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Unifying model for two-state and downhill protein folding
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A protein-folding model is proposed at the amino acid level, in which the folding process is divided into two
successive stages: the rate-determining step, dominated by the “stochastic interactions”of solvent molecules,
and the rapid phase, dominated by the “order interactions”among atoms in polypeptide. The master equation
approach is used to investigate the folding kinetics, and an analytical treatment of the master equation yields a
simple three-parameter expression for folding time. It is found that both two-state and downhill protein-folding
kinetics can be described by a unifying model.
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I. INTRODUCTION

Protein folding is the physical process by which a random
coil polypeptide folds into its unique native structure. As
an integral part of the “central dogma”of molecular biology,
protein folding is sometimes dubbed the “second half of the
genetic code” [1]. In a living cell, a protein is synthesized on
a ribosome that, residue by residue, makes a protein chain.
However, until now, it is difficult to follow the in vivo folding
of a nascent protein chain against the background of the huge
ribosome. Nearly half a century ago, Anfinsen et al. discovered
that a globular protein is capable of spontaneous folding in
vitro under suitable conditions [2,3]. Such observations allow
one to detach, at least to the first approximation, the study of
protein-folding physics from the protein-folding study in vivo.
Hence, experimentalists and theoreticians have mainly focused
their efforts on these proteins which can spontaneously fold
into their native states in test tube [4,5].

In vitro experiments showed that many small proteins
(fewer than ∼110 amino acids) can fold with simple two-state
kinetics [6] and can do so surprisingly quickly than by ran-
domly exploring all possible conformations of their unfolded
states at the atomic level [7]. Different models have been
established to address the speed principle, e.g., the framework
model [8,9], the hydrophobic collapse model [10,11], the
nucleation-condensation mechanism [12,13], and the zipping
and assembly mechanism [14,15]. However, these microscopic
theories of folding kinetics generally cannot be responsible for
the vast range of folding rates (105 s−1∼10−1 s−1) observed
in experiments [6,16] and cannot explain the quantitative rela-
tionships between protein-folding rates and their topological
parameters. The topological parameter here refers to the set of
noncovalent contacts. The first famous topological parameter
comes from the pioneering work of Plaxco et al. [17],
where they demonstrated that a topological parameter called
the “relative contact order”(RCO) is statistically linearly
correlated to the logarithm of folding rate constant (ln k) of a
small two-state protein. Since then, a number of other protein
topological parameters have been discovered that also have
almost linear relationships with the logarithms of the folding
rate constant. Such topological parameters include long-range
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order (LRO) [18], total contact distance (TCD) [19], absolute
contact order (ACO) [17,20], and the total number of native
contacts (N ) [21].

One prediction that emerged from the energy landscape
theory of protein folding is that the energy barriers between
the folded and the unfolded states are minimized when there
is an extreme energetic bias toward the native state, such as
at low temperatures or in the absence of denaturant [22].
Under such conditions, two-state folders are predicted to
be turned into downhill folding which proceeds through an
array of temporary conformations with broad distributions of
folding times. Due to the significance of downhill folding
in benchmarking molecular dynamics simulations and testing
protein-folding theories, it has received lot of attention in
theory [23,24], simulation [25–27], and experiment [28,29]
in recent years. The downhill folding is expected to take place
very rapidly, approaching the speed limit of folding, which is
about L/100 μs (where L is the number of residues) [30].

In this article, we propose a generic protein-folding model
at the amino acid level. The folding process is divided into
two successive stages: the first stage is the rate-determining
step of protein folding, which can be dealt with analytically
by solving the master equation. The second one is a rapid
free-energy downhill stage, which can be regarded as an
almost instantaneous process. The model and its conclusions
showed that both two-state and downhill-folding kinetics can
be described by a unifying model.

II. THEORETICAL MODEL

At the atomic level, there exist vast, complex interactions
during protein folding. However, many studies show that the
folding rates and mechanisms appear to be largely determined
by the topology of the native states [31]. Thus, it is possible
to use the coarse-grained model based on the folding rate and
native structure to predict some overall features of protein
folding.

Suppose a protein has N native contacts in its folded
state. We assume that the protein-folding process is mainly
driven by two different interactions during different folding
phases: From the beginning of folding to the formation of the
N th contact, the “stochastic interactions”of solvent molecules
dominate. This progress is described by the evolution of the
number of native contacts in time, which is a Markov process
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with transitions between neighboring configurations with n

and (n ± 1) native contacts (n = 1,2, . . . ,N − 1). After that,
the phase is dominated by the “order interactions”among
atoms in polypeptide, and the conformational changes between
forming all N native contacts to final folded state is regarded as
an almost instantaneous process. Hence, the first phase is the
rate-determining step of protein folding and is approximately
considered as the protein-folding time here. Obviously, such a
folding process is also a funnel one: There are many parallel
microscopic routes at the beginning of folding, fewer and fewer
sequential routes with an increase in the number of native
contacts, and a unique native state at the end of folding.

It should be pointed out that although both the state with
the N th native contact coming into existence and the native
state have the same native contacts, their structures differ at
the atomic level. During the rapid free-energy downhill process
from the former state to the latter one, many atoms constituting
the polypeptide may quickly rearrange their relative positions
due to interatomic interactions, but all these adjustments are
too slight to lead to the change of the formed N native contacts.

In addition, although the second stage is a free-energy
downhill process, the model does not restrict the overall change
trend of free energy in the first stage. If the first stage proceeds
uphill in free energy, the folding process corresponds to a
two-state folding, and the state with the N th contact coming
into existence corresponds to the “transition state.” If the first
stage also goes downhill in free energy, just as in stage two,
the folding process corresponds to one-state folding, which
can also be referred to as downhill folding.

The model presented here is the extension of our previous
one [32]: it is no longer limited to two-state folding kinetics but
may also include a downhill one. A more strict mathematical
treatment (the master equation approach) to the model is used
to investigate the folding kinetics of small proteins. In addition,
instead of the micro parameters (the probability to form or
break a native contact and the time to form or break a native
contact) in the original model, the macro parameters (mean
rates of forming and breaking a native contact) would appear
in the description of the model.

The above protein-folding picture is somewhat similar
to the Zwanzig model [33,34], which is based on the idea
of the degree of “correctness” of a protein configuration
compared with the native state. Protein folding in Zwanzig
model is a random walk process in the space of the degree
of “correctness.” This differs from ours, in which the protein-
folding process is obviously divided into two different stages.
Although a generic reaction coordinate including but not
limited to the number of native contacts was considered in
the Zwanzig model, no particular definition of “correctness” in
physics or chemistry was given. Hence, although the model and
its conclusions can qualitatively explain some general folding
properties independent of the actual protein structures, it could
not quantitatively explain the folding kinetics of any specific
protein.

III. MATHEMATICAL DERIVATION

The mathematical aspects of the first phase of above model
by the master equation approach is now outlined. Let ρ(n,t) be
the probability that the polypeptide has formed the nth native

contact at a given time t . This probability will change by
gains from the configurations with (n − 1) and (n + 1) native
contacts and losses to the configurations with (n − 1) and (n +
1) native contacts. Let k+ and k− be the rates of forming and
breaking a native contact, respectively. Then, ρ(n,t) satisfies
the following master equation,

d

dt
ρ(n,t) = k+ρ(n − 1,t) + k−ρ(n + 1,t) − k+ρ(n,t)

− k−ρ(n,t). (1)

For a protein which has N native contacts in the folded
state, the discrete variable n is bounded between 0 and N

(n = 0,1,2, . . . ,N). The master equation Eq. (1) is valid
for n = 1,2, . . . ,N − 1, but meaningless at the boundaries
n = 0 and N . Two boundary equations should be added as
closure conditions. Obviously in our case, n = 0 is a reflecting
boundary, while n = N is an absorbing boundary. Then, two
boundary conditions can be given by

d

dt
ρ(0,t) = k−ρ(1,t) − k+ρ(0,t), (2)

d

dt
ρ(N,t) = k+ρ(N − 1,t). (3)

The first-passage time to the absorbing boundary, which is
approximately equal to the protein-folding time in the present
model, is the time that a protein starts from some arbitrary
initial nth native contact to arrive at the N th native contact.
The mean first-passage time τ (n) is the average of this time
over all ways of getting from n to N . The fundamental equation
that determines the mean first-passage time is [35]

k+ [τ (n + 1) − τ (n)] + k− [τ (n − 1) − τ (n)] = −1, (4)

with the boundary conditions

τ (−1) = τ (0) , (5)

τ (N ) = 0. (6)

It is easy to prove that the solution of Eq. (4) under the
above conditions can be expressed as

τ (n) =
N∑

l=n

φ (l)
l∑

m=1

[k+(m)φ (m)]−1, (7)

with

φ (a) =
a∏

b=1

k− (b)

k+ (b)
. (8)

Although the rate constants of forming different contacts differ
in general, as an approximation of the actual situation, the rate
constant of forming a specific contact is replaced with an
average value in this work. It is the same for the rate constant
of breaking a specific contact. Then, all the rate constants are
independent of position, i.e., k− (b) = k−, and k+ (b) = k+.
Thus, Eq. (8) becomes

φ (a) = Ka. (9)

where K ≡ k−/k+ is an important parameter in the present
model.
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It is a natural assumption that there is no native contact
at the beginning of protein folding. We then take n = 0 in
Eq. (7) and use Eq. (9) to obtain the mean folding time,

τ = K

(K − 1)2k+
KN − 1

(K − 1)k+
N − K

(K − 1)2k+
. (10)

Equation (10) is a simple three-parameter expression for
folding time in terms of the mean rates of forming and breaking
a native contact k+, k−, and the total number of native contacts
N . For two-state protein folding, as more and more formations
of native contacts correspond to proceeding uphill in free
energy, the rate of breaking a contact is higher than the rate
of forming it for most contacts. This implies that k− > k+,
or K > 1 is generally valid for two-state folding kinetics. In
this case, for the actual N values of most small two-state
proteins (see the next section), comparing with the first term,
the last two terms at the right hand of Eq. (10) are too small to
considerably contribute to τ . So, we get

τ ≈ K

(K − 1)2k+
KN. (11)

The above equation implies that, for two-state folding kinetics,
folding time exponentially increases with the total number of
native contacts.

Note that the mean folding time τ is the reciprocal of the
mean folding rate constant k, and the logarithm of rate constant
of protein folding can be approximately given by

ln k = a − bN. (12)

where a = ln [(K − 1)2k+]/K , b = ln K .
In contrast with two-state folding, as more and more

formations of native contacts occur, which corresponds to
proceeding downhill in free energy in downhill folding, the
rate of forming a contact is higher than that of breaking it.
This implies that k+ > k−, or K < 1 is generally valid for
downhill-folding kinetics. In this case, comparing with the
second term, the first term and the last term of the right-hand
side of Eq. (10) are too small to considerably contribute to τ .
Thus, we have

τ ≈ 1

(1 − K)k+
N. (13)

Differing from the two-state folding case, Eq. (13) implies
that folding time linearly increases with the total number of
native contacts for downhill-folding kinetics. And, further,
the logarithm of rate constant of downhill folding can be
approximately given by

ln k = c − ln N. (14)

where k = 1/τ , c = ln[(1 − K)k+].

IV. COMPARISON WITH EXPERIMENTS

Let us now first consider a set of 66 small two-state
proteins, where all the folding rates and native structures were
measured by experiment (among them, 47 proteins come from
Ref. [36], and the others come from a protein-folding kinetics
database [37]). As is well known, protein-folding rates are
sensitive to a wide variety of environmental conditions, such
as temperature, pH, buffer, and the concentration of denaturant.

To make the protein-folding rates reported in Table I as
comparable as possible, for the same protein studied in several
different conditions, the measurement done at conditions
closest to the “standard conditions” (25 ◦C at pH 7.0, 50 mM
buffer) is selected [37,38].

By linear regression analysis, we find that the logarithm of
the folding rate constant ln k is negatively linearly correlated
with the number of native contacts N

ln k = 10.411 − 0.071N, (15)

with a correlation coefficient R = −0.81. The p value
associated with correlation, p < 0.0001, is extremely low,
suggesting that the observed correlation is highly unlikely
to have arisen by chance in the 66-member test set.
Figure 1 shows the linear regressions of ln k versus N together
with the experimental points. Here, we assume that two
residues in the folded protein are in contact if the straight-line
distance between their Cα atoms is less than d, and if there
are more than l residues between them along the chain. To
calculate the total number of native contacts N , we take the
cutoffs d = 7.00 Å and l = 11 residues. It is found that cutoffs
d from 6.00 Å to 8.00 Å, l from 4 to 15 residues, do not
significantly affect the correlations described in this work.
The correlation coefficient remains greater than 0.76.

Differing from the native contact in relative contact order,
two residues forming a native contact here (cutoffs d � 7.00 Å
l � 11 residues) are close in space but far in the sequence. In
this way, for example, two residues connected by backbone
hydrogen bond in α helix do not form a native contact in the
present model. In fact, this kind of native contact emphasizes
the importance of long-range interactions in protein folding.

Comparing the theoretical prediction Eq. (12) and the
experimental result Eq. (15), for the two-state folding kinetics,
we can determine the two mean rate constants of forming and
breaking a contact,

k+ = 6.5 × 106 s−1, k− = 7.0 × 106 s−1. (16)
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FIG. 1. The linear regression of ln k vs. N together with the
experimental points for the 66 small, two state proteins used in this
work.
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TABLE I. List of the selected proteins in this article. The columns in this table are as follows: PDB id, Protein Data Bank entry; L, number
of residues in the protein used in experimental study; N , total number of native contacts; and ln k, the natural logarithm of the experimental
folding rates in the water. Four proteins in the table, 1C8C, 1E0L, 1PRB, and 1T8J are actually the mutants of the corresponding wild-type
proteins (1C8C)Y34W, (1E0L)W30A, (1PRB)K5L/K39V, and (1T8J)V3Y/F8W, respectively.

PDB id L N ln k PDB id L N ln k PDB id L N ln k

1APS 98 149 −1.5 1HRC 104 79 7.94 1RIS 97 109 5.9
1AVZ 57 72 4.88 1IMQ 86 43 7.3 1RLQ 56 68 4.36
1AYI 86 26 7.2 1JMQ 40 18 8.4 1SHF 59 74 4.5
1BA5 49 6 5.9 1JO8 58 77 2.46 1SHG 57 69 1.4
1BDD 60 14 11.74 1JYG 69 17 9.1 1SPR 103 80 8.7
1BRS 89 70 3.4 1L2Y 20 3 12.43 1SRL 56 67 4
1C8C 64 42 7.0 1LMB 80 19 8.5 1T8J 23 1 11.8
1C9O 66 78 7.2 1M9S 76 93 3.98 1TEN 89 143 1.1
1CIS 66 78 3.87 1MJC 69 84 5.3 1U5P 110 19 11.0
1CSP 67 80 6.5 1N88 96 105 2.02 1UBQ 76 74 5.9
1CUN 106 22 4.8 1NTI 86 49 6.96 1URN 96 100 5.8
1DIV1 92 93 3.27 1O6X 81 67 6.8 1VII 36 6 11.51
1DIV2 56 39 6.1 1PBA 81 69 6.8 1WIT 93 158 0.4
1E0L 37 13 10.6 1PGB1 16 7 12.0 1YCC 103 77 9.62
1E0M 37 17 8.9 1PGB2 56 44 6.0 256B 106 39 12.2
1ENH 54 3 10.59 1PIN 34 15 9.44 2A3D 73 13 12.2
1FEX 59 6 8.2 1PKS 76 107 −1.05 2ABD 86 55 6.6
1FKB 107 159 1.5 1PNJ 86 91 −1.0 2ACY 98 137 0.92
1FKF 107 156 1.6 1POH 85 94 2.7 2CI2 64 68 5.8
1FNF 89 145 −0.9 1PRB 47 18 13.8 2PDD 41 10 9.8
1G6P 66 92 6.3 1PSF 69 78 3.2 2PTL 60 56 4.1
1GV2 47 4 8.7 1RFA 78 77 8.36 3GB1 56 44 6.3

Eight proteins in Table I, 1E0L, 1ENH, 1L2Y, 1LMB,
1PIN, 1VII, 2A3D, and 2PDD, are the so-called ultrafast
folding proteins [30]. The mean value of their total numbers
of native contacts (nearly 10) is significantly less than that
of the other proteins (nearly 70). According to the present
folding model, for a two-state folding protein, it is the total
number of native contacts determines the height of free-energy
barrier and thus the folding rate. The ultrafast folding protein
with two-state kinetics has a smaller N value, and thus a
lower folding free-energy barrier and thus a faster folding
rate.

Assume that a protein has at least one native contact, take
N = 1 in Eq. (10), and use k+ value given in Eq. (16), we can
estimate the fastest folding time,

τ = 1

k+
≈ 1.5 × 10−7s, (17)

which is close to the folding speed limit that experimental and
theoretical approaches predict [30].

Although fast-folding experiments have given evidence for
downhill folding in some artificially designed proteins [39,40],
it has been debated whether downhill folding occurs for
natural proteins under native conditions [41–43]. Due to the
controversy surrounding the experiments and the lack of
accepted experimental data, it is difficult at present to directly
verify Eq. (14) by a set of valid downhill-folding proteins.
However, if the time to form one native contact is the same for
downhill and two-state folders, and if we let the range of the
total numbers of native contacts of downhill folders be 1∼100,

then the range of folding rates from Eq. (14) should be 107∼
105 s−1, which is consistent with the recognized downhill-
folding rates range [30].

Recently, experimental evidence has emerged that a two-
state-folding protein can turn into a downhill-folding one
under some certain solvent conditions. For example, Kim
et al. have examined the same fast-folding protein under very
different solvent conditions and found that it behaves like a
two-state folder in one and a downhill folder in another [44]. In
our model, such solvent-tuning two-state-to-downhill folding
corresponds to the parameter K changing from less than 1 to
greater than 1.

Finally, it should be pointed out that, although the folding
rates of an ultrafast two-state-folding protein and a downhill-
folding protein may be very close to each other, they fold
through different folding kinetics. For the former, there exists
a lower folding free-energy barrier or a smaller N value. For
the latter, there is no significant free-energy barrier along the
reaction coordinate, and its total number of native contacts N

may not be very small.

V. SUMMARY AND REMARKS

In summary, although it is impossible for a polypeptide to
find its native structure by random search in its configuration
space at the atomic level, it can find its folded state by random
search among its contact number spaces at the amino acid
level. Moreover, both two-state- and downhill-folding kinetics
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can be described by a unifying model, depending on the
different solvent conditions (e.g, temperature, denaturant, pH)
and therefore the different folding funnel landscapes and the
different parameter values (K < 1 or K > 1 in the present
model).
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