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Work fluctuations in an elastic dumbbell model of polymers in planar elongational flow
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We use a path-integral approach to calculate the distribution P (w,t) of the fluctuations in the work w at time t of
a polymer molecule (modeled as an elastic dumbbell in a viscous solvent) that is acted on by an elongational flow
field having a flow rate γ̇ . We find thatP (w,t) is non-Gaussian and that, at long times, the ratio P (w,t)/P (−w,t)
is equal to exp[w/(kBT )], independent of γ̇ . On the basis of this finding, we suggest that polymers in elongational
flows satisfy a fluctuation theorem.
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I. INTRODUCTION

Thermodynamics on the scale of single molecules is
characterized by a marked sensitivity of its measurable
properties to the effects of fluctuations [1]. As a result, and
in contrast to the situation in the bulk, measurements of
thermodynamic quantities in different samples prepared under
nominally identical conditions do not always yield the same
value. However, on the basis of very general principles of
nonequilibrium statistical mechanics, it is believed that the
distributions of these values (for selected stochastic variables)
must satisfy certain mathematical constraints that are now
referred to as fluctuation theorems [2]. A great deal of current
research has been devoted to the experimental study and
verification of this idea [1,3–6].

Monitoring the time-dependent work done during many
repetitions of the forced unfolding of compact macromolecules
(like hairpin RNA) has been one of the many methods by
which fluctuation theorems have been tested [4]. The work
distributions determined from such experiments are often
Gaussian, with the mean and variance so related to each other
that a special case of the fluctuation theorem—the so-called
Jarzynski relation [7]—is found to be satisfied. The same
relation has been shown to hold theoretically in a model system
consisting of a Rouse chain acted on by a constant force at one
end [8].

Because of their size and conformational flexibility, poly-
mers are particularly attractive objects for the study of fluc-
tuation relations at the single-molecule level. But mechanical
pulling (by optical tweezers, for instance [4,9]) is not the only
method of stretching them under controlled conditions. Sub-
jecting them to flow fields produces similar (but not necessarily
identical) results. Since polymer-flow interactions are also
accompanied by the performance of work or the dissipation of
heat as the molecule cycles between stretched and relaxed
conformations under the action of both the flow field and
thermal fluctuations in the medium, the distributions of these
quantities can also, in principle, be measured. That does not
appear to have been done, however, although numerous other
statistical quantities in such systems have been probed [10,11].
It is not yet clear, therefore, whether polymers in flow fields are
also governed by the same fluctuation theorems that hold under
other conditions. To the best of our knowledge, the question
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does not appear to have been addressed theoretically either,
except somewhat tangentially [12], so any insights that can be
provided at this stage are likely to be interesting in their own
right and possibly helpful in the interpretation of experimental
results, whenever they are obtained.

It is with this in mind that we calculate the work distribution
function for a simple but instructive model of a polymer-flow
system: an elastic dumbbell in a planar elongational flow field.
The elastic dumbbell has been a widely used model of chain
conformational behavior [13], and it is expected to serve as a
heuristic for calculations based on more realistic but less easily
treated models. As we will show, the calculation of the work
distribution function for the elastic dumbbell can be carried
out exactly using path integrals. Our results indicate that
the distribution of work fluctuations for this system satisfies
constraints analogous to those associated with mechanical
deformations.

The following section sets up the equations for the
stochastic evolution in an external flow field of the two
harmonically coupled beads that define the dynamics of a
dumbbell in a viscous solvent. These equations are separated
into independent equations for the position of the center-of-
mass ρ and the interbead distance R. The latter, along with
the equation for the evolution of the work done during the
stretching of the dumbbell by the flow, which can be written
entirely in terms of the internal coordinate R, defines our model
of chain dynamics. In Sec. III, a path-integral representation
of the distribution of this work at time t is derived, and
then evaluated in Sec. IV for the special case of an initial
distribution corresponding to a collapsed configuration of the
dumbbell. The results of the calculation are discussed in
Sec. V in the context of a generalized fluctuation theorem.
Some details of the evaluation of the path integral are provided
in the Appendix.

II. DYNAMICAL EQUATIONS OF DUMBBELL MODEL

The dumbbell is assumed to consist of two point beads of
mass m joined by a harmonic spring. The state of the system
at time t is defined by the positions of these beads in some
laboratory-fixed frame [13]. If these positions are denoted r1

and r2, the evolution of the dumbbell in a viscous solvent in a
velocity field v(r) ≡ v0 + γ̇ κ · r under overdamped conditions
and in the absence of hydrodynamic interactions [14] is
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given by

−ζ ṙi(t) + ζ [v0 + γ̇ κ · ri(t)] − ∂U (|ri − rj |)
∂ri

+ θ i(t) = 0,

i,j = 1,2. (1)

Here, ζ is the friction coefficient of the bead, v0 is a
constant space-independent background solvent velocity, γ̇ is
the flow rate, κ is the velocity gradient tensor (to be specified
later), U is the harmonic potential of the spring given by
U = k(r1 − r2)2/2 with k being the spring constant, and θ i(t) is
a random force acting on bead i whose properties are defined
by its mean and variance: 〈θ i(t)〉 = 0 and 〈θiα(t)θjβ(t ′)〉 =
2ζkBT δij δαβδ(t − t ′) with i,j = 1,2 and α,β = x,y,z.

The coupled equations for the two beads can be separated
into independent equations by introducing coordinates for
the center of mass and the interbead separation. These are
defined as ρ = (r1 + r2)/2 and R = r2 − r1, respectively. The
equations of motion for these coordinates are:

ρ̇(t) = v0 + γ̇ κ · ρ(t) + ζ−1ξ (t), (2a)

Ṙ(t) = γ̇ κ · R(t) − 2ζ−1 ∂U (|R|)
∂R

+ ζ−1η(t), (2b)

where ξ (t) = [θ1(t) + θ2(t)]/2 and η(t) = θ2(t) − θ1(t).
During an interval of time t, a certain amount of work w

is done by the beads as they respond to the effects of the
flow field of the surrounding solvent. As discussed by Speck
[12], the expression that defines w under these conditions is
obtained by noting that the work done by a system subject
to flow must be the same in both laboratory-fixed (Eulerian)
and comoving (Lagrangian) frames of reference. This means,
in effect, that the rate ẇ of doing work must be given by
the material time derivative of the system’s internal energy
U, which may be regarded (in general) as a function of an
external control parameter λ and an internal coordinate x. That
is, ẇ = DU/Dt , where D/Dt is the material time derivative
(referred to as the convective derivative in [12]) and is given by
D/Dt = ∂/∂t + u(x) · ∇x, where u(x) is the solvent velocity
field at x. Thus, in general, ẇ = λ̇∂U/∂λ + u(x) · ∇xU . For
the elastic dumbbell considered here, therefore, the work rate
is given by

ẇ(t) =
2∑

i=1

v(ri) · ∇ri
U (|r2 − r1|), (3)

which, after the substitution of the definitions of the velocity
field v(r) and the internal coordinate R, reduces to

ẇ(t) = [γ̇ κ · R(t)] · ∂U (|R|)
∂R

. (4)

Equations (2b) and (4) are the defining equations of our model.

III. WORK DISTRIBUTION IN PATH-INTEGRAL FORM

The work done by the dumbbell in a time t is a functional
of its configuration R, which, in turn, is a functional of the
noise η. Since η is a Gaussian stochastic variable [whose mean
and variance, as derived from its definition in terms of θ , are
given by 〈η(t)〉 = 0 and 〈ηα(t)ηβ(t ′)〉 = 4ζkBT δαβδ(t − t ′)],
the probability P [η] that a given realization of the noise is
observed in the time t can be written as [15–17]

P [η] ∝ exp

[
− 1

8ζkBT

∫ t

0
dt ′η(t ′) · η(t ′)

]
. (5)

The probability P [R] that the dumbbell is in the configura-
tion R is therefore given by

P [R] ∝ J exp

[
− 1

8ζkBT

∫ t

0
dt ′[ζ Ṙ(t ′)

− D · R(t ′)] · [ζ Ṙ(t ′) − D · R(t ′)]
]
, (6)

where J is the Jacobian of the transformation from η to R vari-
ables and D is the matrix D = ζ γ̇ κ − 2k1, with 1 being the unit
tensor. The Jacobian J is defined formally as |det(∂η/∂R)| and
can be obtained from a discrete representation of the Langevin
equation for the evolution of R. Different conventions may be
adopted for the discretization procedure; our results are based
on the following [15]:

η(ti) = ζ
R(ti) − R(ti−1)

�t
− D · R(ti) + R(ti−1)

2
,

i = 1,2, . . . ,N, (7)

where �t is an infinitesimal increment of time and ti = i�t .
The continuum limit in this representation corresponds to
�t → 0, N → ∞, and N�t → t . From Eq. (7), we see
that the matrix of derivatives ∂ηi/∂Rj , i,j = 1,N is of lower
triangular form, so its determinant is easily found to be

J =
N∏

i=1

|ζ1/�t − D · 1/2| =
N∏

i=1

(ζ/�t + k)3

= (ζ/�t)3N

N∏
i=1

[1 + 3k�t/ζ

+O(�t2)]
�t→0,N→∞→

N�t→t
(ζ/�t)3N exp(3kt/ζ ).

If we now consider the special case of planar elongational
flow, the velocity gradient tensor is given by

κ =

⎛
⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎠ . (8)

For this case, Eq. (6) becomes

P [R] ∝ exp(3kt/ζ ) exp

[
− ζ

8kBT

∫ t

0
dt ′

{
Ṙ2

x + Ṙ2
y + Ṙ2

z + 4k

ζ
(ṘxRx + ṘyRy + ṘzRz)

− 2γ̇ (ṘxRy + RxṘy) + 4k2

ζ 2

[(
1 + ζ 2γ̇ 2

4k2

)
R2

x +
(

1 + ζ 2γ̇ 2

4k2

)
R2

y + R2
z

]
− 8kγ̇

ζ
RxRy

}]
, (9)
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where the variables Rx,Ry , etc. are understood to depend on time t ′ and where the infinite factor of (ζ/�t)3N has been omitted
since it can be absorbed into the definition of a proportionality constant that normalizes the probability distribution.

The probability density P (w,t) that an amount of work w is done at time t can be defined, in general, as

P (w,t) = 〈δ[w − w(t)]〉, (10)

where w(t) = kγ̇
∫ t

0 dt ′Rx(t ′)Ry(t ′), and the angular brackets denote an average with respect to the probability density function
of Eq. (9). By introducing the Fourier representation of the delta function into Eq. (10), we can express P (w,t) as

P (w,t) = e3kt/ζ

∫ ∞

−∞
dλ

∫
d3R0

∫
d3Rf P (R0) exp

[
−βk

4

(
R2

xf − R2
x0 + R2

yf − R2
y0 + R2

zf − R2
z0

)]
×G(Rf ,t |R0,0) exp(iλw), (11a)

where the P (R0) is the distribution of initial values of the interbead separation (which will be specified later), and G is the path
integral

G(Rf ,t |R0,0) =
∫ Rx (t)=Rxf

Rx (0)=Rx0

D[Rx]
∫ Ry (t)=Ryf

Ry (0)=Ry0

D[Ry]
∫ Rz(t)=Rzf

Rz(0)=Rz0

D[Rz] exp

[
−

∫ t

0
dt ′L (Rx,Ry,Rz,Ṙx,Ṙy,Ṙz)

]
, (12a)

where D[R] represents the measure on the space of trajectories of R, and

L = a0
(
Ṙ2

x + Ṙ2
y + Ṙ2

z

) − a2(ṘxRy + RxṘy) − a3RxRy + a4
(
R2

x + R2
y

) + a5R
2
z , (12b)

with a0 = βζ/8, a2 = βζ γ̇ /4, a3 = kγ̇ (β − 2iλ), a4 = βk2[1 + ζ 2γ̇ 2/(4k2)]/(2ζ ), and a5 = βk2/(2ζ )

IV. CHARACTERISTIC FUNCTION OF
WORK DISTRIBUTION

Being a quadratic path integral, the propagator
G(Rf ,t |R0,0) of Eq. (12a) can be found exactly using
Feynman’s variational method [17,18]. But the calculations
are extremely lengthy (though fairly straightforward), so
only an outline of key steps in the derivation is included,
which may be found in the Appendix. Once G is determined
and a definite choice is made for the distribution function
P (R0) of initial positions, the next step is to carry out the
integrations over the end points of the chain to produce, in
effect, the characteristic function of P (w,t) [i.e., the function
C (λ) ≡ 〈exp[−iλw(t)]〉]. In the present calculations we
choose the initial distribution to correspond to a collapsed
configuration of the chain. Specifically,

P (R0) = δ(Rx)δ(Ry)δ(Rz). (13)

With this choice, it can be shown that the final expression for
C is

C (λ) = 2a0 exp(3kt/ζ )A1A2A3A4, (14a)

where

A1 =
( √

a0a5(�2 −  2)

sinh(t
√

a5/a0) sinh(t
√

� −  ) sinh(t
√

� +  )

)1/2

,

(14b)

A2 =
(

βk

2
+ a2 + 2a0

√
� +  coth(t

√
� +  )

)−1/2

,

(14c)

A3 =
(

βk

2
− a2 + 2a0

√
� −  coth(t

√
� −  )

)−1/2

,

(14d)

A4 =
(

βk

4
+ √

a0a5 coth(t
√

a5/a0)

)−1/2

, (14e)

with � ≡ a4/a0 and  ≡ a3/(2a0).
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FIG. 1. Time dependence of the mean-square end-to-end distance
〈R2(t)〉, as calculated from Eq. (17), at the following flow rates γ̇ (in
arbitrary units) : 0.5 (dotted line), 2.05 (dashed line), 2.3 (dot-dashed
line), 2.7 (thin solid line), and 3.0 (thick solid line). The values of the
other phenomenological parameters in Eq. (17) [which are defined
after Eq. (12b)] are determined by the values assigned to the thermal
energy scale β = (kBT )−1, the spring constant k, and the friction
coefficient ζ , which have all been set to unity.
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The work distribution itself, P (w,t), which is given
formally by

P (w,t) =
∫ ∞

−∞
dλ exp(iλw)C (λ), (15)

cannot be found in closed form from the above expression for
C (λ), although it can be evaluated numerically for given values
of w, t and the other phenomenological parameters that appear
in Eq. (9) and that are defined after Eq. (12b). A discussion
of the key features of the numerically evaluated distribution,
in particular its connection to a fluctuation theorem, will
be presented in the next section. Moments of P (w,t) can,
however, be determined analytically from the formulas

〈w(t)〉 = i
∂

∂λ
〈exp[−iλw(t)]〉

∣∣∣∣
λ=0

, (16a)

〈w2(t)〉 = − ∂2

∂λ2
〈exp[−iλw(t)]〉

∣∣∣∣
λ=0

. (16b)

The actual expressions for these moments are rather
complicated, and are not reproduced here in the interests of
brevity.

V. RESULTS AND DISCUSSION

Before turning to the principal result of our calculations—
the form of the probability density of the work done by a
dumbbell in planar elongational flow—we should first like to
note that from the equation we have derived for the propagator
G(Rf ,t |R0,0) it is a simple matter to calculate the mean square
end-to-end distance of the chain, 〈R2(t)〉, using the relation

〈R2(t)〉 =
∫

dRf

∫
dR0P (R0)(Rf − R0)2G(Rf ,t |R0,0)

× exp
[− βk

4

(
R2

xf + R2
x0 + R2

yf + R2
y0 + R2

zf + R2
z0

)]
∫

dRf

∫
dR0P (R0)G(Rf ,t |R0,0) exp

[− βk

4

(
R2

xf + R2
x0 + R2

yf + R2
y0 + R2

zf + R2
z0

)] , (17)

with P (R0) given by Eq. (13), and the propagator G given by
Eq. (12a) with the parameter λ set to 0 in the coefficient a3.
Because the actual expression for this 〈R2(t)〉 is lengthy, it is
not reproduced here but is instead shown graphically in Fig. 1
as a function of time t for various flow rates γ̇ . One conclusion
that is suggested by these curves is that significant stretching
of the chain is possible only after a certain critical value of
the flow rate is reached; the same conclusion is suggested by
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FIG. 2. Flow-rate dependence of the mean-square end-to-end
distance 〈R2(t)〉, as calculated from Eq. (17), at the following times t
(in arbitrary units): 1.0 (dotted line), 2.0 (dashed line), 3.0 (dot-dashed
line), and 4.0 (solid line). The other parameters in the equation are
assigned the same values as used in Fig. 1.

the plot of 〈R2(t)〉 versus γ̇ at fixed t (Fig. 2). The nature of the
curves in Figs. 1 and 2 is broadly consistent with the long-held
view (put forward by de Gennes [19]) that compact polymers
tend to unravel under a force only after the polymer’s entropic
elasticity is overcome by a certain threshold force. At this
threshold force (or critical strain rate), the polymer undergoes
what is generally referred to as a coil-stretch transition [19,20].
Recent single-molecule experiments by Chu et al. [10] have,
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FIG. 3. Work distribution P (w,t) vs. w, as calculated from
Eq. (15), at the arbitrary fixed time t = 1.5 and at the following
flow rates: 0.5 (solid line), 0.7 (dotted line), 1.0 (dashed line), and 1.5
(dot-dashed line). The other parameters in the equation are assigned
the same values as used in Fig. 1.
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FIG. 4. Time dependence of the mean work 〈w〉, as calculated
from Eq. (16a), at the following flow rates: 0.5 (dotted line), 1.5
(solid line), 1.9 (dot-dashed line), and 2.05 (dashed line). The other
parameters in the equation are assigned the same values as used in
Fig. 1.

in fact, provided direct evidence of such transitions, although
they seem to occur less abruptly than the effect predicted by
theory. That these general trends are mostly reproduced in our
calculations suggests that the underlying dumbbell model is
sufficiently realistic to serve as a starting point for the study of
work fluctuations in long-chain molecules.

With this in mind, we return to a consideration of the
model’s work distribution, which is defined formally by
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FIG. 5. Time dependence of the variance of the work 〈w2〉 −
〈w〉2, as calculated from Eq. (16b), at the following flow rates: 0.5
(dotted line), 1.5 (solid line), 1.9 (dot-dashed line), and 2.05 (dashed
line). The other parameters in the equation are assigned the same
values as used in Fig. 1.
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FIG. 6. Dependence of ln [P (w,t)/P (−w,t)] on βw (with β set
to 1), as calculated from Eq. (15), at the fixed time t = 2 and at the
following flow rates: 1.0 (dotted line), 1.5 (full line), and 2.0 (dashed
line). The other parameters in the equation are assigned the same
values as used in Fig. 1.

Eq. (15), and which is obtained by numerical integration of
that equation. A plot of P (w,t) evaluated in this way is shown
in Fig. 3 as a function of the work w for different flow rates
γ̇ at the arbitrary fixed time t = 1.5. Interestingly, the curves
show clear evidence of non-Gaussian behavior at all flow rates,
so they are quite distinct from the Gaussian work distributions
found by Dhar [8] and Speck and Seifert [21] for the stretching
of a model Rouse chain. This is to be expected since the work,
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FIG. 7. Dependence of ln[P (w,t)/P (−w,t)] on βw (with β set
to 1), as calculated from Eq. (15), at the fixed flow rate γ̇ = 1 and
at the following times: 1.5 (dashed line), 2 (dot-dashed line), 4 (full
line), and 5 (dotted line). The other parameters in the equation are
assigned the same values as used in Fig. 1.
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as defined in our calculations [Eq. (4)], is no longer a linear
functional of the trajectory of the coordinate R.

Both the mean 〈w〉 and the variance σ ≡ 〈w2〉 − 〈w〉2 of
P (w,t) can be calculated analytically from the characteristic
function C (λ) [see Eqs. ( [14]), (16a), and (16b)]. They are
shown, respectively, in Figs. 4 and 5 as a function of time t
at fixed flow rate γ̇ . Both variables tend to increase linearly
with t at small values of γ̇ , and to increase significantly faster
with t at larger values of γ̇ , somewhat in the manner of the
mean-square end-to-end distance.

The function P (w,t) itself shows far more interesting
behavior when plotted in the form ln[P (w,t)/P (−w,t)] versus
βw (with β set to 1 for convenience) for different γ̇ at fixed
time. The plot is shown in Fig. 6 for t = 2 and three different
values of γ̇ . The curves all lie essentially on a single straight
line (with some slight dispersion at large w) that passes through
the origin and has a slope that lies between about 1.1 and 1.2.
This suggests, but does not quite establish, that

P (w,t)

P (−w,t)
= exp(βw), (18)

independent of γ̇ . However, if one plots the same function at
still larger times, one notices a clear tendency for the slope
to decrease towards 1.0 (again independent of γ̇ ), though the
decrease is quite slow. This trend is shown in Fig. 7, where
the variation of ln[P (w,t)/P (−w,t)] with w is plotted at four
successively higher times. Unfortunately, the highest time that
appears to be accessible to these calculations before numerical
instabilities in the integration routine (MATHEMATICA) lead to
nonconvergent results is about 5. Nevertheless, these results
strongly suggest that

P (w,t)

P (−w,t)
= exp(βw), t � 1, (19)

a relation that also appears to characterize the measured work
fluctuations of the harmonic oscillator system of Ref. [6].
Equation (19) is one common mathematical statement of
a fluctuation theorem, and it is the key finding of these
calculations.

Thus, we believe we have shown that the long-time
distribution of the fluctuations in the work done by a Hookean
dumbbell placed in a viscous solvent in the presence of a planar
elongational flow field and in the absence of hydrodynamic
interactions satisfies a fluctuation theorem. Whether real
polymers (which behave only approximately as Hookean
springs, being finitely extensible, and which are generally not
free-draining) likewise satisfy the fluctuation theorem under
similar conditions is a question in which we hope our results
will spur experimental interest. In addressing this question, the
role of hydrodynamic interactions will be especially important
to understand. Indeed, recent simulations of the response of
collapsed globular polymers to elongational flow [22] indicate
that the onset of a coil-stretch transition is strongly influenced
by such interactions (modeled in these calculations by the
Rotne-Prager tensor). Any effect that influences the transition
will therefore also influence the work done, and presumably
the distribution of the work done as well, with consequences
for the existence of a fluctuation relation that at present are
difficult to predict.

APPENDIX: EVALUATION OF THE PROPAGATOR

The basic idea behind Feynman’s approach to the evalu-
ation of path integrals [17] is to expand the action S[R] ≡∫ t

0 dt ′L [R(t ′),Ṙ(t ′)] to second order in the deviation R − R̄
around the classical action S[R̄], where the classical path R̄ is
determined from the minimization condition δS[R]/δR|R=R̄ =
0. In this way, the path integral is expressed as the product
of exp(−S[R̄]) and a function φ(t) (the so-called fluctuation
integral), which is a function solely of time and which can be
evaluated by direct methods [17,18].

In the present problem of a dumbbell in planar elongational
flow, the path integral naturally factorizes into a product of two
terms: one a contribution from dynamics in the xy plane, and
the other a contribution from dynamics along the z direction.
The latter path integral (corresponding to a one-dimensional
harmonic oscillator) is known [17,18] and will not be discussed
further; the former is the subject of this appendix, and for this
path integral the fluctuation integral takes the form

φ(t) =
∫ 0

0
D[δRx]

∫ 0

0
D[δRy] exp

[
−

∫ t

0
dt ′

{
a0

(
δṘ2

x + δṘ2
y

) − a2(δṘxδRy + δRxδṘy)−a3δRxδRy + a4
(
δR2

x + δR2
y

)}]
.

The first step in the calculation of both exp(−S[R̄]) and φ(t)
is the determination of the classical path. From the expression
for the “Lagrangian” in Eq. (12), the classical equations of
motion for the x and y components of the vector R can be
obtained from the relation (d/dt)∂L /∂Ṙα = ∂L /∂Rα, α =
x,y. This leads to the equation

r̈(t) + Jr(t) − �1r(t) = 0, (A1)

where rT = (Rx Ry),  = a3/(2a0), � = a4/a0 and J =
( 0 1

1 0 ). The corresponding equation for Rz, which is

obtained from the relation (d/dt)∂L /∂Ṙz = ∂L /∂Rz, is
R̈z(t) − (a5/a0) Rz(t) = 0. It may be verified that the general
solution to Eq. (A1) is given by [23]

R̄x(t) = ea1t [A cosh (b1t) + B sinh (b1t)]

+ e−a1t [C cosh (b1t) + D sinh (b1t)] , (A2a)

R̄y(t) = ea1t [A sinh (b1t) + B cosh (b1t)]

− e−a1t [C sinh (b1t) + D cosh (b1t)] , (A2b)
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where a1 ≡ (
√

� −  + √
� +  )/2, b1 ≡ (

√
� −  −√

� +  )/2 and A, B, C, and D are unknown coefficients
to be determined by the conditions R̄x (0) = Rx0, R̄y (0) =
Ry0, R̄x(t) = Rxf , and R̄y(t) = Ryf . These conditions lead to
the results

A = 1

4sh [(a1 + b1) t] sh [(a1 − b1) t]
[−Rx0{e−(a1−b1)tsh [(a1 + b1) t] + e−(a1+b1)tsh [(a1 − b1) t]}

+Ry0{e−(a1−b1)tsh [(a1 + b1) t] − e−(a1+b1)tsh [(a1 − b1) t]} + 2Rxf sh (a1t) ch (b1t)

− 2Ryf sh (b1t) ch (a1t)], (A3a)

B = 1

4sh [(a1 + b1) t] sh [(a1 − b1) t]
[Rx0{e−(a1−b1)tsh [(a1 + b1) t] − e−(a1+b1)tsh [(a1 − b1) t]}

−Ry0{e−(a1−b1)tsh [(a1 + b1) t] + e−(a1+b1)tsh [(a1 − b1) t]} − 2Rxf sh (b1t) ch (a1t)

+ 2Ryf sh (a1t) ch (b1t)], (A3b)

C = 1

4sh [(a1 + b1) t] sh [(a1 − b1) t]
[Rx0{e(a1−b1)tsh [(a1 + b1) t] + e(a1+b1)tsh [(a1 − b1) t]}

−Ry0{e−(a1−b1)tsh [(a1 + b1) t] − e−(a1+b1)tsh [(a1 − b1) t]} − 2Rxf sh (a1t) ch (b1t)

+ 2Ryf sh (b1t) ch (a1t)], (A3c)

D = 1

4sh[(a1 + b1)t]sh[(a1 − b1)t]
[Rx0{e−(a1−b1)tsh[(a1 + b1)t] − e−(a1+b1)tsh[(a1 − b1)t]}

−Ry0{e(a1−b1)tsh[(a1 + b1)t] + e(a1+b1)tsh[(a1 − b1)t]} − 2Rxf sh(b1t)ch(a1t)

+ 2Ryf sh(a1t)ch(b1t)]. (A3d)

The next step in the calculation is the evaluation of the
action along the classical path; that is, the evaluation of the
integral

S2 ≡
∫ t

0
dt ′

[
a0

( ˙̄R
2

x + ˙̄R
2

y

) − a2
( ˙̄RxR̄y + R̄x

˙̄Ry

)
− a3R̄xR̄y + a4

(
R̄2

x + R̄2
y

) ]
.

This is done using integration by parts in conjunction with the
equations of motion [Eq. (A1)]. The result is

S2 = a0( ˙̄Rx(t)Rxf − ˙̄Rx (0) Rx0 + ˙̄Ry(t)Ryf

− ˙̄Ry (0) Ry0) − a2(Rxf Ryf − Rx0Ry0), (A4)

which, using the expressions for R̄x(t) and R̄y(t) given in
Eqs. (A2) and (A3), leads to

S2 = −a2(Rxf Ryf − Rx0Ry0) + a0

{
1

sinh[(a1 + b1)t]sinh[(a1 − b1)t]

[(
R2

xf + R2
yf + R2

x0 + R2
y0

)
×[a1sinh(a1t)cosh(a1t) − b1sinh(b1t)cosh(b1t)] + 2(Rxf Ryf + Rx0Ry0)

×[−a1sinh(b1t)cosh(b1t) + b1sinh(a1t)cosh(a1t)] + 2(Rx0Ryf + Rxf Ry0)

×[a1sinh(b1t)cosh(a1t) − b1sinh(a1t)cosh(b1t)] + 2(Rxf Rx0 + Ryf Ry0)

×[−a1sinh(a1t)cosh(b1t) + b1sinh(b1t)cosh(a1t)]
]}

(A5)
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The so-called fluctuation integral (i.e., the path inte-
gral) φ(t) that appears at second order when expand-
ing around the classical action is obtained from the
determinant [17]

φ(t)2 ∝

∣∣∣∣∣∣∣∣∣∣

∂2S2

∂Rxf Rx0

∂2S2

∂Rxf Ry0

∂2S2

∂Ryf Rx0

∂2S2

∂Ryf Ry0

∣∣∣∣∣∣∣∣∣∣
. (A6)

Thus,

φ(t) ∝ 2a0

√
a2

1 − b2
1

sinh [(a1 + b1) t] sinh [(a1 − b1) t]
. (A7)

Thus, the propagator associated with the variables Rx and Ry

is given by

G(Rxf ,Ryf ,t |Rx0,Ry0,0) = φ(t) exp (−S2) (A8)

The propagator associated with the variable Rz is well known,
so we merely report the final result:

G(Rzf ,t |Rz0,0) =
(

2
√

a0a5

sinh(t
√

a5/a0)

)1/2

× exp

[
−

√
a0a5

sinh(t
√

a5/a0)

{ (
R2

zf + R2
z0

)
× cosh(t

√
a5/a0) − 2Rzf Rz0

}]
. (A9)

The expression for the propagator in three dimensions is
given by the product of the propagators in Eqs. (A8) and (A9),
and this is the expression used in the calculations described in
the text.
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