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Frederiks transition in ferroelectric liquid-crystal nanosuspensions
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We construct a theoretical model of the dielectric properties of a ferroelectric LC nanosuspension (FLCNS),
using a generalized Maxwell-Garnett picture. The theory supposes that an FLCNS may as a first approximation be
considered as a complex homogeneous dielectric ceramic, thus neglecting positional correlations of the colloidal
particles. The FLCNS then consists of an anisotropic matrix with a very low concentration (<1% by volume) of
impurity particles. The impurity particles possess both shape and dielectric anisotropy, as well as a permanent
electric polarization and strong liquid-crystal director anchoring on the particle surface. We show that the effective
dielectric properties for capacitance properties and for effective liquid-crystal free energies do not coincide. We
calculate the effect of doping a liquid crystal with ferroelectric impurities on the Frederiks transition. The theory
takes account of inclusion shape, dielectric susceptibility, and local field effects. We neglect the possibility of
dielectric particle chaining, which appears experimentally not to occur in general. Our calculations suggest, in
qualitative agreement with experiment, that doping a nematic liquid crystal with ferroelectric particles, even at
very low particle concentration, can in some cases significantly decrease the electric Frederiks threshold field.
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I. INTRODUCTION

Colloidal suspensions—dispersions of small solid particles
in a host liquid consisting of small molecules—dominate our
daily lives. Examples of such suspensions include milk, liquid
medicines, shampoo, paint, and ink. More recently, some of the
new e-book displays involve charged particles suspended in a
host liquid moving in an AC electric field. Likewise, as is well
known, liquid crystals have given birth to a widely used display
technology. It is not unnatural to combine the physics behind
two of the more widespread display technologies, and inquire
whether there is possible further technological potential in
colloidal systems with a liquid-crystalline host.

Some perspectives on this subject were explored in a
wide-ranging review article by Stark [1] in 2001. It turns out
that not only are there possible technological applications,
but the basic physics itself involves some new concepts.
A particular focus of interest has been the often complex
director configuration close to the colloidal particle, involving
a complicated liquid-crystalline defect structure. In such cases
the light-scattering induced by complex inhomogeneous order
parameter structures dominates that due to simple impurity-
host refractive index contrast. The light scattering changes
dramatically the optical signature of the liquid crystal, even
at very low colloidal concentration. The consequence is that
such impure liquid crystals are useless in conventional display
devices.

Notwithstanding this dismal prognosis, in recent years there
do seem to have been two particular areas of display-oriented
research which have been particularly fruitful in terms of
combining colloid science and liquid crystals. The suggestion
in 1970 by Brochard and de Gennes [2], according to which
colloidal particles with a permanent magnetic moment would
cause coupling of local moments and the nematic director, has
stimulated a vigorous research program. These systems are
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known as ferronematics, and further work, both experimental
[3–7] and theoretical [8,9], seems to confirm the picture
predicted by Brochard and de Gennes. Despite encouraging
early results, however, the goal of a low-magnetic field
switchable cell still seems far off.

A system analogous to this, but in which potentially much
more dramatic effects might be expected, involves ferroelectric
rather than ferromagnetic colloidal particles. Such systems
were first fabricated by Reznikov et al. [10], examined in detail
by Li et al. [11], and have been the subject of considerable
subsequent work [12–22]. These systems are the subject of
this paper.

The key facts about these ferroelectric liquid-crystalline
colloids are as follows. In particular, the colloidal particles are
extremely small, sufficiently so that the anchoring effects due
to the colloidal surface average, rather than antagonize. Thus
they do not scatter light in the manner described above, and
are therefore essentially invisible. At low concentrations, at
least in some cases, these submicron colloids appear similar
to a pure liquid crystal. Furthermore, in these suspensions
the dielectric response is strongly enhanced, even at low
concentration of dissolved particles. This leads to higher values
of effective dielectric functions of such colloidal suspensions,
in comparison with those of the analogous pure liquid crystals
[10,11].

The anchoring mechanism seems to permit the intrinsic
properties of the colloidal particles to influence the global
properties of the liquid-crystal host matrix. One striking
feature is that often in such systems, the temperature of the
isotropic-nematic phase transition is increased. The effect is
that for a given temperature, the degree of nematic order is
higher than in the pure system [11,22]. Hence one might rea-
sonably expect that the Frank-Oseen elastic constants (which
are roughly proportional to square of the order parameter)
would also increase.

A measurable consequence of the increased elastic constant
should be, at least according to naive theory, an increase in
the Frederiks threshold voltage. The experiments however, do
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not confirm this apparently robust prediction. Sometimes the
Frederiks threshold indeed increases, but depending on subtle
details of nanocolloid preparation the threshold voltage often
rather exhibits an unexpected significant decrease [10,12,23].

We note that the magnitude of the Frederiks threshold
voltage is fundamental to operation of many liquid-crystal
devices. If the Frederiks threshold voltage reductions could
be reliably replicated, this would have significant implication
for the manufacture of very low-power LCDs and other
liquid-crystalline devices. It also turns out that the ferroelectric
liquid-crystalline colloids appear to be promising materials for
use in a nonlinear optics setting.

This paper provides a theory of this phenomenon. In a
previous paper [19], we provided a simple model of the
Frederiks threshold voltage decrease. This paper presents a
more sophisticated version of that theory. We do so partly
because the previous model is theoretically unsatisfactory,
and might only be expected to give rough trends. A further
motivation is that in the intervening period, there has been
significant further experimental work on ferroelectric liquid-
crystalline colloids, concentrating not only on the Frederiks
threshold, but also more generally on aspects of the material
dielectric response [12,13,18]. Key extra input to the present
work also comes from previous work by one of us [21],
in which the effective dielectric constants in ferroelectric
liquid-crystal nanosuspensions are discussed in the context
of a tensor effective medium theory.

The plan of the paper is as follows. In Sec. II we introduce
the basic model which combines important features of the
properties of liquid-crystal and dielectric ceramics. Then in
Sec. III we develop the relevant theory. The key properties
of the theory are matrices which connect the bulk electric
field to the fields inside the liquid crystal and the polarized
inclusions, as well as to the corresponding displacement
fields. This section also determines an expression for the
effective coupling between the electric field and the local
liquid-crystal director, and hence derives an expression for
the corresponding change in the Frederiks threshold field. In
Sec. IV we present some numerical results which follow from
the theory, and make some comparison with experiments. In
Sec. V we make a comprehensive discussion of the results
and draw some conclusions from the paper. We make a
comparison of the present theory with our earlier version [19],
and discuss the differences. This section also tries to fit the
calculation into a broader theoretical framework, assess its
advantages and disadvantages, and point out where problems
still remain. Some algebraically complicated but conceptually
straightforward calculations from Sec. III have been relegated
to the Appendix.

II. MODEL

We consider a suspension of ferroelectric particles, with
anisotropic polarizability, embedded in a liquid-crystalline
medium, and occupying a fraction f of the total volume. The
cell geometry is shown in Fig. 1. We suppose the particles to
be of spheroidal shape (i.e., ellipsoidal with two equivalent
semiaxes). The principal axes of the anisotropic permittivity
tensor of the particles coincide with the principal axes of the
particle spheroid. The dipole moment per unit volume within

FIG. 1. (Color online) Cell geometry for ferroelectric nanosus-
pension. The cell is in the x-y plane. The perpendicular z direction
(0 < z < L) defines distances across the cell. The liquid-crystal
director is in the x-z plane and is defined by an angle θ where
n = (cos θ,0, sin θ ). We suppose homogeneous anchoring conditions
(i.e., director in x direction, θ = 0). The lines represent liquid-crystal
director fields, and the black arrows represent typical individual
particle dipole moments. In our model, the colloidal nanoparticle
moments are aligned parallel or antiparallel to the particle principal
axes. In general the number of parallel and antiparallel dipole
moments do not balance.

a ferroelectric particle (i.e., permanent polarization) is d. We
also suppose that there are strong forces aligning the principal
axis of a particle with the local liquid-crystal director. If we
define PP as the mean permanent dipole moment per unit
volume of particle (i.e., the polarization within the particles
due to the permanent moments) and that these forces are
sufficiently strong that we may suppose that the vectors PP

and n are aligned. We discuss the merits of this rather strong
assumption at the end of the paper. However, we can note
that this condition is precisely that assumed by Brochard and
de Gennes [2] in their first study of the ferronematic systems,
which are, as we have seen, the magnetic analog of the systems
discussed here.

Inside the inhomogeneous medium, in general, the electric
fields and electric displacements vary from place to place. We
distinguish the local electric fields inside the particles and those
inside the nematic liquid crystal. We average these electric and
displacement fields over volumes which are small, in the spirit
of continuum theory. The key electric fields in the theory are
ELC and EP , the averaged electric fields in the liquid crystal
and ferroelectric particles, respectively, as well as the average
field E in the whole medium.

We remark here that the word “average” here (and else-
where in the paper) must be interpreted as meaning “averaged
over a suitably small volume.’ This is because a liquid-crystal
cell is itself a macroscopically inhomogeneous object, whose
(average) properties change across the cell. There is supposed
to be a suitable separation of scales between these changes
across the liquid-crystal cell, which are treated by a continuum
theory, and local medium properties, discussed using an
effective medium theory.

Subject to the clarification in the last paragraph, there
are also electric displacements associated with each of these
electric fields. Within a mean field theory in which the
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colloid particles are dilute, well-separated, and uncorrelated
in position, these quantities are related as follows [21]:

E = (1 − f )ELC + f EP , (1a)

D = D0 + f PP = (1 − f )DLC + f DP + f PP . (1b)

The quantities D, D0, DLC = ε0ε̂
LCELC , and DP = ε0ε̂

P EP

are defined, respectively, as the mean displacement field, the
contribution to the mean displacement field resulting from
induced polarization effects, the mean displacement field in
the liquid crystal, and the mean-induced displacement field
in the ferroelectric particles. We note that our definition
of the displacement field DP inside the colloidal particles
only includes the induced polarization, but does not include
the permanent polarization (contrary to the convention of,
e.g., Landau and Lifshitz [24]). In our treatment we find it
convenient to separate the mean permanent polarization term
PP from the induced displacement fields.

In addition, we introduce a further relevant electric field
E0

P , which does not appear in Eq. (1a). This is the electric field
that orients the permanent polarization of the particles. This
differs from the electric field EP in that it does not include
the field due to the permanent polarization inside the particles
themselves. We discuss this term in more detail below.

In order to calculate the permanent polarization PP , we
recall the strong anchoring condition that the ferroelectric
particles be aligned only parallel or antiparallel to the local
liquid crystal director. Then let ρ+ and ρ− be the fractions
of ferroelectric particles aligned, respectively, parallel and
antiparallel to the local nematic director n. The mean particle
permanent polarization PP now takes the form

PP = dn(ρ+ − ρ−). (2)

The free-energy functional for the suspension now includes
electric and orientational entropy terms, as well as the conven-
tional nematic elastic terms. The functional is homogeneous
in the xy directions within the cell, and the form we present
technically represents free energy per unit area of the cell. We
obtain

F = Fel + FE + Fentr, (3)

where

Fel = 1

2

∫ L

0
{K1(∇ · n)2 + K2(n · ∇ × n)2

+K3[n × ∇ × n]2}dz, (4a)

FE = −1

2

∫ L

0
(1 − f )DLC · ELC dz − 1

2

∫ L

0
f DP · EP dz

−
∫ L

0
f PP · E0

P dz, (4b)

Fentr =
∫ L

0
f

kBT

v
{ρ+ ln ρ+ + ρ− ln ρ−}dz. (4c)

Fentr is the standard free energy associated with the
orientational degrees of freedom of the polarization directions
of ferroelectric particles, and v is the volume of an individual
particle. The field E0

P in Eq. (4b) was discussed above, and
is the contribution from the electric field from all sources
other than the depolarization field due to the permanent

polarization of the particular particle under consideration.
It does not include the self-field effects of a permanently
polarized nanoparticle, which must not appear in the correct
formulation of the electrostatic energy.

The equilibrium configuration is found by minimizing the
total free energy functional Eq. (3) subject to the applied
voltage across the cell:

V =
∫ L

0
Ezdz. (5)

The electric contribution to the free energy FE in Eq. (4b)
takes an intuitively sensible form. However, it can also be
derived explicitly [19], by using Eqs. (1a) and (1b) to average
the standard form in which this energy appears in textbooks
[24,25]:

FE = −1

2

∫ L

0
D0 · E dz −

∫ L

0
P · E0

P dz, (6)

where as before D0 is the suspension field-induced displace-
ment field and P = f PP represents the permanent polarization
inside the colloidal suspension.

III. THEORY

A. Particle permanent polarization

We first need to obtain the explicit expression for the
particle permanent polarization PP . In what follows, we
minimize the free-energy functional Eq. (3) with respect to
particle orientation fractions ρ±, subject to the constraint
ρ+ + ρ− = 1. The resulting particle orientational distribution
takes the form:

ρ± = exp
[ ± dvβ

(
n · E0

P

)]
exp

[
dvβ

(
n · E0

P

)] + exp
[ − dvβ

(
n · E0

P

)] , (7)

where β = 1

kBT
.

We also assume that ferroelectric particles are small
enough, and the applied fields are small as well, so that

dvβ
(
n · E0

P

) � 1. (8)

This condition implies that typical energies associated with
the orientation of the permanent electric dipoles of the
nanoparticles are small by comparison with thermal energy
kBT . In the calculations presented in this paper, this quantity
usually does not exceed 0.5, and the assumption is valid. In
general, however, the condition may be violated, and in a more
general theory, it may need to be relaxed. Using Eqs. (2), (7),
(8), the particle polarization resulting from permanent dipoles
now reduces to

PP ≈ d2vβn
(
n · E0

P

) ≡ ε0νn
(
n · E0

P

)
, (9)

where the dimensionless parameter ν = d2vβ/ε0 describes the
ratio of the electric interaction energy of two adjacent dipoles
to thermal energy. In our case, ν ∼ 103–105.

B. Effective permittivity

The goal of this subsection is to derive an expression
for the effective permittivity tensor for liquid-crystal-based
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suspensions. This is defined by

D = ˆ̃εE. (10)

The first stage of the calculation requires specific relation-
ships between the average applied field E and the local fields
ELC , EP , and E0

P . For suitably defined small fields (although
the fields will be large in an absolute sense), this is linear (see,
e.g., [21]):

E0
P = T̂ 0ELC, (11a)

EP = T̂ ELC, (11b)

ELC = T̂ LCE. (11c)

The quantities T̂ 0, T̂ , and T̂ LC are tensors, indicating that
the fields ELC , EP , and E0

P are not necessarily parallel. In
a scalar theory, they reduce to coefficients. The standard
procedure for the description of effective medium theories
of dielectric behavior in heterogeneous media goes back to
Maxwell-Garnett [26] in 1904. This approach supposes that
these quantities can be calculated by considering a single
inclusion in the host medium [27,28]. Other workers have
considered the dielectric effect of inclusions with a permanent
polarization, but without including anisotropy effects [24,29]
or alternatively without a permanent polarization, but includ-
ing anisotropy [28,30].

We now generalize this approach so that both permanent
polarization of the colloidal particles and anisotropy effects
are included. We thus calculate the transformation matrices
by considering a host anisotropic liquid-crystal medium with
dielectric permittivity tensor ε̂LC , and a single spheroidal
particle with dielectric permittivity tensor ε̂P , but now also
with a permanent polarization PP , placed inside this medium.

A key result links the mean liquid-crystal electric field ELC ,
the mean particle electric field EP , and the mean polarization
PP . This is

ε̂LCELC = [ε̂LC + ˆ̃μ(ε̂P − ε̂LC)]EP + ˆ̃μPP /ε0, (12)

where ˆ̃μ is the so-called depolarization tensor [24] of a
dielectric spheroid in an anisotropic medium. We postpone
the details of the calculation to the Appendix.

The quantity E0
P differs from EP because it excludes the

explicit effect of the particle permanent polarization. E0
P can

be expressed using a formula analogous to Eq. (12), but now
putting PP = 0 (see, e.g., [28]). Thus

ε̂LCELC = [ε̂LC + ˆ̃μ(ε̂P − ε̂LC)]E0
P . (13)

We now use Eqs. (12), (13) to find the components of the
T̂ matrices in Eqs. (11a)–(11c). Comparing Eq. (11a) with
Eq. (13) yields a specific expression for T̂ 0:

T̂ 0 = [I + (ε̂LC)−1 ˆ̃μ(ε̂P − ε̂LC)]−1. (14)

To obtain T̂ , we substitute Eqs. (9) and (11a) into Eq. (12),
obtaining

ε̂LCELC = [ε̂LC + ˆ̃μ(ε̂P − ε̂LC)]EP + ν ˆ̃μn(n · T̂ 0ELC),

(15)

where the dimensionless quantity ν has been defined in Eq. (9).
We then rewrite Eq. (15) in the form:

[ε̂LC + ˆ̃μ(ε̂P − ε̂LC)]EP = [ε̂LC − ν ˆ̃μn̂T̂ 0]ELC, (16)

where n̂ is the tensor which components are nij = ninj .
Comparing this equation with Eq. (11b) yields a formula for T̂ :

T̂ = [I + (ε̂LC)−1 ˆ̃μ(ε̂P − ε̂LC)]−1[I − ν(ε̂LC)−1 ˆ̃μn̂T̂ 0],

(17)

We can now obtain the tensor T̂ LC . Combining Eqs. (1a)
and (11b) yields the following relationship between E and
ELC :

E = [1 − f + f T̂ ]ELC. (18)

Now comparing Eqs. (11c) and (18) yields an expression for
matrix T̂ LC :

T̂ LC = [(1 − f )I + f T̂ ]−1. (19)

The final step to obtain the effective permittivity tensor
involves rewriting the displacement field (1b) in the form of
T̂ matrices:

D = (1 − f )ε0ε̂
LCT̂ LCE + f ε0ε̂

P T̂ P E + f ε0ν(T̂ P 0E · n)n,

(20)

where we have defined new matrices T̂ P 0 ≡ T̂ 0T̂ LC and
T̂ P ≡ T̂ T̂ LC . This equation can now be compared with
definition of the effective dielectric permittivity in Eq. (10), to
yield the following values for the components of the dielectric
permittivity tensor ˆ̃ε:

ε̃⊥ = (1 − f )εLC
⊥ T LC

⊥ + f εP
⊥T P

⊥ , (21a)

ε̃‖ = (1 − f )εLC
‖ T LC

‖ + f εP
‖ T P

‖ + f νT P 0
‖ . (21b)

The two effective permittivities of the suspension can
now be obtained explicitly by substituting the T̂ -matrix
components into Eqs. (21a) and (21b). We obtain

ε̃⊥ = εLC
⊥ + f

(εP
⊥ − εLC

⊥ )εLC
⊥

εLC
⊥ + (1 − f )μ̃⊥(εP

⊥ − εLC
⊥ )

, (22a)

ε̃‖ = εLC
‖ + f

(εP
‖ − εLC

‖ + ν)εLC
‖ − (εP

‖ − εLC
‖ )νμ̃‖T 0

‖
εLC
‖ + (1 − f )μ̃‖(εP

‖ − εLC
‖ ) − f νμ̃‖T 0

‖
,

(22b)

where, from Eq. (14),

T 0
‖ = εLC

‖
εLC
‖ + μ̃‖(εP

‖ − εLC
‖ )

.

C. Free-energy functional homogenization

Equations (22a), (22b) yield values for the effective
permittivity tensor of the suspension. They can be measured in
experiments given suitable boundary conditions. Alternatively,
if the director profile were to be known, then this effective
permittivity tensor allows, for example, a calculation of the
capacitance of the nonuniform liquid-crystal layer. At first
sight, it would seem reasonable to use these effective values
in a calculation of the nematic director profile. The local
free-energy density associated with a director n in an electric
field E would then be − 1

2 (ε̃‖ − ε̃⊥)(E · n)2, by analogy with a
similar calculation in a pure nematic.

However, detailed calculation shows that this is not the case.
The effective permittivity as it appears in an energy expression
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is not the same quantity as the effective permittivity as directly
measured. While this may be at first sight implausible, further
reflection shows that in general in a nonuniform medium the
spatial averages 〈D · E〉, 〈D〉 · 〈E〉 will not be equal.

Combining Eq. (7) with the free-energy functional Eq. (3)
involves some cancellation with FE and yields the following
free-energy functional:

F = Fel + FE + Fentr

= Fel − 1

2

∫ L

0
(1 − f )ε0ε̂

LCELC · ELC dz

− 1

2

∫ L

0
f ε0ε̂

P EP · EP dz− f

βv

∫ L

0
ln

[
exp

(
dvβ

(
n · E0

P

))
+ exp

( − dvβ
(
n · E0

P

))]
dz. (23)

We now rewrite the free-energy functional Eq. (23), so that
it takes a form analogous to that of a pure liquid-crystal
free-energy functional, but with some modified coupling
constants which represent the effect of doping. Using the
inequality condition (8), we substitute Eq. (9) into the free-
energy functional (23), thus eliminating the exponentials in
this equation. We obtain the following quadratic form in the
electric field for the free-energy functional:

F = Fel

− 1

2

∫ L

0
(1 − f )ε0ε̂

LCELC · ELC dz

− 1

2

∫ L

0
f ε0ε̂

P EP · EP dz − 1

2

∫ L

0
f ε0ν

(
n · E0

P

)2
dz

+ const . (24)

Substituting the local fields from Eqs. (11a),(11b),(11c) into
the free-energy functional Eq. (24) now yields the following
detailed form for the liquid-crystal free-energy functional:

F = 1

2

∫ L

0
[K1(∇ · n)2 + K3(n × ∇ × n)2] dz

− 1

2

∫ L

0
{(1−f )ε0ε̂

LCT̂ LCE · T̂ LCE +f ε0ε̂
P T̂ P E · T̂ P E

+ f ε0ν(T̂ P 0E · n)2}dz + const , (25)

where T̂ P 0,T̂ P have been defined just below Eq. (20).
We now recall that the T̂ matrices are diagonal in the

reference frame of the particle. The T̂ matrices can then in
general be represented in the following general form:

Tij = T⊥δij + Taninj , (26)

where Ta = T‖ − T⊥. Using Eq. (26), we now rewrite the
functional (25) in general vector form, obtaining

F = 1

2

∫ L

0
[K1(∇ · n)2 + K3(n × ∇ × n)2] dz

− 1

2

∫ L

0
{ε0ε⊥ effE2 + ε0εa eff(n · E)2}dz + const . (27)

This expression now uses effective dielectric constants for the
suspension defined by

ε⊥ eff ≡ (1 − f )εLC
⊥ (T LC

⊥ )2 + f εP
⊥(T P

⊥ )2, (28a)

εa eff ≡ (1 − f )(εLC
‖ (T LC

‖ )2 − εLC
⊥ (T LC

⊥ )2)

+ f (εP
‖ (T P

‖ )2 − εP
⊥(T P

⊥ )2) + f ν(T P 0
‖ )2. (28b)

Finally, substituting in the explicit T̂ -matrix components
into Eqs. (28a) and (28b), we obtain explicit expressions for
a new set of effective dielectric constants which occur in the
homogenized free energy. These are

ε⊥ eff = εLC
⊥ + f

(εP
⊥ − εLC

⊥ )εLC
⊥

εLC
⊥ + (1 − f )μ̃⊥(εP

⊥ − εLC
⊥ )

· εLC
⊥ + (1 − f )μ̃2

⊥(εP
⊥ − εLC

⊥ )

εLC
⊥ + (1 − f )μ̃⊥(εP

⊥ − εLC
⊥ )

, (29a)

ε‖ eff = εLC
‖ + f εLC

‖
[εLC

‖ + μ̃‖(εP
‖ − εLC

‖ ) − εLC
‖ (1 − νμ̃‖T 0

‖ /εLC
‖ )]

εLC
‖ + (1 − f )μ̃‖(εP

‖ − εLC
‖ ) − f μ̃‖T 0

‖

− f (εLC
‖ )2

(1 − νμ̃‖T 0
‖ /εLC

‖ )[εLC
‖ + μ̃‖(εP

‖ − εLC
‖ ) − εP

‖ (1 − νμ̃‖T 0
‖ /εLC

‖ )] + f ν(εLC
‖ )2

[εLC
‖ + (1 − f )μ̃‖(εP

‖ − εLC
‖ ) − f νμ̃‖T 0

‖ ]2
. (29b)

D. Frederiks transition voltage

We now use the formulas of the last subsection to calculate
the Frederiks transition voltage. The free-energy functional
is minimized with respect to director configuration, subject to
given applied voltage V [i.e., constraint Eq. (5)]. The threshold
voltage is then the voltage at which the initial liquid-crystal
configuration becomes unstable.

The Frederiks threshold can be obtained from the functional
Eq. (27) in the limit of small θ (z). We recall from Sec. II that
n̂ = (cos θ,0, sin θ ); in this limit the elastic term reduces to
1
2K1( dθ

dz
)2. Calculation of the Frederiks threshold in conven-

tional nematic liquid crystals is a standard problem [31]. The

only new element in our case involves the explicit calculation
of ε⊥ eff and εa eff . In the limit θ → 0 Eq. (27) reduces to

F = 1

2

∫ L

0

{
K1θ

′2 − ε0εa eff

(
V

L

)2

θ2

}
dz + const , (30)

where only terms up to second order in θ have been included,
and in this limit it is still possible to replace Ez by V

L
.

It is now straightforward to show that the Frederiks
transition threshold voltage is given by

Vthr = π

√
K1

ε0εa eff
. (31)

041705-5



SHELESTIUK, RESHETNYAK, AND SLUCKIN PHYSICAL REVIEW E 83, 041705 (2011)

TABLE I. Table of parameters.

Parameter Value Description

P 6μC cm−2 Estimated particle permanent polarization
εP

⊥ 10 (in Sn2P2S6)

εP
‖ 1000 (in Sn2P2S6)

f 3 × 10−3 = 0.3% Particle volume fraction in suspension

v 10−25m3 Volume of particle

εLC
⊥ 7.0 (in 5CB)

εLC
‖ 18.5 (in 5CB)

a = b variable Minor semiaxis of particle
c variable Major semiaxis of particle

IV. RESULTS

A. Parameter values

In our examples, we use parameters appropriate to thiohy-
podiphosphate (Sn2P2S6) ferroelectric particles [10], in a LC
matrix made from 5CB (Merck). The parameters, and their
meanings are shown in Table I. Our calculations include effects
of both polarization and anisotropy.

We note that the permanent polarization of bulk Sn2P2S6

d = 14 μC cm−2 [32]. Nanoparticle surface effects, such as
lack of a local surface field and ionic effects due to adsorbed
surfactant, would reduce this. To take account of this, in our
calculation we use a value of d = 6μC cm−2 (see top row). By
comparison, Lopatina and Selinger [22] have used the slightly
lower figure of 4 μC cm−2.

We now estimate the expansion parameter dvβ(n · E0
P ),

which occurs in Eq. (8). For our theory to be valid, this quantity
must be less than unity. We suppose a typical cell thickness
L = 10 μm, at temperature T = 20◦ C = 293◦ K. Other
typical parameter values are shown in Table I. We estimate the
maximum field that orients particle permanent polarization E0

P

to be of the same order as the Frederiks transition threshold
EFT = π

L

√
K1

ε0εLC
a

� 7.88 × 104 Vm−1. The relevant expansion

parameter in Eq. (8) now takes the value

dvβE0
P � dvβ

π

L

√
K1

ε0εLC
a

� 0.1. (32)

Thus in this case the inequality (8) is satisfied.
We note that a particle volume v = 10−25 m3 corresponds

(in the case of spherical particles) to a particle diameter ∼6 nm.
By comparison, Cook et al. [33] state that their particle
diameter is ∼9 nm, increasing the value of this parameter
from ∼0.1 to ∼0.45, but not violating the inequality Eq. (8).
But the present theory should be applied cautiously. There
are cases in which particles are large, or the electric field is
high, and condition (8) is violated. One such case occurs in
the experiments of Blach et al. [12], for which the particle
diameter is ∼150 nm.

B. Unpolarized particles

We first present results of calculations including hypo-
thetical unpolarized particles whose dielectric properties are

identical to those of Sn2P2S6. Figures 2 and 3 show results,
respectively, for the perpendicular and parallel components of
the dielectric tensor, as a function of particle volume fraction
f in the low-f regime where our calculations may have
some validity. We also show in the same figures the so-called
Weiner bounds [34,35], which delineate the region in which
the effective medium properties may occur for any mixture
with this ratio of materials. The upper bound corresponds
to the (volume-fraction-weighted) arithmetic mean dielectric
function, while the lower bound corresponds to the harmonic
mean of the dielectric function.

Each of Figs. 2 and 3 shows two separate curves, in
addition to the Weiner bounds. One of these corresponds to the
dielectric function itself (i.e., the calculation of Sec. III B). The
second plot corresponds to the effective dielectric constants
to be used in an energy calculation (i.e., Sec. III C), which
is to be used, for example, in calculations of the Frederiks
threshold. This difference can be significant, even at very low
f , particularly for ε‖ eff . Gratifyingly, the calculated quantities
do fall within the Weiner limits.

FIG. 2. (Color online) Perpendicular effective permittivities as
a function of particle volume fraction f , for spherical dielectric
particles, as discussed in text. ε̃⊥(full line) and ε⊥ eff (dashed line) are
the effective perpendicular dielectric tensor components associated
respectively with capacitance and energy calculations. The dotted
lines are the Weiner limits described in the text.
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FIG. 3. (Color online) As for Fig. 2, but now showing parallel
effective permittivities, also as discussed in text. Dotted lines: Weiner
limits; full line: dielectric function; dashed line: effective dielectric
component for energy calculations.

C. Ferroelectric particles

In Fig. 4 we show results for the full parallel components
of the effective dielectric constant, but now also including
the effect of the permanent dipoles. In order to make sensible
comparisons, we assume as in Figs. 2 and 3, that the particle
properties have not changed. The graphs include both ε̃‖ (the
“measurable” permittivity) and ε‖ eff (the quantity appearing
in the energy functional). The permanent polarization does
not enter the expression for the analogous perpendicular
components.

For comparison we have also included results from the
cruder effective medium theory in our previous paper [19].
We note the dramatic difference (of the order of a factor of
2) between numerical values coming from the two different
expressions for the parallel permittivity. Our previous paper

FIG. 4. (Color online) Effective permittivities ε̃‖ (direct mea-
surement: full line) and ε‖ eff (energy functional: dashed line), as
a function of particle volume fraction f . Dotted line: predictions of
our analogous 2006 theory [19].

FIG. 5. (Color online) Effective (parallel) permittivities ε̃‖ (direct
measurement: full line) and ε‖ eff (energy functional: dashed line) as
a function of particle permanent polarization d . Dotted line: 2006
theory [19]. Inset: direct measurement on a finer scale.

predicts a numerically much larger value than either of these
plots. Part of this discrepancy can be put down to a poor
treatment of depolarization factors, presumed unity in our
previous work.

In Fig. 5 we examine the explicit effect of increasing
the colloidal particle dipole moment, at fixed particle shape
and volume fraction. The predicted effect seems small by
comparison with our 2006 theory. However, the quantity
appearing in the energy functional lies between the result of
our 2006 theory and the current theory.

In Fig. 6, we make an analogous study of the effect of
particle shape, by changing the semiaxis ratio a/c at fixed
particle volume v and fixed volume fraction f , subject to
fixed particle polarization d. Thus a/c = 1 corresponds to a
spherical particle, whereas a/c � 1 corresponds to a needle-
shaped particle. The effect on the perpendicular component of
the permittivity is negligible, and we do not show it. However,
the effect on the parallel component is noticeable, although
for the physical parameters we are using not dramatic until
a/c � 1, i.e., the particle is strongly needle-like.

D. Frederiks transition

Finally we turn to predictions for the Frederiks threshold
from Sec. III D. In Fig. 7 we show predictions for the de-
pendence of the Frederiks threshold for spherical ferroelectric
particles as a function of nanosuspension volume fraction,
normalizing with respect to the Frederiks threshold voltage
V

pure
thr of pure liquid crystal. The effect is not as large that

predicted in our 2006 theory [19]. Nevertheless, using the
same set of model parameters, we predict a decrease of the
order of a factor of 2, for volume concentrations of the order
of 2%, which we regard as significant. For comparison we also
show in this figure the normalized Frederiks threshold voltage
for hypothetical unpolarized particles with the same dielectric
properties. Here there is also some decrease in the threshold
voltage. However, the results demonstrate conclusively that
the main factor responsible for the significant threshold
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FIG. 6. (Color online) Effective (parallel) permittivities ε̃‖ (direct
measurement: full line) and ε‖ eff (energy functional: dashed line), as
a function of particle shape parameter a/c, for polarized particles,
using polarization parameters for Sn2P2S6.

voltage decrease is connected with the particle permanent
polarization.

In Fig. 8 we make an analogous study of the specific effect
of particle permanent polarization d for spherical particles at
fixed volume fraction f = 0.3%. Vthr decreases monotonically
with d. As in Fig. 7, the effect is less marked than in our 2006
theory (also shown for comparison), but even at f = 0.3%,
there is a noticeable effect.

Figure 9 shows the effect of inclusion shape, keeping other
relevant properties constant. We take account of shape by
changing the semiaxis ratio a/c. As in Fig. 6, a/c = 1 corre-
sponds to a spherical particle, whereas a/c � 1 corresponds to
a needle-shaped spheroidal particle. From the point of view of
dielectric properties, this calculation corresponds to changing

FIG. 7. (Color online) Frederiks threshold voltage Vthr/V
pure

thr as
a function of particle volume fraction f , for spherical dielectric
particles, as discussed in text. Full line: present theory. Dashed line:
2006 theory. Dotted line: nonpolarized dielectric nanoparticles.

FIG. 8. (Color online) Dependence of Frederiks threshold voltage
Vthr/V

pure
thr on particle permanent polarization d . Spherical dielectric

particles at fixed particle volume fraction f = 0.3%. Full line: present
theory. Dashed line: 2006 theory.

the depolarization factors, which can be strongly dependent
on particle shape. By comparison we observe that our 2006
theory [19] can only take account of particle shape in an ad
hoc fashion.

The 2006 theory predicts a larger threshold voltage decrease
than the current theory. For the physical parameters we use,
the shape effect is only noticeable for a/c � 1, i.e., when
the particle is strongly needle-like. This is also true for
nonpolarized inclusions, but in this case the effect is anyway
much smaller.

Finally we recall the distinction we have made between the
effective permittivities to be used in energy minimization (and
hence to predict the Frederiks threshold), and the effective per-
mittivity to be used when calculating the dielectric response.

FIG. 9. (Color online) Dependence of Frederiks threshold voltage
Vthr/V

pure
thr on particle shape, as represented by semiaxis ratio a/c.

Other relevant parameters given in Table I. Full line: present
theory. Dashed line: 2006 theory. Dotted line: present theory with
nonpolarized dielectric nanoparticles.
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FIG. 10. (Color online) Comparison of “dielectric” and “free en-
ergy” routes to the calculation of the reduction in Frederiks threshold,
as a function of particle volume fraction f , as discussed in the text.
Other relevant properties as given in Table I. Full line: permittivity
tensor given by ε̂eff , i.e., free-energy functional permittivity (“correct
procedure”). Dotted line: permittivity tensor given by ˆ̃ε, i.e., direct
measurement permittivity (“incorrect procedure”).

In Fig. 10, we examine the effect of making this distinction,
by explicitly comparing the Frederiks threshold predictions
calculated by what we believe is the correct criterion (from
Sec. III C), and those calculated using an incorrect criterion
(from Sec. III B). The difference between the predictions
as a function of colloidal volume fraction, otherwise using
physical parameters from Table I, is quite striking. Use
of an inappropriate effective medium tensor would predict
a considerably smaller effect, by factors of between 2.5
and 5.

V. CONCLUSIONS

A. General considerations

In this paper we have introduced a tensor effective medium
theory for a system containing ferroelectric nanoparticles in
a liquid-crystal suspension. Such systems have been the focus
of much research in recent years, because thermodynamic,
dielectric, and potential device properties of such systems
seem to show extreme sensitivity to very low ferroparticle
volume concentrations. A theory describing dielectric
properties is a major priority in order that further progress
may be made in device applications, and presents interesting
new challenges in the context of the general theory of
inhomogeneous dielectric media.

An important point, at which our theory starts, is the as-
sumption that the particles are supposed to align perfectly with
the local nematic director. This point, although plausible, is not
at all obvious. We first give a brief justification of this postulate.

There are several possibilities for mutual arrangement of the
spontaneous polarization of a ferroelectric particle with respect
to the liquid-crystal director in the absence of an external
electric field. The liquid crystal is a uniaxial anisotropic
dielectric medium, with principal axis parallel to the director.

The liquid-crystal host can in principle possess either positive
or negative dielectric anisotropy. Here, we suppose that it has
positive anisotropy. A further key assumption is to consider the
case in which the ferroelectric nanoparticles are sufficiently
small not to disturb the director in their neighborhood. We
remark that most studies of liquid-crystal colloids (see, e.g.,
Stark [1]) do not consider this limit, and in this case the defect
structure in the neighborhood is important. But here there is no
defect structure. A similar assumption was used by Lopatina
and Selinger [22], but it is in any case implicit in the lack of
turbidity observed in the experiments on these materials. We
now assert that in this limit, at zero externally applied electric
field, it is energetically favorable for the particle spontaneous
polarization to be aligned either parallel or antiparallel to
the director. A more detailed calculation will be published
elsewhere, but a semiquantitative estimate can be established
as follows.

Place at the origin a ferroelectric particle with dipole p =
dv, where d = |d| is the ferroelectric polarization and v is its
volume [see Eq. (2)]. In an isotropic medium the field produced
by dipole p at a point r is

Ē(r) = v

4πε0r5
[dr2 − 3(d · r)r]. (33)

The electrostatic energy associated with the ferroparticle is
then

Ues−fp = 1

2

∫
V

D(r) · E(r)dV, (34)

where the electric displacement D ∼ ε0εLCE, the integral is
taken outside the particle, and εLC is an effective liquid-crystal
dielectric constant. Then evaluating this explicitly yields

Ues−fp = v2εLC

32π2ε0

∫
V

1

r10
[dr2 − 3(d · r)r]2dV ∼10−15 Joules.

(35)

This evaluation of the total electrostatic energy in the isotropic
system becomes an estimate of the energy in an anisotropic
system, but is nevertheless reliable. However, in the anisotropic
liquid crystal, the electrostatic energy will now depend on the
external director n. Given the rather large degree of dielectric
anisotropy in the liquid crystal even close to TNI , we expect
that at the order of magnitude of the anisotropic contribution
will be comparable to its total value. We note that Ues−fp

kBT
∼ 104,

which is a very large number. The conclusion is that even
if the anisotropic part of the electrostatic energy is a really
rather small fraction, the relevant Boltzmann factor enforcing
alignment will still be sufficiently large a number to require
the ferroelectric particles to align rather closely (parallel or
antiparallel) to the local director.

The relevant nondimensional quantity is just the quantity
ν = d2v

kBT ε0
∼ 104 introduced in Sec. III A, which originally

quantified the ratio of the electrostatic interaction between
two dipoles to the thermal energy. Here, remarkably, it turns
out also to refer to the effective anchoring energy of the dipole
to the local director.

A particularly interesting feature of this calculation is that
this anchoring is principally electrostatically enforced. We
have made reference earlier in this paper to ferronematics,
which are the analogous magnetic systems [2–4,8,9]. In these
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systems the nematic director is also coupled to the local dipolar
order. But in the ferronematics, the coupling is steric or due to
dispersion forces and are much weaker than in the ferroelectric
case. Thus strong departures from mutual local alignment
can in principle be expected under some circumstances. By
contrast, here in the ferroelectrics, it seems very unlikely
indeed. In this sense these systems conform quite closely to the
(incorrect) assumptions made about dipolar-director coupling
made by Brochard and de Gennes [2].

We note that an a priori plausible alternative assumption
would be that the dipoles order along the direction of the
external field. In this case we might take the Frederiks
threshold field as a typical field. However, the electrostatic
energy associated with this interaction is almost five orders
of magnitude lower than that associated with the fields due to
the dipoles alone, and can thus to lowest order be neglected.
This is not to say that the external fields cannot reorient the
dipoles. Rather it asserts that of such reorientation takes place,
then the dipolar reorientation must also be accompanied by
director reorientation.

In addition, the theory is complicated because the suspen-
sion is itself anisotropic, the colloidal particles are anisotropic
in shape with anisotropic electrostatic properties, and the
interaction between the two contains both electrostatic and
nonelectrostatic components. As such, it is rather difficult to
reduce the theory to its key components, and draw out its key
predictions using intuitive arguments. A full theory would no
doubt be even more complicated.

An important qualitative and somewhat surprising
conclusion of the theory is that the concept of “effective
permittivity” is not well defined. We derive two sets of
effective permittivity tensors. One of these is used simply to
derive the dielectric properties, such as would be measured in a
capacitance experiment. A second set is used in a free-energy
calculation to predict the dependence of the Frederiks
threshold voltage on ferroelectric particle concentration. The
distinction between the two is not merely academic, but
should lead to measurable consequences.

The deep reason for the existence of this distinction is
hinted at in Sec. III C. The average displacement D defines the
effective permittivity. But electrostatic energies come from
the product < D · E >, and this also defines an effective
permittivity. However in a complex microscopically inhomo-
geneous medium < D · E >�=< D > · < E >. The product
of the means of two quantities is not in general the same
thing as the mean of a product of the same quantities. But
the mean electrostatic energy is a well-defined quantity. In
order to reconcile the apparent contradiction, two different
permittivities must be introduced, one when considering
energies (or other quadratic properties), and another when
considering capacitances (or other linear properties).

The present theory is only a zero frequency treatment of
dielectric response. We do not treat at all finite frequency.
However, we may conjecture that many of the principal
features are retained at low frequency. At this stage, even
the characteristic magnitudes are unclear. At sufficiently high
frequencies the rotational inertia of the dipoles must play a
role, and then for a full treatment the assumption of strong
coupling between the director and the dipole directions must
be relaxed.

B. Specific applications

Our theory unambiguously predicts a reduction in the
Frederiks threshold voltage as a function of ferroparticle
concentration. The reductions are quite large: of the order of a
factor of 2 for particle volume concentrations of the order of a
few %. Using an inappropriate set of effective medium param-
eters leads to significantly different predictions. Qualitatively,
our results are consistent with many recent experiments [10],
although not always consistently so. A usual experiment for
determining the splay elastic constant involves a measurement
of the Frederiks threshold voltage. But the shift in the Frederiks
threshold does not mark a dramatic shift in the splay elastic
constant, but is an effective dielectric phenomenon. Our theory
suggests that if the Frederiks threshold in a ferroparticle
liquid-crystal system increases, then there is extra new physics
in addition.

The present theory replaces a previous theory, published in
2006 [19], which contained some of the same physics, but
dealt with the complicated tensor electrostatics in a much
less sophisticated fashion. This theory, however, was much
less complicated and easier to use. The results of that theory
were qualitatively similar, but quantitatively different, from
the predictions of the present theory. A key element omitted
from that theory was an independent method of determining
depolarization factors. Equivalently the self-field effects of a
ferroparticle in a dielectric medium were lumped together in a
phenomenological parameter λ. In our 2006 theory we simply
put this parameter equal to unity. We have continued to do this
in the comparisons presented in the present paper. But in fact it
is possible to use the present theory to evaluate the parameter
λ in our 2006 paper, thus enabling some of the qualitative
insights in a simpler approach to be preserved.

In Fig. 11, we compare the predictions of the 2006 theory
against the current theory for the dependence of the Frederiks
threshold voltage on particle concentration. The figure shows
that, for spherical particles and other parameters fixed in

FIG. 11. (Color online) Plots of Frederiks threshold against
particle volume fraction f . Solid line: Current theory. Dotted line:
2006 theory with λ = 0.13. Dashed line: 2006 theory with λ = 0.5.
Dot-dash line: 2006 theory with λ = 1. Current theory agrees well
with 2006 theory with λ = 0.13.
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Table I, the current theory compares very well with the 2006
theory, subject to λ = 0.13. We not, however, at this stage have
an analytic treatment of this problem, and the deep reason for
this coincidence is at this stage unclear.

There is a need for further experiments, analytic theory,
and computational modeling in ferroparticle liquid crystal
colloids. The need for an advanced theory is highlighted by
problems encountered by Blach et al. [12]. These authors have
carried out careful electro-optical studies of a liquid-crystalline
system with 4% by volume of ferroelectric colloidal particles
of 150 nm diameter. Blach et al. find that their results
are not numerically in accord with our 2006 paper [19].
However, by contrast with results by Glushchenko et al. [36],
a reduction in the Frederiks threshold is nevertheless observed
in the presence of ferroelectric particles. We would remark
that unfortunately these experiments do not satisfy the key
condition in Eq. (8) that dvβ(n · E0

P ) < 1 close to the Frederiks
threshold, and hence neither [19] nor the present paper can be
used quantitatively. However, it is possible that some suitable
nonlinear extension of the theory might apply.

Furthermore, the connection between the 2006 theory and
the present theory remains unclear. It may be that the close
agreement for one prediction of the theory is a numerical
coincidence, and not robust with respect to changes in particle
shape and other parameters. Preliminary analysis has not so
far yielded any conclusion on this question. In a more general
context a number of workers, most notably Fu, Resca, and
coworkers [29,37–39], have studied effective medium theories
analogous to those which we have addressed, but including
details of the positional and orientational correlations between
the inclusions, and it may be that progress is possible in this
direction as well.

In addition, the present theory assumes that the ferropar-
ticles are uniformly distributed. Equivalently, it represents
the liquid crystal as a ceramic, and draws its inspiration
from dielectric theories of ceramics. Positional, as opposed
to orientational, dielectric ferroparticle response is neglected.
It would be of interest to try to model such a system
computationally, solving the relevant electrostatic equations
numerically. As far as we are aware, such modeling has
not been attempted for systems of the kind of complexity
under discussion here. We believe, however, that in principle,
nontrivial computational modeling of these systems may
now be computationally feasible. Such studies would give a
firmer theoretical basis to the present calculations and other
calculations in the same genre.

In addition, however, theoretical considerations based
on statistical mechanical theories of dipolar particles [40]
strongly indicate that at the volume concentrations at which
experiments are carried out, the ferroelectric dipoles should
form almost unbreakable chains. The key nondimensional
parameter is the quantity ν, discussed above in the context
of dipolar-director anchoring. Thus positional ordering is
expected in addition to the orientational ordering. But such
chains have not been observed. Indeed, in at least one so-
far-unreported experiment [41] low angle x-ray scattering
experiments seem explicitly to exclude chain formation. Why
this would be the case is at the moment a mystery. In
the presence of chains a new theoretical approach would
be necessary, and the present considerations would at least

partially be invalidated. So further investigation of this aspect
of the problem is of great importance.
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APPENDIX: DIELECTRIC ELLIPSOID PROBLEM

In this appendix we summarize ideas concerning the
depolarization factors associated with inclusions in a dielectric
medium, and which enter in Eq. (12).

In order to do this, we use ideas from Jones [30] and
Sihvola [42] to derive the relation between local fields of an
aligned anisotropic spheroid with a permanent electric dipole
embedded in an anisotropic dielectric host.

Let us assume provisionally that the medium which the
dielectric ellipsoid is placed is a vacuum. At an inner point of
a uniformly polarized ellipsoid there is an electric field, known
as the depolarization field [24]. This is given by the following
expression: [30]

Ed = −μ̂P/ε0, (A1)

where P is the ellipsoid polarization and μ̂ is the depolarization
tensor. This tensor is diagonal in the ellipsoidal reference
frame, i.e. when the coordinate axes are parallel to the main
ellipsoid axes:

μ̂ =

⎛
⎜⎝

μx 0 0

0 μy 0

0 0 μz

⎞
⎟⎠ , (A2)

where μx,μy,μz are known as depolarizing factors.
For a spheroid (a = b < c or a = b > c) the depolarization

tensor is given by [24]

μ̂ =

⎛
⎜⎝

μ⊥ 0 0

0 μ⊥ 0

0 0 μ‖

⎞
⎟⎠ , (A3)

with

μ‖ = 1 − e2

e3
(arctanh e − e),

(A4)

μ⊥ = 1

2
(1 − μ‖),
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and where μ‖ and μ⊥ are the depolarizing factors for a prolate
spheroid with eccentricity e =

√
1 − a2/c2. For an oblate

spheroid, the analogous expressions are

μ‖ = 1 + e2

e3
(e − arctan e),

(A5)

μ⊥ = 1

2
(1 − μ‖),

where e =
√

a2/c2 − 1.
The uniform field inside the ellipsoid EP produces induced

polarization

Pε̂P = ε0(ε̂P − 1)EP . (A6)

If the ellipsoidal particles also possess a permanent polariza-
tion PP , then the total polarization of the ellipsoid is

P = Pε̂P + PP = ε0(ε̂P − 1)EP + PP . (A7)

Combining Eqs. (A1) and (A7), we can now derive the internal
electric field produced by this total ellipsoid polarization:

Ed = −μ̂(ε̂P − 1)EP − μ̂PP /ε0. (A8)

The total field EP inside the dielectric ellipsoid is given by
the sum of the uniform external field E and the field Ed due to
the polarization of the spheroid:

EP = Ed + E. (A9)

This yields the following equation for the external field:

E = [1 + μ̂(ε̂P − 1)]EP + μ̂PP /ε0. (A10)

In our case, however, the ellipsoid is placed not in a
vacuum, but in the nematic liquid crystal host with dielectric
permittivity tensor ε̂LC . We can thus modify Eq. (A10) by
replacing ε0 by ε0ε̂

LC , while maintaining ε̂P , thus obtaining:

ε̂LCELC = [ε̂LC + ˆ̃μ(ε̂P − ε̂LC)]EP + ˆ̃μPP /ε0. (A11)

Particular cases of this formula have been derived, for example,
by Landau [24] and Sihvola [28].

In Eq. (A11), we have used a modified depolarization
tensor ˆ̃μ. It is modified as a result of the anisotropy of the
external medium. Sihvola [42] has demonstrated a procedure
to take account of this anisotropy.

The procedure involves an affine transformation to the
external medium in such a way that the Laplace equation
holds for the potential in the transformed space. After the
transformation, the spheroidal surface of the inclusion will
in general now be ellipsoidal. But in our case, the spheroidal
particles are aligned with the principal axis of the host medium.
As a result, even after transformation, the particle shape
remains spheroidal, but with modified semiaxes:

ãi = ai√
εLC
i

, i =⊥ , ‖ . (A12)

The modified depolarization coefficient tensor ˆ̃μ is calculated
then using the well-known formulas (A4)–(A5), but now with
a modified eccentricity.

For a prolate spheroid, we obtain

μ̃‖ = 1 − e′2

e′3 (arctanh e′ − e′),
(A13)

μ̃⊥ = 1

2
(1 − μ̃‖),

e′ =
√

1 − εLC
‖ a2

εLC
⊥ c2 . For an oblate spheroid, the analogous expres-

sions are

μ̃‖ = 1 + e′2

e′3 (e′ − arctan e′),
(A14)

μ̃⊥ = 1

2
(1 − μ̃‖),

where e′ =
√

εLC
‖ a2

εLC
⊥ c2 − 1.

Formulas (A13), (A14) are required for explicit calculations
of the dielectric properties of the liquid-crystal media, as
discussed in Eq. (12) and the subsequent development.
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