–46].

As first pointed out by Fox and Lu [23] and as discussed
in Sec. IV A 2, numerical simulations of the channel SDE
model can be computationally expensive. One particularly
computationally intensive part of the algorithm is calculating
matrix square roots to determine stochastic terms in the SDE
at every time step of the simulation. We have performed this
operation using the optimized CBLAS library, yet the channel
SDE model still required approximately 25 times as much
computational time as the IdS model. Fortunately, as is the
case with all three SDE approaches, the channel model has
one considerable advantage over MC—its computation time
does not depend on the number of channels. For example, in
our implementation of the Gillespie method, the computational
time increased 12-fold as we increased the number of channels
from 600 Na+and 180 K+to 6000 Na+and 1800 K+. We found
that even the channel model, the slowest of the SDE approaches
discussed in this paper, is faster than the MC model once
the number of channels is greater than approximately 1200
Na+and 360 K+. Furthermore, the computational burden of
solving the channel SDE model may be reduced by considering
other methods for computing matrix square roots [[47], e.g.].
Higher-order SDE solvers than the Euler-Maruyama method
could also speed up SDE simulations [[48], e.g.].

Even with increasingly efficient numerical methods for the
channel SDE, a stochastic model that more closely resembles
the classical HH equations, as opposed to the 12-dimensional
system of SDEs that defines the channel model, is still
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FIG. 6. Means and coefficients of variation (CV) of first 2000
interspike intervals for the MC model (black line) and two quasista-
tionary models (see text and Appendix D for details) in response to
constant current input. DC level is given by the abscissa. Membrane
area is 100 μm2.

desirable, as it would connect more directly with a wealth
of studies of the original four-dimensional HH equations.
In a simulation study of the Fox and Lu model, Bruce [26]
sought to derive noise terms numerically for the subunit
equations that would “correct” the Fox and Lu model so that
the fluctuations in the proportions of open channels would
match the MC model. We have performed a similar analysis
using the analytical voltage clamp results (see Appendix D
for details). We can redefine the magnitude of the noise in the
subunit equations [i.e., σn in Eq. (8)] to produce a modified
subunit SDE model with the same means and variances for
the proportion of open channels in voltage clamp, to O(N−1).
This model is constructed based on our analytical results for
the stationary distributions of the proportions of open channels,
so we call it a quasistationary model. The ISI statistics for this
modified subunit SDE model are shown by the dashed line
in Fig. 6. This demonstrates that adjusting the noise terms
in a subunit SDE model in order to fit the variances of the
open channels in voltage clamp is not sufficient to provide an
improved fit to the spiking dynamics of the MC model.

The reason for this can be seen in the multiple time
scales of the autocorrelation functions for the MC model
[Eq. (22)] and subunit models [Eqs. (24) and (25)]. We can
alter the noise terms in the subunit model so that it produces
the correct stationary variances of the fractions of open
channels, but we cannot modify the autocorrelation functions
in a way that makes them consistent with the MC model.
We therefore formulated a second quasistationary model by
adding colored Gaussian noise to the conductances in the
HH equations (details of this model are in Appendix D).
This second quasistationary model reproduces the Gaussian
stationary distribution of the channel SDE in voltage clamp, so
the proportion of open channels in voltage clamp has the same
mean, variance, and autocorrelation as the MC and channel
SDE models.

ISI statistics for this model are shown by the gray line
in Fig. 6. We found that this model reproduced the statistics
of the MC model much better than any of the subunit SDE
models, so we conclude that temporal correlations in the
channel noise play a critical role in influencing spike timing.
Moreover, since the structure of the ion channel determines
the history dependence of the channel noise, a valid channel
noise model must properly describe the dynamics of the
entire channel and not only the kinetics of individual subunits.
Using numerical simulations, Bruce has pointed out that the

subunit model does accurately approximate the MC model
for the case of channels with a single subunit [26]. Our
analysis explains this observation because, for channels with
one subunit, the channel-based and subunit-based SDE models
are mathematically identical.

We close by emphasizing that the models described in
this paper do not represent complete descriptions of channel
noise. As is always the case, when one attempts to formulate
a mathematical description of complex biological processes,
numerous assumptions and simplifications are at play. As our
understanding of the structure and dynamics of these mem-
branes improves, it may be necessary to update and improve
our mathematical models of channel noise. Nonetheless, the
central theme of this work will remain relevant: the statistics
of channel noise are shaped by the activity of individual ion
channels, and therefore the approximation methods must also
include information about the states of the channels in order
to correctly describe the effects of channel noise.

Note added in proof: Findings similar to those in our work
have recently appeared in [50].
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APPENDIX A: DERIVATION OF CORRELATION
COEFFICIENT IN EQ. (11)

Here we detail the derivation of ρ in Eq. (11). We seek
the correlation coefficient for random variables of the form
zi,1zj,2 and zk,1zl,2 where either i = k or j = l. Without loss
of generality, assume i = k, then

ρ = Cov(zi,1zj,2,zi,1zl,2)

Var[zi,1zj,2]
.

The variables zi,1,zj,2,zk,1, and zl,2 are identical, independently
distributed Bernoulli random variables that have the value 1
with probability psub. The expected values of zx and z2

x (x =
i,j,k,l) therefore are psub. Thus the covariance and variance
can be expressed as

Cov(zi,1zj,2,zi,1zl,2) = p3
sub − p4

sub

and

Var[zi,1zj,2] = p2
sub

(
1 − p2

sub

)
.

After some algebraic manipulations, we obtain a simple
expression for ρ in terms of the probability that a subunit
is open:

ρ = psub

1 + psub
.
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APPENDIX B: MATRICES USED IN NUMERICAL
SIMULATIONS OF THE CHANNEL SDE MODEL

The state vectors are defined as x = [x1,x2,x3,x4]T and
y = [y10,y20,y30,y01,y11,y21,y31]T . The number of K+and

Na+channels are denoted by NK and NNa, respectively. The
matrices AK and ANa in Eq. (28) are

AK =

⎡
⎢⎣

−(3αn + βn) 2βn 0 0
3αn −2(αn + βn) 3βn 0
0 2αn −(αn + 3βn) 4βn

0 0 αn −4βn

⎤
⎥⎦ ,

ANa =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−(2αm + βm + αh) 2βm 0 0 βh 0 0
2αm −(αm + 2βm + αh) 3βm 0 0 βh 0

0 αm −(3βm + αh) 0 0 0 βh

0 0 0 −(3αm + βh) βm 0 0
αh 0 0 3αm −(2αm + βm + βh) 2βm 0
0 αh 0 0 2αm −(αm + 2βm + βh) 3βm

0 0 αh 0 0 αm −(3βm + βh)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrix SK and SNa are the square root matrices of the
following diffusion matrices:

DK = 1

NK

⎡
⎢⎢⎣

4αnx̄0 + (3αn + βn)x̄1 + 2βnx̄2 −(3αnx̄1 + 2βnx̄2) 0 0
−(3αnx̄1 + 2βnx̄2) 3αnx̄1 + 2(αn + βn)x̄2 + 3βnx̄3 −(2αnx̄2 + 3βnx̄3) 0

0 −(2αnx̄2 + 3βnx̄3) 2αnx̄2 + (αn + 3βn)x̄3 + 4βnx̄4 −(αnx̄3 + 4βnx̄4)
0 0 −(αnx̄3 + 4βnx̄4) αnx̄3 + 4βnx̄4

⎤
⎥⎥⎦ ,

DNa = 1

NNa

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 −2(αmȳ10 + βmȳ20) 0 0 −(αhȳ10 + βhȳ11) 0 0
−2(αmȳ10 + βmȳ20) d2 −(αmȳ20 + 3βmȳ30) 0 0 −(αhȳ20 + βhȳ21) 0

0 −(αmȳ20 + 3βmȳ30) d3 0 0 0 −(αhȳ30 + βhȳ31)
0 0 0 d4 −(3αmȳ01 + βmȳ11) 0 0

−(αhȳ10 + βhȳ11) 0 0 −(3αmȳ01 + βmȳ11) d5 −2(αmȳ11 + βmȳ21) 0
0 −(αhȳ20 + βhȳ21) 0 0 −2(αmȳ11 + βmȳ21) d6 −(αmȳ21 + 3βmȳ31)
0 0 −(αhȳ30 + βhȳ31) 0 0 −(αmȳ21 + 3βmȳ31) d7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the elements on the diagonal are

d1 = 3αmȳ00 + (2αm + βm + αh)ȳ10 + 2βmȳ20 + βhȳ11,

d2 = 2αmȳ10 + (αm + 2βm + αh)ȳ20 + 3βmȳ30 + βhȳ21,

d3 = αmȳ20 + (3βm + αh)ȳ30 + βhȳ31,

d4 = αhȳ00 + (3αm + βh)ȳ01 + βmȳ11,

d5 = αhȳ10 + 3αmȳ01 + (2αm + βm + βh)ȳ11 + 2βmȳ21,

d6 = αhȳ20 + 2αmȳ11 + (αm + 2βm + βh)ȳ21 + 3βmȳ31,

d7 = αhȳ30 + αmȳ21 + (3βm + βh)ȳ31.

As discussed, we use the equilibrium mean values of x and y
in the diffusion matrices. They are

x̄i =
(

4
i

)
αi

nβ
4−i
n

(αn + βn)4

and

ȳij =
(

3
i

)
αi

mβ3−i
m α

j

hβ
1−j

h

(αm + βm)3(αh + βh)
.

APPENDIX C: EQUILIBRIUM NOISE APPROXIMATION

1. Voltage clamp

The equilibrium noise approximation in voltage clamp can
be justified using a small noise expansion [34]. Let us define
the small parameter ε = 1/N and fix the membrane potential
at a voltage clamp value so that αn and βn can be treated as
constants. Assume that n can be written as a series in the small
noise parameter ε:

n(t) = n0(t) + εn1(t) + ε2n2(t) · · · .

If we plug the small noise expansion into the subunit SDE for
n in Eq. (8) and collect terms of O(1), we find

dn0

dt
= αn(1 − n0) − βnn0, (C1)

and for terms of O(ε):

dn1

dt
= −αnn1 − βnn1 +

√
αn(1 − n0) + βnn0ξ (t). (C2)

Equation (C1) shows that n0 satisfies a deterministic
equation that does not depend on stochastic fluctuations in
n. In the context of analyzing the stationary distribution of n
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therefore we are justified in replacing n0 with its equilibrium
value αn

αn+βn
. If we make this substitution for n0 in the equation

for n1 [Eq. (C2)] and then form the sum n0 + εn1, it is
straightforward to arrive at the OU process in Eq. (16). The
equilibrium noise approximation is therefore the O(N−1)
approximation of the long-time behavior of n(t) in voltage
clamp. The same argument applies for the m and h subunits as
well as for the multivariate SDE that defines the channel SDE
model.

2. Time-dependent voltage

Fox and Lu suggested applying this approximation in all
cases, not just voltage clamp [23,24], and we have used the
approximation to simplify the numerical methods for solving
the channel SDE model. When V is not in voltage clamp, it
evolves naturally and complicates the small noise expansion
because it can introduce additional stochastic fluctuations
into the gating variables and the voltage-dependent functions
transition rate functions. Fox argued that the approximation
would be accurate if the relaxation of V to its equilibrium value
occurred on a much slower time scale than the relaxation of the
gating variables (for the case of the subunit SDE model) [24].
Unfortunately, this separation of time scales does not appear
to be a generic feature of HH models. Nevertheless, as shown
in Figs. 4 and 5, the equilibrium noise approximation appears
to be sufficiently accurate to reproduce spiking statistics to a
high degree of accuracy.

APPENDIX D: QUASISTATIONARY MODELS

In the Discussion (Sec. V), we introduced two models that
we discuss in greater detail here. We refer to both models as
quasistationary approximations because they rely on results
from our analysis of the stationary statistics of open channels
in Sec. III. In the first model, we were motivated by [26] to
attempt to improve the accuracy of the subunit SDE model by
modifying the noise terms in the gating equations. We have
shown that the stationary variances for the proportion of open
channels in the subunit SDE models does not match those of
the MC model. To correct for this discrepancy, we can redefine
σ 2

n (V ) in Eq. (8) to guarantee that the stationary variance of
n4 matches the stationary variance of the proportion of open
K+channels under the MC models. The problem is simplified
if we invoke the equilibrium noise approximation and use
the facts that Var[n4] = E[n8] − E[n4]2 and that these higher
moments of the stationary distribution of n are known since in
voltage clamp n is an OU (Gaussian) process with mean μsub =

αn

αn+βn
and variance σ 2

n (V )τn(V )/2. The final step is to set

Var[n4] = Var[fchan] and solve for σn(V ). The exact solution
would require inverting a nonlinear equation, but if we neglect
terms that are of higher order than O(N−2), we find σn(V ) by
finding the roots of 168μ4

nσ
4
n + 16μ6

nσ
2
n − [μ4

n(1 − μ4
n)]/N ,

which is quadratic in σ 2
n . The same approach was also used to

derive a new expression for σm so that this model also had the
same stationary variance for the Na+channel. The formula for
σh was left unchanged.

As explained in the Discussion, this first approach did
not provide a satisfactory approximation to the MC model,
so we formulated a second quasistationary approximation.

We constructed this second model so that it and the MC
model would have the same autocorrelation functions for the
proportion of open channels and the same means and variances
in voltage clamp. The mathematical structure of this model is
somewhat unusual in that the conductance is defined as the sum
of a deterministic part (given by the HH equations for m, h,
and n) and a colored Gaussian processes that is defined by the
autocovariance function for the proportion of open channels in
the MC model. As usual, we illustrate our approach with the
K+channel. The conductance is defined to be

gK = ḡK(n4 + σchanη(t)), (D1)

where n is the classical (deterministic) gating variable satis-
fying an ordinary differential equation of the form of Eq. (3)
and η(t) is a stochastic process. To define η(t), first note that
the channel SDE model provided a quantitatively accurate
approximation of the MC model, so it is reasonable to describe
the stationary conductance as a Gaussian process. Second,
recall from Eq. (22) that the autocorrelation function for the
proportion of open K+channels has four distinct time scales
(the first four multiples of 1/τn). Taken together, these facts
lead us to model the K+conductance as a non-Markovian Gaus-
sian process. The representation theory of Gaussian processes
furnishes a systematic method for constructing the stochastic
process η(t) based on the autocorrelation function for the
K+channel [49]. In particular, this theory guarantees that η(t)
can be written in terms of a stochastic (Wiener) integral of the
form

η(t) =
∫ t

0

4∑
i=1

ai(V )e−i(t−u)/τn(V )dW (u).

The coefficients ai are voltage dependent and are computed
by solving the system of nonlinear equations:

τn(V )a1(V )
4∑

i=1

ai(V )

i + 1
= 4αn(V )3�,

τn(V )a2(V )
4∑

i=1

ai(V )

i + 2
= 6αn(V )2βn(V )�,

τn(V )a3(V )
4∑

i=1

ai(V )

i + 3
= 4αn(V )βn(V )2�,

τn(V )a4(V )
4∑

i=1

ai(V )

i + 4
= βn(V )3�,

where � = βn(V )
[αn(V )+βn(V )]4−αn(V )4 . In practice, the system of non-

linear equations defining ai(V ) must be solved numerically.
We used the Minimize command in Maple (Waterloo Maple
Inc., Version 13) to generate a data table of values of ai(V )
that solved these equations for voltage values ranging from
−20 to 120 mV in increments of 0.01 mV. The procedure
for constructing the non-Markovian Gaussian process for the
Na+conductance is similar but slightly more complicated
because there are seven time scales in the autocorrelation
function. We omit these details here and direct the interested
reader to computer code available in the ModelDB repository
[35].

041908-15



GOLDWYN, IMENNOV, FAMULARE, AND SHEA-BROWN PHYSICAL REVIEW E 83, 041908 (2011)

To numerically integrate this quasistationary model, we
used a forward Euler method to update the value of V and n in
each time step, where the stochastic integral for ηt is integrated
as follows:

(1) Compute the voltage dependent terms τn, σn, αn, βn, and
ai using the value of V from the previous time step.

(2) Update the terms associated with each time scale: Ai(t +
�t) = Ai(t)e−i�t/τn + aiσnr

√
�t , where i = 1,2,3,4, �t is

the time step, and r is a mean zero, unit variance Gaussian
random generated on each time step.

(3) Update the stochastic process: η(t + �t) =∑4
i=1 Ai(t + �t).
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