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Random-walk-based stochastic modeling of three-dimensional fiber systems
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For the simulation of fiber systems, there exist several stochastic models: systems of straight nonoverlapping
fibers, systems of overlapping bending fibers, or fiber systems created by sedimentation. However, there is a
lack of models providing dense, nonoverlapping fiber systems with a given random orientation distribution and a
controllable level of bending. We introduce a new stochastic model in this paper that generalizes the force-biased
packing approach to fibers represented as chains of balls. The starting configuration is modeled using random
walks, where two parameters in the multivariate von Mises—Fisher orientation distribution control the bending.
The points of the random walk are associated with a radius and the current orientation. The resulting chains of
balls are interpreted as fibers. The final fiber configuration is obtained as an equilibrium between repulsion forces
avoiding crossing fibers and recover forces ensuring the fiber structure. This approach provides high volume

fractions up to 72.0075%.
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I. INTRODUCTION

The increasing interest in fibrous materials expands to a
large variety of use cases. The most common fiber-reinforced
polymers are currently contained in the enclosure of aircrafts,
boats, and cars; furthermore, wound-disinfection tissues and
thermal insulations make use of fibrous media. The macro-
scopic properties of these materials are highly influenced by
the geometry of the fiber component, in particular by the
direction distribution. Physical properties can be optimized
by adapting the structural parameters appropriately. To this
end, we need a realistic stochastic model for the geometry,
including the main parameters for the fiber structure and taking
into account the natural variability of the system.

In the area of stochastic geometry models, we distinguish
between soft-core and hard-core systems. A hard-core sys-
tem forbids overlap between the objects, which is strongly
required, as such penetrations are not realistic in the case of
solid glass or carbon fibers. Concerning random fiber systems,
there exist several approaches providing either hard-core fiber
systems with a low volume fraction, soft-core systems and
sedimentation algorithms, providing hard-core systems with
restrictions on the orientation distribution.

We recall in detail the state of the art in fiber modeling:
The classical approach called the dilated Poisson line process
was introduced in [1] and creates infinite straight cylinders in
a soft-core network. Since then, fiber modeling has evolved
into more flexible approaches. In order to achieve hard-core
systems, the random sequential adsorption model was created
in [2], which iteratively generates objects and tries to place
them in the system such that they do not overlap with already-
existing objects. This approach was applied for cylinders
in [3]. Two other random fiber-packing methods have been
developed: one for ellipsoids presented in [4] and one for
spherocylinders in [5]. All three random packing approaches
produce straight fibers in a hard-core system and achieve

*Hellen.Altendorf @mines-paristech.fr
tDominique.Jeulin @mines-paristech.fr

1539-3755/2011/83(4)/041804(10)

041804-1

PACS number(s): 81.05.Qk, 02.50.Ey

only low volume fractions of about 10%—15% for isotropic
orientation distribution and a fiber aspect ratio of 10. For long
fibers, as is the case for fiber-reinforced composites (aspect
ratio of about 200), the producible volume fraction goes down
to 5%, while 15%—-55% is required. Furthermore, long fibers
cannot be realized in a periodic window, as fibers tend to
overlap themselves. Still, the periodic boundary condition is
often required for simulations of physical properties.

There are also more physically motivated approaches of
fiber sedimentation, which achieve, in general, high volume
fractions but are limited in realizing a given orientation
distribution. The fiber deposition model in [6] generates fibers
oriented in the plane and deposes them with a certain bending
parameter on the existing system. In this approach, high
volume fractions can be achieved, but the most important
parameter, the orientation distribution, is limited to the plane.
The sequential deposition algorithm in [7] realizes a fall of
random particles until they reach a local minimum of their
potential energy. During the fall, rotation and displacement are
not restricted. Therefore, the particle can change its orientation
arbitrarily, and it cannot be assured that the desired orientation
distributions will be achieved. This approach allows up to a
59% volume fraction for cylinders with an aspect ratio of 10.

Another hard-core bending fiber model was proposed in [8].
The representative volume element is divided into sublayers.
Fibers are randomly oriented in the xy plane, and in the case of
overlap, the newly added fiber changes the sublayer to avoid the
existing fiber. The resulting chains of polyhedra with ellipsoid
cross sections achieve a volume fraction of 35%—40%. Still,
the buckled polyhedra do not appear to be very realistic, and
again, the orientation distribution is restricted to the xy plane.

Moreover, soft-core bending fiber systems can be achieved
by random walks introduced in [9] with the von Mises—Fisher
distribution, controlling the smoothness of the bending. In
this approach it is possible that long fibers bend to a circle;
thus, the final orientation distribution cannot be controlled.
The approach [10] provided 2D random walks with the multi-
variate von Mises—Fisher distribution, which also controls the
deviation from the main fiber orientation, assuring a certain
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loyalty to a given orientation distribution. Furthermore, in [11]
a bending fiber model is proposed based on dilated cores made
of curvature points connected by the spline interpolation. The
last three models are soft-core systems.

The idea to represent fibers as chains of spheres was
already considered in [12]. An irregular assembly of chains of
tangent hard spheres (like in a pearl necklace) were studied to
build dense packings with Monte Carlo simulation schemes.
Hard-core configurations with low density are packed with
a “box shrinkage” algorithm and relaxed in Monte Carlo
algorithms by localized moves as flip, rotation, reptation, and
intermolecular reptation. The aim of the approach in [12] is a
highly dense packing, which was successfully achieved with
a volume fraction of 63.9%, which corresponds to the densest
packing of hard spheres. To this end, the restrictions on the fiber
structure are very low, and thus, the approach is not suitable
for reconstructing fiber-reinforced composites.

Material properties are highly influenced by the fiber struc-
ture, particularly its orientation distribution. This correlation
is studied in [13-18]. Furthermore, Berhan and Sastry [19,20]
studied the influence of model characteristics on percolation
simulation for different high-aspect-fiber systems. In [19], the
influence of soft-core and hard-core systems is examined,
while [20] focuses on the waviness of the fibers. Berhan states
that the frequently used straight and overlapping fiber systems
are inappropriate to model fiber-reinforced materials, and he
suggests using hard-core bending fiber systems. Those studies
enhance the need for stochastic models, creating realistic fiber
systems dedicated to fiber composite materials. In [21] and
[22], we proposed quantification methods to analyze the most
important characteristics of fiber systems. Now, a stochastic
model is required to realize the measured properties. In contrast
to physical simulations dedicated to systems of liquid crystals
(e.g., [23]), we are only interested in the final configuration of
the stochastic model and its properties, instead of the behavior
of the fibers during the simulating process.

The aim of this paper is to provide a random hard-core
fiber model with a controllable bending and high volume
fractions. For this purpose, random walks are used to create
a realistic system of bending fibers. The level of bending
is controlled by two parameters in the multivariate von
Mises—Fisher distribution. The created points are provided
with a radius and the current orientation. The balls, defined
by the points and the assigned radii, are connected in chains
according to the paths of the random walks. This approach
results in a soft-core system of bending fibers, modeled as
chains of balls. In a second step, we apply a force-biased
approach to achieve a hard-core configuration of the fiber
system. Force-biased algorithms on spheres were introduced
in [24] and statistically analyzed in [25]. The forces in our
approach were inspired by the energy-reducing models known
from molecular dynamics [24]. The mentioned forces describe
the necessary displacement of the balls to relax the system.
They do not act like mechanical forces. Two kinds of forces
are applied to the ball centers: repulsion and recover forces.
The repulsion force arises in the case of a fiber overlap and
displaces the balls to a nonoverlapping position. The recover
force maintains the fiber structure between the balls. It keeps
the distance and the angles between a ball and its neighbors,
allowing only a small deviation.
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The approach works in a closed cubic window W C
R3 with periodic boundary conditions. Overlap checks are
effectively computed in subdivisions of the window W, where
only neighboring cells need to be compared. Therefore, the
algorithm has low computing time. We ensured the quality
of the realization by evaluating the parameters of the final
configuration.

Although ball chains are considered as the second type of
ideal amorphous solids, they are purely used in modeling fi-
brous material. As stated in [26], in the case of nonoverlapping
neighbor spheres, the maximal possible volume fraction rises
up to the one of individual spheres: ~0.64. With decreasing
distance between neighboring spheres and increasing align-
ment of fibers, we approach a system of parallel cylinders.
In this case, the problem reduces to a random packing of
2D disks, for which the maximal volume fraction can reach
up to ~0.78 [27]. In our approach, the distance between
neighboring spheres is ~r/2, where r is the sphere radius.
This distance is one-quarter of the necessary distance for
nonoverlapping neighbor spheres. Thus, the maximal possible
volume fraction may lie between 0.64 and 0.78. As we include
higher restrictions to the fiber structure as a random packing of
tangent sphere chains [12], it is probable that we will not reach
such high volume fractions for every set of parameters. Still,
volume fractions around 50% were achieved for several input
parameters. The maximal volume fraction of our experiments
was 72.0075%, achieved for a z-axis preferred orientation
distribution and an aspect ratio of 9.

II. METHOD

In this section, we describe the two main steps of the
approach: the random walk and the force-biased fiber packing.
We explain how the structural parameters of the fiber system
are incorporated into the random walk and how we control the
bending of the fibers. For the force-biased fiber packing, we
introduce the repulsion and recover forces and explain how
they are applied to the system. Furthermore, the stop criterion
and the end step problem are discussed, and implementation
details are given.

A. Random walk

Each fiber of the initial fiber system is modeled as a random
walk. A random walk is a Markov process on R? producing a
chain of points. We assign to every point the current direction
and a radius. The result of a random walk is a sequence of
points in R? x §? x R, describing a fiber:

P ={po,....p}, pi =xi,piri) € RP x §% x RT.

The starting point py = (xg, to,70) and the path length [ could
be generated from four main distributions for the starting
coordinate, the orientation, the radius, and the length. In
general, the initial coordinate x( is uniformly distributed in a
cubic window with periodic edge treatment xo ~ U(W C R?).

The other three distributions describe the main parameters
of the fiber system. For the orientation distribution, we
have applied the B orientation (see [28] or [29]) with a
global parameter B € RT\{0}. For 8 =1 it results in the
uniform distribution on the sphere, for 8 — 0 the distribution
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concentrates on the z axis, and for 8 — oo the orientations
are distributed isotropically in the xy plane. The probability
density function of the 8 orientation distribution is

B sin6
4[1 4+ (B2 — 1)cos2]3/2’

where (0,¢) are the polar coordinates of the orientation
1o € S%.

The radius and length can be simulated from any distri-
bution on R*. The radius can either be fixed for the whole
system or chosen once for each fiber or for every point during
the random walk with some strategy for smooth variation.
The number of fibers for the system is chosen depending on
the required volume fraction. The fourth main characteristic
of the fiber system, the bending of the fibers, is indirectly
controlled by two parameters, «; and k», in the multivariate
von Mises—Fisher distribution.

During the random walk, the generation of a new point p;
requires three steps: First, the new orientation ;. is generated
according to the multivariate von Mises—Fisher distribution,
with the last orientation u; and the main fiber orientation p as
parameters. Second, the new radius r; | is generated. Finally,
the new coordinate is calculated as x;y; = x; + VT“ Hitl-
The distance between the points is a trade-off between a
representative fiber structure and a treatable number of points.

In [10] the multivariate von Mises—Fisher distribution is
introduced for the 2D case. In 3D the corresponding probability
density function is defined as

p0.¢1p) =

Flxn k1, X2,02) = €(X1,K1,X2,kep) €415 HRE
where x;,x, € $97! are two preferred directions and «y,k, €
R™ are the reliability parameters toward the preferred direc-
tions. The factor c(xy,x1,x2,k) serves for the normalization,
such that the integral over S? is equal to 1.

A useful observation is that every multivariate von Mises—
Fisher distribution can be written as a classical von Mises—
Fisher distribution with the parameters

K1X1 + K2X2
K = |Kk1X1 + K2X2], X0 = —
which can be easily checked by inserting those parameters
in the classical von Mises—Fisher density function. This
simplifies the generation of the pseudorandom variables to the
standard case, which is well described in [30]. Furthermore,
this defines the normalization factor
K

2w (e — e )
lic1x1 + k22|
27 (elaxitinl — g=laxi+ianl)’

clk) =

= c(x1,K1,X2,Kk2) =

In our approach, the first preferred direction is the main
fiber orientation wg, and the second preferred direction is
the orientation of the previous point w;_;. Therefore,
describes the reliability to the main fiber orientation, whereas
k, describes the reliability to the last orientation and hence
specifies the smoothness of the bending. The probability
density function for the ith step in the random walk (with
i>1)is

T,,. Y T ;
FQi | ok, im1,K2) = (oK1 fi—1,kcp) €€1HO TR
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(¢) k1 =10,k2 = 10

(d) k1 = 10,k2 = 100

FIG. 1. (Color online) Realizations of the fiber model created by
random walks. Common parameters are as follows: number of fibers
n = 10, window side length s = 100, fixed fiber length / = 300, fixed
fiber radius r = 3, and isotropic orientation distribution (8 = 1).

Realizations of the soft-core fiber model created by random
walks with varying choices of reliability parameters «; and x;
are shown in Fig. 1.

The mean fiber orientation of a created ball chain P =
{po,...,pi} is defined as ji(P) = ﬁ € S2. The mean
orientations of the created fibers are supposed to be realizations
of a global orientation distribution for the fiber system. The
starting orientations p( are chosen with respect to the global
orientation distribution, but the mean orientation differs from
1o with a deviation according to the reliability parameters x|
and k. To ensure the global orientation distribution, we rotate
the chosen fiber, so that the mean fiber orientation equals the
originally chosen main fiber orientation: i(P) = . The fiber
structure (length, radii, bending) remains constant during the
rotation.

Every ball p; = (x;,u;,r;) is adjusted to p; = (x],u;,r;)
with

x! = xo + Rot(x; — xo,n,a),
w; = Rot(u;,n,a),
n = o x iA(P),
o = L(po, A(P)),
Rot(u,n,a) = (n - w)n + cosa((n x n) x n) + sina(n x @),

where a center dot (-) notates the scalar product (or inner vector
product) and a times sign (x) indicates the cross product (or
vector product). The random walks create a stochastic fiber
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model made of overlapping ball chains. The system is defined
by the graph (P, E), where
,Pn,l,,} - R3 X S2 X RJr

P=A{pi1,p12:---»P1L1»P215 - -

yields the created points and

E = {(pi,j’pi,j+1) | i€ {ls ~'-7n}1j € {17 »ll}}

yields the connections between the points according to the n
paths of the random walks. /; is the number of points for the
ith fiber. Furthermore, we define

C=1{4q.,p.q)e P’ l(q.p) e EA(pq)eE}

as the joints between two edges. For further steps, we need
to remember the original distance between two neighboring
points and the original angle in every joint. Thus, we define an
original distance and an original angle function,

Dyig :  E — Rt
(pJ]) g |xp - xq|
Aoig: C — [0,7]
(q.p.q") —4£(xg.xp,x,),

and fix the mappings before the fiber packing process starts.

B. Force-biased fiber packing

To achieve a hard-core fiber system, the fiber packing
applies two kinds of forces to the ball centers given from
the soft-core fiber model: the repulsion force to separate
overlapping balls and the recover force to keep the fiber
structure between the balls. The reconfiguration of the ball
chains is realized in several steps. In each step, the forces
are calculated for the current configuration of the system, and
displacements are performed.

1. Repulsion force

The repulsion force for a pair of overlapping balls describes
the necessary displacement to make them nonpenetrating. The
overlap between two balls is permitted if the balls are close
neighbors in the same fiber. In this case, we define the two
points p,q € P as related:

p ~ q < 3 path between p and g with length < 5. (1)

The value of 5 is an approximation for the minimal distance of
two balls in the same chain that do not naturally overlap. The
distance between the ball centers of two direct neighboring
balls is chosen as r/2. In this case, balls in the same chain
connected by a path with length less than 4 do overlap naturally.
According to small deviations in the radius or additional
curvature, we increase the minimal path length to 5.

Let p; = (x1,d1,11), p2 = (x2,d2,12) € P be two arbitrary
points in the fiber system. The overlap between those two
points is

Overlap(p1, p2) = max[0,r; + ry — d(x1,x2)],

with the distance function d(x;,x;) respecting the periodic
edge treatment. The repulsion force is

Overlap(p1,p2) x1 — x2
2 lx1 — x2|

Frp(pl’pZ) = ]lpmopz
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and it is applied if the points are not related as defined in
equation (1). The force on p; works in the opposite direction
to p,, with a strength linearly dependent on the overlap. The
total repulsion force for point p; is cumulated over all points
in P:

F,p(p1) = Z Frp(Pl,CI)-

qgepP

2. Recover force

The recover force keeps the distance between neighboring
points by modeling springlike forces between them, and it
keeps the angle in the joints by modeling open springs between
the connections. Open springs describe the fact that there is
a force for decreasing but none for increasing angles. Thus, a
fiber can be straightened but not folded into a clew.

The recover force is induced by a displacement of the
original ball coordinate as an effect of the applied repulsion
force. By applying the recover forces to one ball it induces
recover forces on its neighbors. Even if the strength of
the indicated forces is decreasing, a kind of domino effect
has started, and the process becomes infinite. In order to
stabilize the movement, we introduce a smoothing factor,
which acts like friction. We define a minimal change x,, which
is necessary to induce a force, and a change x, when the force
regains its full strength. The friction factor is defined as

0 X < Xg,
1 1 —xy

fxl\.,x!,(-x) = 2 ECOS(‘;JTQ”) X g X g Xes
1 X < X.

The curve f . (x)is given in Fig. 2.

a. Spring force. In order to keep the distances between
the balls in a fiber, we define a force between the centers of
the balls, with a strength linearly dependent on the change
of distance. This kind of force can be interpreted as a
spring between the ball centers. Let p = (x,,dp,r,) and
q = (x4,dg,ry) be two neighboring points. The change of
distance is

AD(q,p) = Doig(q,p) — |xq — xpl,

and the unit vector for the direction of the force is

Xp — X
P q
v(p.g) = —.
|xp _xq|
1 -
§ 0.8 — /
o
N
@ 0.6 —
c
=
o 04—
o
E
@ 0.2
0 -
T I I
0 X x

3

change in distance or angle

FIG. 2. (Color online) Friction factor for recover forces.
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Thus, the recovery spring force F, on a point p is defined as

IAD(q,p)|>

Fy(p) = Z {[ﬂg(p,q) + ﬂE(q’p)]fdj,dt,( Doed.p)

geP
X [AD(q,p)]v(p,q)}.

The spring force is applied to p for every direct neighbor (at
most two). It is linear to the distance change and multiplied
by the friction factor on the ratio of distance change. For the
realizations created in this paper, the friction parameters were
chosen as d; = 5% and d, = 10%.

b. Angle force. Inorder to keep the angle between joints, we
define a recover force on each point having two direct neigh-
bors. Let (g1,p,92) € C be a joint in the point p = (x,d,r)
with the neighbors q; = (x1,d;,r;) and gy = (x3,ds,1r2). We
define

a0 = Aorig(q1,,92),
m = x1x; N Plane[x, L(x; — x,)],
hy = |m — x|,z = |m — p|,
ar = tan"!(hy/2),

hi = |m — xq],

o) = tan"'(h)/z),

z(hy + hy)
1 = { = =
an o an(a; + o) Z
_ hi+hy+ /(4 ho)? + dhyhy tan’ o

20
2tan o

Now, the recovery angle force F,., on a point p is defined as

Fo(p) = ]lflql.quP,(ql,p,qz)EC fax,ae(ao —a) (z — zp)v(m, p).

The angle force is linearly dependent on the necessary
displacement to regain the original angle, and it is multiplied
by the friction factor, depending on the angle change. For
the realizations created in this paper, the friction parameters
were chosen as oy = 0.1° and o, = 0.2°. The geometrical
construction is visualized in Fig. 3.

3. Application of force
The total force on an arbitrary point p € P is composed of
the sum of all mentioned forces:

Fou(p) =Y Frp(p.@) + pFrs(p) + pFra(p),
qgeP

FIG. 3. (Color online) Geometry for angle force.
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where p is a factor in [0, 1] leading to a smooth development
of the recover forces, favoring the repulsion forces in the first
steps. For the realizations created in this paper, we chose p =
0.2. In order to limit the possible displacement of a point, we
define an upper bound Fy,,x for the final force strength:

Ftolal(p)
| Ftolal(p)|

In each step, the ball center of p is displaced by the limited
final force:

Fina(p) = min(| Fiota (P)|, Finax)-

x;, =Xp + Fﬁnal(p)-

After the displacement in a step, the forces are recalculated for
the new configuration and applied in a following step.

C. Stop criterion and end step

During the packing process the forces decrease very quickly
in the beginning and converge slowly to zero in the end. The
process should be stopped by a criterion dependent on the
force strength. In our implementation, the algorithm terminates
with a solution if the total force strength > pep Fiora(p) falls
below a certain limit and the displacements become negligible.
For the realizations created in this paper, we chose the limit
as 0.002sn, where n is the number of fibers and s the side
length of the window. That means the mean sum of necessary
displacements in a fiber is smaller than 0.2% of a unit size.
When the volume fraction is chosen too high, it is possible
that there is no configuration with low force strength. In this
case, the process will not converge, and we need to add a
stop criterion. We have chosen an upper bound for the number
of steps of 10000. If the process reaches this limit, it will
terminate unsuccessfully.

In the case of a successfully completed process, the total
force strength is negligible. Still, one should be aware that the
total force on a point is a sum of different forces. Thus, even
if the sum of forces is zero, it is not certain that every specific
force is negligible in its strength. Regarding the repulsion force
as specific force, it may happen that the recover force acts in
the opposite direction with exactly the same strength [as shown
in Fig. 4(a)]. As the repulsion force is linear to the overlap,
we conclude that the fiber packing does not necessarily have a
zero overlap, which means that the system may not be totally
hard core.

This effect is similar to the maximal random jammed state,
known from random packings (see [26]). In our approach, a
ball is never jammed as its displacement is defined by reducing
forces and overlap in a following configuration is not strictly
forbidden. Still, we have a similar situation if the requested
volume fraction is too high for the fiber structure.

To assure a nonoverlapping system, we accept an outcome
only if the maximal overlap falls below a certain limit. Here we
chose 0.17 iy, Where 7y, is the minimal radius in the system.
Then, a final step is added, where the radius of each point is
reduced according to the maximal overlap with other points.
This approach is similar to the idea in the force-biased sphere
packing. Let p = (x,d,r) € P be an arbitrary point of the fiber
system; the radius r is reduced to

r'=r—5 max Overlap(p,q).
p

1
2 geP,gx
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(@

=+ Fepusion Force

|s==d Recover Force

(a) Trade-off between repulsion and recover

@

no Repulsien Force
== Recover Force

(c) Solution 2: Endstep regarding only the
repulsion forces.

FIG. 4. (Color online) Trade-off problem in the final configura-
tion with two possible solutions: reducing the radius or applying an
end step considering only the repulsion forces. Note that force vectors
are elongated for visualization reasons; they do not correspond to the
necessary displacements.

If the accuracy of the radius distribution is very important,
the end step can be replaced by a second round of the
packing algorithm, where only the repulsion force is active.
In this case, the theoretical recover force strength should be
checked afterward, to make sure that the fibers are not drawn
apart.

D. Implementation details

The periodic distance function for x = (xx,xy,xZ)T andy =
(Vx»¥y,¥2)" and a window W = [0,w,] x [0,w,] x [0,w,] is

defined as
m@n(|xx — Vel wy — |xx — yi])
d(x’y): mlp(|xy_yy|9wy_|xy_yy|)
min(|x; — y.|,w; — |x; — y;[)

The repulsion force on an arbitrary point p € P is defined as
the sum over all points g € P. Still, the repulsion force is equal
to zero if balls p and g are not overlapping, which is definitely
the case if g ¢ By, 47, (Xp), Where rypa = max cpry. As
proposed in [24], we divide the window W into smaller cubic
subwindows with a side length s; > ry.x withi € {x,y,z}. For
a window W = [0,w,] x [0,w,] x [0,w,] the side lengths of
the subwindow are calculated as
Wi

w;
si=—, ni=[—1I
n; ‘max
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(a) x =1, n = 1146, (b) x =33, n =90,
Vv =57.27% Vi = 50.35%, isotropic
orientation (8 =1)

(c) x =17.67, n = 170,
Vv = 49.60%, orientation
in z-direction (8 = 0.1)

(d) x = 17.67, n = 170,
Vv = 49.95%, orientation
in xy-plane (8 = 10)

FIG. 5. (Color online) Realizations for packed fiber systems.
Common parameters are as follows: window side length s = 100 and
bending parameters x; = 10 and x, = 100.

Thus, B, 47, (xp) is included in the union of the subwindow
including p and its neighboring subwindows. The overlap
check is limited to this union.

III. RESULTS

Figure 5 shows realizations of the presented model with
varying input parameters for the fiber aspect ratio y, the
number of objects n, and the main orientation distribution.
The parameters and the achieved volume fraction Vy are given
below each realization.

The aspect ratio is generally defined as length divided by
diameter. In the case of a ball chain py,...,p, with fixed
radius r, the aspect ratio y can be calculated as

2r+Z —1 |Pz
2r

Di+1l

To evaluate if the final configuration fulfills the required
distributions, we observed the changes in the characteristics
of the fiber system during the force-biased packing for
three realizations with different choices of 8 € {0.1,1,10}.
The remaining parameters are chosen as follows: window
size = 100%, length = 50, radius = 5, number of fibers =
100, and required density = 44.483%. The evolution of the
characteristics is shown in Fig. 6. The estimation of length and
radius is obvious. The measured density is the volume fraction
of the discretized image. The B estimate is the numerical
approximation of the maximal likelihood estimator, which
cannot be resolved theoretically. The estimation of the bending
parameters k; and k, is not that simple, but experiments
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showed that they can be approximated for /x| > 2 with
the following estimates:

k1 = 1/Vary,
[22 = Z/Varz,
, I
1

Var; = ;Z Z[,U«j,i _l:l’(pjv]""’pjvl])]2>’

-1
1 J
< — Z(Mj,i - ,uj,i+1)2>-
i—0

Even if the estimators for «; and «;, are not highly accurate,
they are still measures for the global and local bending. As
long as the measures of the real data set and the measures of
the final model configuration are close, the aim of realistically
reproducing the fiber structure is fulfilled.

In Fig. 6, the first steps are mostly driven by the repulsion
forces, which evokes changes in the local structure and
therefore in the parameter measure. When the repulsion force
decreases, the recover forces reconstruct the fiber structure,
which results in a convergence of the measures to the requested
values. Most measures start with the requested values, except
for the density and the global bending parameter «;. The
low density in the beginning is evident, as the overlapping
fiber volume is counted only once. The deviation of the
global bending parameter k; or reliability to the mean fiber
orientation is caused by the different measure condition.
During the realization of the fiber structure, «; represents
the reliability to the chosen fiber orientation ., whereas the
measure of k| reflects the reliability to the actual mean fiber
orientation ji(P), which is slightly too high. The convergence
to the required value of «; is surprisingly good and is
probably caused by the trade-off between the recover force
to the original fiber structure and the tolerance range of local
deviation.

We stress once more that the important configuration is
the final one, and the geometric characteristics during the
process are studied to understand better what happens during
the packing process. The evaluation of the quality of our
models is only based on the geometric characteristics of the
final configuration, as shown in Table I.

In both visualizations, we can see that the parameters of
length, radius, and density fit perfectly to the requested values.
The global and local bending «; and k, are approaching the
required values, as expected. As the local orientations have
some tolerance during the packing process, it is understandable
that the final bending values are lower than the initial ones. If
one is not satisfied with the final values for bending, there

J
0
lj

1<1

Lj
ar, = —
2 "

TABLE 1. Parameter measures for the final configuration of
experiments from Fig. 6.

Density Length Radius K1 K B
Required  44.48% 50 5 10 100 various
B=01 4394% 50.66 4.99 991 9632 0.134
p=1 43.90%  50.75 4.98 8.21 80.95 0.87
B =10 44.10%  50.90 4.98 8.03 82.39 5.6
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FIG. 6. (Color online) Evolution of estimated model parameters
during the packing process for different choices of B for the
orientation distribution. Fixed parameters are as follows: window
size = 1003, length = 50, radius = 5, number of fibers = 100, and
starting density = 44.483%.

are two possibilities to improve this: first, one can choose
the initial values higher than required, and second, one can
reduce the tolerance o, and «, in the packing process. The
parameter § for the orientation distribution is acceptably
approximated for the choices § = 0.1 and § = 1, whereas the
girdle orientation with 8 = 10 could not be maintained that
strictly during the packing process. The results would even
become worse for higher choices of 8. With the described
model, we can realize parameters in the range of 0.05-5. If
a more restricted orientation distribution is required, recover
forces for the orientation of a fiber have to be included. This
could be obtained by forces on the extremities of a fiber. As we
included no restrictions in changing the mean fiber orientation
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FIG. 7. (Color online) Maximal volume fractions for realizations
with varying orientation distributions and aspect ratios.

during the packing process, the system will relax in a less
restrictive configuration.

IV. DISCUSSION

In this section, we discuss the volume fractions achieved
by numerical simulations and the evolution of the repulsion
and recover forces during the fiber packing. Furthermore, we
analyze the computing time.

A. Volume fraction

The maximal volume fraction depends on the aspect ratio
and on the orientation distribution of the system. Figure 7
shows the maximal volume fractions, achieved with realiza-
tions for the B orientation distribution with g € {0.1,1,10}
and varying aspect ratio x € [1,33]. We achieved the highest
volume fraction of 72.0075% for an aspect ratio of 9 and
a z-axis preferred orientation distribution with g = 0.1. In
general, Fig. 7 supports the intuitive expectation that fibers
can be packed in a particularly dense system if they are
oriented parallel and that short fibers can be packed more
easily.

In Fig. 8, the ratio of achieved volume fraction to initial
volume fraction is shown. The initial volume fraction is the
sum of all fiber volumes after the random walk divided by the
window size. The change of the distances between the balls is
related to a change in the volume fraction. As we allow small
deviations in the distances, we allow also small deviation in
the volume fraction. Here the deviation of the distances is
limited to 10%. As a consequence, there also exists a limit for
the deviation of the volume fraction caused by the distance
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FIG. 8. (Color online) Ratio of the achieved volume fraction and
the initial volume fraction for isotropic orientation distribution.
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change. It ranges from 90% to 110% of the initial volume
fraction. Another deviation in the volume fraction is caused
by the end step, reducing the radii. The maximal overlap is
0.17min, and a radius r is maximally reduced by %overlap <
0.057min < 0.05r. Therefore, the volume V of a fiber could

maximally be reduced to
V' 2~ In(r')? > (0.95)nr* ~ 0.9025 V.

Thus, a lower limit for the volume fraction would be
0.9 x 0.9025 = 81.225% of the initial volume fraction. The
upper limit remains at 110% since the radius is not enlarged
in the end step. Note that this is a rough approximation
of the limits. Particularly for dense systems, it may happen
that bending or force-canceling effects influence the structural
arrangement, so that these limits are exceeded. This happened
in Fig. 8 for the point with the highest required volume
fraction of 90%, which is impossible to reach for a fiber
system.

The reduction of the volume fraction is expected for dense
systems of fibers with a low aspect ratio, where the packing
consists of moving and shortening of the objects, which causes
a decrease of the volume fraction. The aspectratio 1 is a special
case, as the “fibers” consist only of one ball and shortening is
not possible. For a high aspect ratio, the packing is essentially
bending the fibers around each other, which causes elongation
of the fibers and rising of the volume fraction.

B. Evolution of forces

Figure 9 shows the evolution of the repulsion and recover
forces during the fiber packing. Initially, the recover force is
zero, as the fibers still have the initial structure, whereas the
repulsion force is high at the beginning because the fibers can
overlap without restriction. The repulsion force is decreasing
very quickly, while the recover force rises slightly in the first
steps, caused by the displacements according to the repulsion
forces, and decreases quite smoothly with respect to the
parameter p.

C. Computing time

In practical applications the algorithm showed good per-
formance. All time measurements are taken with a desktop
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FIG. 9. (Color online) Evolution of force during the fiber packing

process. Aspect ratio y = 6. Isotropic orientation distribution.
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FIG. 10. (Color online) Computing time of the random walk and
the fiber packing for isotropic orientation distribution and constant
fiber volume of 0.005s°, with s = 100 window side length.

PC with an Intel(R) Core(TM)2 processor with CPU X6800,
2.93GHz, and 3.8 GB memory. The creation time for the
random walk progresses approximately linearly with the
number of steps, which corresponds to the total number of
ball centers in the system. The mean creation time per ball
center is approximately 0.05 ms:

trw ~ 0.05 ms x number of ball centers.

The computing time for the fiber packing increases expo-
nentially with the volume fraction Vy for a fixed aspect ratio
x. This is caused by the enormous increase in interaction

PHYSICAL REVIEW E 83, 041804 (2011)

with increasing volume fraction. Still, the realization with the
longest computing time took about 41 min for an aspect ratio
X = 235, an isotropic orientation distribution, and an achieved
volume fraction of Vy = 51.43%, which is at the limit of
the possible volume fraction for the given parameters. The
computing time is acceptable for those circumstances and
a standard desktop computer. The computing time for the
random walk and the fiber packing are shown in Fig. 10.

V. CONCLUSION AND PERSPECTIVES

We have presented an algorithm generating bending hard-
core fibers, with given orientation, radius, and length dis-
tributions. We showed how to evaluate the quality of the
final configuration of the fiber system. For the performed
realization we could achieve high convergence to the requested
parameters, and for the global orientation distribution, we
studied the realizable range for the parameter §. In the furure,
we will include further recover forces to be able to realize
more restricted orientation distributions.

In practical tests, we achieved the highest volume fraction
of 72.0075% for the B orientation distribution (8 = 0.1) and an
aspectratio of 9. Practical applications for isotropic orientation
distribution have shown a computing time linearly dependent
on the number of points for the random walk and a computing
time exponentially increasing with the initial volume fraction
for the fiber packing.

A soft-shell ratio can be easily included to allow partial
overlap or to keep distances between the objects. In the overlap
calculation, each radius would be multiplied by the soft-shell
ratio. Further studies will include the observation of additional
morphological properties during the packing process and the
application and adaption of the model parameters to data sets
on real materials.
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