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Random disorder and the smectic-nematic transition in liquid-crystalline elastomers
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We report effects of disorder due to random cross-linking on the nematic to smectic-A phase transition in
smectic elastomers. Thermoelastic data, stress-strain relations and high-resolution x-ray scattering profiles have
been analyzed for two related compounds with a small and a larger nematic range, respectively, each for 5% as
well as 10% cross-links. At 5% cross-link density the algebraic decay of the positional correlations of the smectic
layers survives in finite-size domains, providing a sharp smectic-nematic transition. At an increased cross-link
concentration of 10% the smectic order disappears and gives way to extended short-range layer correlations. In
this situation neither a smectic-nematic nor a nematic-isotropic transition is observed anymore. The occurrence
of disorder at a relatively large cross-link concentration only, indicates that smectic elastomers are rather resistant
to a random field. The temperature dependence of the correlation lengths and thermoelastic behavior suggest a
shift to a “parasmectic” regime of a first-order smectic-isotropic transition.
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I. INTRODUCTION

Phase transitions in liquid crystals have attracted interest
because they show a wealth of symmetry-breaking scenarios
and enable tests of the modern theories of critical phenomena
[1]. In this context, smectic liquid-crystal (LC) systems are
of particular interest. They consist of stacks of liquid layers
in which the rodlike molecules possess orientational order of
their long molecular axes, defining the director n(r). The order
of the smectic layers is characterized by a two-component
order parameter ψ(r) in three-dimensional (3D) space. Due
to its 1D character, the smectic periodicity is unstable to
long-wavelength thermal layer fluctuations (Landau-Peierls
instability) [2,3]. As a result, the positional correlations decay
algebraically as r−η, η being small and positive, and the dis-
crete Bragg peaks change into singular diffuse scattering with
an asymptotic power-law form [4]. This type of anisotropic line
shape was first observed in low-molecular-mass thermotropic
smectic phases by Als-Nielsen et al. [5] and subsequently
also for lyotropic lamellar phases [6–8], smectic polymers
[9], and lamellar block copolymers [10]. Upon heating, the
smectic layers may melt into a nematic phase in which only
orientational order survives. An interesting new element has
been introduced by subjecting the corresponding smectic-A
nematic (SmA-N ) phase transition to an external random field.
As is well documented, the effects of random disorder on
phase transitions can be dramatic, leading to the destruction
of long-range order, smearing of phase transitions, production
of new exotic phases, etc. Examples in crystals comprise the
pinning of an Abrikosov flux vortex lattice by impurities in
superconductors [11] and random-field Ising magnets [12].
Regarding the first example, Larkin [13,14] predicted that
at large enough length scales, even a weak random field
should destroy translational order, resulting in exponentially
decaying positional correlations. Later work [15] recognized
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that the effect of the disorder was overestimated and that
quasi-long-range order can survive (positional correlations
decaying algebraically at large distances). The latter property
is similar to the behavior of solids in 2D as well as layer
correlations in a smectic LC [1]. In liquids, disorder has been
introduced by confining superfluid helium to a random porous
medium [16]. Similarly, monomeric liquid crystals showing a
SmA-N phase transition have been confined to the connected
void space of an aerogel (aerosil). These consist of a highly
porous fractal-like network of multiply connected filaments
of aggregated silica spheres that form a random network
providing pinning of the smectic layers. As a result, even at
low density of the aerogels or aerosils (about 1%–3%), the
smectic order is destroyed and persists only locally [17–22].
This behavior is in agreement with theoretical predictions that
generic quenched disorder should do so, no matter how weak
[23,24]. In the present paper, we investigate the SmA-N phase
transition in LC elastomers, in which the smectic elasticity is
coupled to an elastic network of cross-links that provides an
internal random field. In this situation, the smectic layer order
also disappears but—in contrast to the situation described for
monomeric smectics in aerogels—only above a certain cross-
link density. The smectic elastomer network appears to be quite
resistant to quenched disorder. We investigate this remarkable
disordering process in some detail, combining thermoelastic
data and stress-strain measurements with analysis of the
x-ray line shape associated with the smectic layering, which
provides a detailed picture of the route to short-range layer
correlations.

Liquid-crystalline order and polymer properties can be
combined by attaching mesogenic molecules to a polymer
backbone via flexible linkages (side-chain LC polymers).
The backbone polymer—in turn—can be weakly cross-linked
to form an elastomer (see Fig. 1). The macroscopic rubber
elasticity introduced via such a percolating network interacts
with the LC ordering field [25]. In smectic side-chain LC elas-
tomers, the layers cannot move easily across the cross-linking
points where the polymer backbone is attached. Consequently,
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FIG. 1. Schematic representation of a smectic side-chain elastomer.

layer displacement fluctuations are suppressed, which under
certain circumstances can stabilize the 1D periodic layer
structure [26–28]. On the other hand, the cross-links provide
a random network of defects that has been predicted to
destroy the smectic order [29]. Thus in SmA elastomers, two
opposing tendencies exist: suppression of layer displacement
fluctuations that enhances translational order, and the effect of
random disorder that leads to a highly frustrated equilibrium
state. The road to layer disorder with increasing cross-link
concentration has been mapped out experimentally using x-ray
scattering [30,31]. The line shape shows a gradual change
from a central Gaussian with power-law tails (describing
finite-size smectic domains) for low cross-link concentrations,
via stretched Gaussians, to a Lorentzian shape (describing ex-
tended short-range correlations) at higher cross-link densities.
The present measurements relate to a similar elastomer system
that displays at high temperatures additionally a transition to

a nematic phase, which modifies the approach to disorder.
Above a certain cross-link density, both the smectic-nematic
and the nematic-isotropic transition disappear, corresponding
to a shift of the system to the parasmectic regime of a first-order
smectic-isotropic transition. In the following, we present first
details of the experiments and then we continue with the results
and discussion.

II. EXPERIMENTAL

The investigated LC co-elastomers consisted of a
poly(methylsiloxane) backbone, end-on attached mesogenic
sidechains R1 and R2, and a bifunctional isotropic cross-linker
V1 [Fig. 2(a)]. The synthesis was carried out in a Pt-catalyzed
hydrosilylation reaction of a poly(hydrogenmethylsiloxane)
prepolymer and vinyl-terminated side chains in isotropic
solution as described elsewhere [32]. The side chain R1 leads
to a smectic-A phase, while a nematic phase is induced by
addition of the group R2, as indicated in the phase diagram
of Fig. 2(b). We studied the elastomer E70/30 and E60/40
with 30% and 40% of the nematogenic group R2, respectively,
for two cross-link concentrations, 5% and 10%. The elastomer
E70/30 has a stronger smectic tendency than E60/40, as is
evident from the smaller nematic range and the twice as large
layer compression modulus (see below). In this terminology,
the fully smectic elastomer discussed earlier [30,31] would
be indicated as E100/0. Hence the choice of these two
concentrations of the nematogenic group R2 should provide a
rather complete picture.

“Single-crystal” smectic elastomer samples were synthe-
sized following a two-stage process [32,33]. In the first step,
the sample is slightly cross-linked in the isotropic phase
while solvent is still abundantly present. Subsequently, the
solvent is removed at elevated temperature with the sample
under a uniaxial load. The sample is cooled to the nematic
phase in which the director is macroscopically oriented in the

(b)(a)

FIG. 2. (a) Chemical structure of the elastomers investigated. (b) Schematic phase diagram from phase-transition temperatures of
thermoelastic measurements for different nematogenic fractions R2 and 5% cross-links. The two elastomer compositions investigated correspond
to the vertical lines and are designated as E70/30 and E60/40, respectively.
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FIG. 3. X-ray overview of the smectic phase of sample E60/40
5% (room temperature).

direction of the uniaxial stress, which determines the long
direction of the sample (smectic layer normal). Upon cooling
to the smectic state, uniformly aligned layers build up and
the orientation is fixed by a second cross-linking step in the
smectic phase. To remove the soluble content, the networks
were extracted several times in a mixture of isohexane and
toluene. Afterward, the samples were dried in the isotropic
state and cooled down to room temperature under a small
load. The elastomers were still about 30 ◦C above the glass
transition. The SmA phase was identified at room temperature
through 001 and 002 quasi-Bragg peaks along the layer normal
at a wave vector qn and a broad liquidlike equatorial peak
from the in-plane short-range order (see Fig. 3). Typical
mosaic distributions around the smectic layer normal were
around 10◦

Thermoelastic measurements were carried out in a home-
made oven that was kept at constant temperature for 1 h
between measurements to ensure thermodynamic equilibrium.
The length of the sample was measured using a digital
camera. Stress-strain measurements were performed using a
self-constructed apparatus. In a heated cell, the sample was
stretched by two stepping motors at strain steps of about 0.5%,
the stress being measured by a force-transducer. The time

between each deformation step was taken as 2 h to allow full
relaxation of the sample [34].

X-ray experiments were performed at Exxon beamline
X10A at the National Synchrotron Light Source, Brookhaven
National Laboratory (Upton, NY) using 11.3 keV radiation
(wavelength λ = 0.1092 nm). The wave-vector transfer is
given by q = kf − ki , where kf and ki are the outgoing
and incoming wave vector, respectively, with q = |q| =
(4π/λ) sin θ , 2θ being the scattering angle. The scattering
plane (z,x plane) was vertical with the qz axis parallel to the
smectic layer normal. Hence the quasi-Bragg peaks were mea-
sured in reciprocal space at qn along qz. Using a double-bounce
Ge(111) monochromator and a double-reflection channel-cut
Si(111) analyzer crystal, the wings of the resolution function
were cut down to ∼(qz − qn)−4.5 at small deviations from
the Bragg position and to ∼(qz − qn)−3 farther away. The
center of the resolution function in the scattering plane was
close to a Gaussian with �qz = 0.003 nm−1 [full width at
half-maximum (FWHM)]. The resolution function along the
qx direction was an order of magnitude narrower and taken
as a δ function. Out of the scattering plane, the resolution
was set by slits to �qy = 0.02 nm−1. The incident intensity
was about 5 × 109 cts/s; the beam size was 0.5 × 1 mm2

(V × H ). All data were background subtracted, considering
separately the q-dependent spatial background in the hutch
and the time-dependent dark current of the scintillation
counter.

III. RESULTS AND DISCUSSION

Both samples with 5% cross-links show clear SmA-N
and N -I transitions in their thermoelastic behavior (Fig. 4).
Upon cooling from the isotropic phase, the sample length in
the z direction changes abruptly upon reaching the nematic
phase and increases further corresponding to the stronger
orientational order. These results indicate an overall prolate
chain conformation. The sample length passes a maximum,
decreases slightly on approaching the nematic-smectic phase
transformation, and remains constant in the smectic-A state.
These results at low cross-link density are similar to those
reported by Assfalg et al. [35] and serve as a reference for
the different behavior of the samples with 10% cross-links
(see below). The SmA-N transition temperature TNA can be
determined more precisely from an x-ray line-shape analysis,

FIG. 4. Thermoelastic data for (a) sample E70/30 and (b) sample E60/40 under constant mechanical stress of 104 Pa.
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FIG. 5. X-ray line shape of sample E60/40 5% (a) just below and (b) just above the smectic-nematic transition at TNA = 52 ◦C. The full
line is a fit to a Lorentzian.

illustrated in Fig. 5 for E60/40 5%. In the nematic phase,
the line shape is nicely Lorentzian, indicating short-range
order characterized by a correlation length ξ = 2/�qz of
the order of 10–100 nm. In contrast, below TNA the line
shape is narrower than Lorentzian, corresponding to finite-size
domains similar to those reported earlier for the purely smectic
E100/0 series at low cross-link concentration [31]. From the
x-ray results, no indication of the transition to the isotropic
phase is found, in agreement with the paranematic nature
of this transition as observed by nuclear magnetic resonance
(NMR) and calorimetry of the stretched monodomain sample
[36]. For E70/30, the behavior around TNA is similar as for
E60/40.

The stress-strain curves given in Figs. 6(a) and 6(c)
show typical behavior of macroscopically oriented smectic-A
elastomers [32,37,38]. In the direction parallel to the layer
normal, a large modulus is found up to a threshold strain

λcr = 1.02. The value of E‖ of the order (3–7) × 106 Pa
corresponds to the smectic layer compressibility B. Above λcr,
the modulus decreases significantly, which indicates typically
enthalpic elastic behavior. On deformation perpendicular to
the layer normal, a linear stress-strain relation is observed.
The modulus E⊥ is considerable smaller (E‖/E⊥ � 40) and is
close to the value obtained in the isotropic state. For E60/40,
the layer compression modulus is more than twice as small
as that for E70/30, reflecting the stronger nematic tendency
of E60/40 [Fig. 2(b)]. Upon increasing the fraction of the
nematogenic component R2 up to E50/50, a nematic phase is
reached already at room temperature [Fig. 2(b)] and the ratio
E‖/E⊥ is reduced to 1.3, a typical nematic value [39].

For both elastomers at 5% cross-links, at room temperature
second-order peaks are observed. For E60/40 5%, the peak
profiles at large q − qn (Fig. 7) indicate an exponent of
algebraic decay η ≈ 0.22 with scaling according to 1/q2−n2η
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FIG. 6. Stress-strain curves for (a, b) sample E70/30 and (b, c) sample E60/40 at 25 oC. The values given for the elastic constants E‖ and
E⊥ correspond to the initial slopes.
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FIG. 7. (a) Line shape of sample E60/40 5% at room temperature with fits to Lorentzian (full line), square Lorentzian (dashed line), and
Gaussian (dotted line). (b) Intensity profile showing power-law behavior at large q − qn. Full lines have slopes 2 − η and 2 − 4η, respectively,
compatible with η = 0.22 ± 0.02.

nicely obeyed. Unfortunately, we could not check the tem-
perature dependence of η as the second-order peak quickly
disappears at higher temperatures. The presence of algebraic
decay of the smectic order indicates that the 5% samples act
disorder-free within finite domains of average size L. For
E70/30 10%, also a second-order peak has been observed
at room temperature. The second-order peaks are broadened
by a factor of 2–3 relative to the first-order ones, indicating
strain-induced broadening typical for elastomers previously
stretched in the nematic phase [31]. Evidently we have not
reached the limit of conventional short-range order for which

the width of successive Lorentzian peaks should vary as n2.
In Figs. 8(a) and 8(b), the results for the 5% samples are
summarized in terms of the average domain size L from the
FWHM of a Gaussian fit to the line shape below TNA and a
correlation length ξ from a Lorentzian fit above the phase
transition. The values of L = 2π/�qz are of the order of
600–800 nm for E60/40 and about constant at 450 nm for
E70/30.

The situation changes dramatically upon increasing the
cross-link density to 10%. Thermoelastic measurements
(Fig. 4) show neither an N -I nor a SmA-N phase

20 30 40 50 60 70
0

100

400

500

E70/30 5%

(a) (
nm

) 
   

   
   

   
   

L 
(n

m
)

INS

T (oC)
20 30 40 50 60 70

0

100

600

800

1000
IN

E60/40 5%

 (
nm

)
L  

(n
m

)

T (oC)

(b)

S

20 30 40 50 60 70
0

20

40

60

 (
nm

)

T (oC)

E70/30 10%

(c)

20 30 40 50 60 70
0

10

20

30

E60/40 10%

 (
nm

)

T (oC)

(d)

FIG. 8. Domain size L below TNA (from a FWHM of Gaussian fit) and correlation length ξ above TNA (from Lorentzian fit) for (a) sample
E70/30 5% and (b) sample E60/40 5%. Correlation length ξ over the full temperature range for (c) sample E70/30 10% and (d) sample E60/40
10%. In (b) different symbols correspond to different runs.

041703-5



DE JEU, OSTROVSKII, KRAMER, AND FINKELMANN PHYSICAL REVIEW E 83, 041703 (2011)

transformation anymore, but a monotonic elongation of the
sample in the z direction over a wide temperature range. The
maximum elongation increases significantly, corresponding to
a more prolate chain conformation. A similar thermoelastic
behavior has been reported for nematic elastomers, which
exhibit a change from subcritical to supercritical behavior with
increasing cross-link concentration, as shown by 2H-NMR
and high-resolution ac calorimetry [36,40,41]. Corresponding
investigations of smectic elastomers have not been performed
so far. In the stress-strain curves [Figs. 6(b) and 6(d)], no
threshold is reached anymore in the direction along the layer
normal, pointing to decreased order of the layers. The values of
E‖ are nearly the same for 5% and 10% cross-links. However,
the anisotropy of the moduli is now smaller: E‖/E⊥ � 4 − 8
for material with 10% cross-links to be compared with a value
of about 40 for 5% cross-links. This anisotropy is known
to be small in nematic elastomers, E‖/E⊥ � 1, in which
resistance to stretching in all directions is due to the elastic
network only. Hence the observed decrease E‖/E⊥ for 10%
cross-links corresponds to an approach to a more nematiclike
thermoelastic response. Rather surprisingly, the decreasing
anisotropy is partly due to an increase in E⊥ with an order
of magnitude. This indicates that smectic layering persists
at a small local scale and the system gets orientationally
disordered. In agreement with these observations, in a wide
temperature range around the former TNA, all line shapes can
be well described by a simple Lorentzian like in Fig. 5(b),
corresponding to a disordered state. For E70/30, ξ increases
continuously with decreasing temperature from 5 nm to
about 50 nm, where it saturates [Fig. 8(c)]. The latter value
corresponds to correlations over about 18 smectic layers. For
E60/40 10%, the results are even more pronounced [Fig. 8(d)],
with ξ down to only 25 nm at room temperature. For both
samples, the nematic-isotropic transition is also destroyed and
at long scales we have actually an isotropic phase (called
paranematic, i.e., nematic at short scales but isotropic at larger
ones). Experimentally, we find for the 10% samples at room
temperature still some indications for algebraic decay for
E70/30 but not for E60/40 anymore.

For E70/30 10%, the temperature dependence of ξ as
displayed in Fig. 8(c) shows an inflection point at 61 ◦C.
At this point, we observed a subtle asymmetry in the x-ray
profile, which is related to a small shift of the maximum of
the mosaic spread in the sample. Such a feature is usual for a
conventional SmA-N transition for which, in correlated areas
within the nematic phase, the maximum of the mosaic spread
of the smectic layer normal does not necessarily coincide
with the direction of n. We assume that E70/30 10% below
the singular point forms a randomly disordered smecticlike
state with some memory of the layer normal distribution
(mosaic memory), which transforms to a nematic state with
thermal layer fluctuations, in which only imprinted directional
memory remains. The more nematogenic compound E60/40
with 10% cross-links [Fig. 8(d)] ξ (T ) does not shows an
inflection point anymore. Moreover the saturated value of ξ

at low temperatures is about twice smaller than for E70/30.
The correlation length ξ (T ) behaves as if the sample is
in a “parasmectic” regime of a first-order smectic-isotropic
transition and reflects mainly changes associated with S(T )
and ψ(T ), the orientational and translational order parameter,

respectively. The positional disorder is in some sense more
important as it relates more directly to layer positions than
just orientations. So on short scales, it is definitely more
of a dominant effect in determining the smectic correlation
length. At longer scales, this positional disorder eventually
peters out, i.e., randomizes the layers by no more than a layer
spacing, leading to layer roughness that grows logarithmically
with spatial scale. In contrast, the orientational disorder
leads on long scales to unbounded growth of smectic layer
roughness [42]. Note that in the purely smectic elastomer
E100/0, disordering effects of similar strength occurred at
a cross-link concentration of about 20% [31]. The smaller
value of ξ observed in E60/40 10% can be attributed to its
rather soft layer system, due to the wide nematic range and the
reduced compressional modulus. Obviously, E70/30 with a
larger smectogenic component represents an intermediate case
between E60/40 and the purely smectic elastomer E100/0.

Interpretation of the above results is not straightforward.
The results for E60/40 10% in Fig. 8(d) are reminiscent
of the extended short-range layer correlations found in low-
molecular-mass smectics confined in aerogels or aerosils. In
both cases, the SmA-N phase transition disappears, giving way
to “extended-short-range” order, in our case with a correlation
length of the order of 20–50 nm. However, for elastomers this
behavior occurs only at an appreciable cross-link concentration
of 10%. Radzihovsky and Toner [24] studied a smectic LC in
a random environment due to aerogels in the framework of
the classical Landau–de Gennes model. They identified two
sources of disorder: layer displacement disorder (coupling to

), which represents the tendency of the aerogel to force
the smectic layers to particular positions, and orientational
or tilt disorder (coupling to n), reflecting the inclination of
the aerogel to promote particular orientations of the director
(and thus of smectic layers). On short length scales, the
first term is expected to be dominant, provoking disorder
of the smectic state. This should occur even for arbitrarily
weak quenched disorder, in agreement with experimental
observations [18,20–22]. In this approach, the structure factor
for x-ray scattering in a randomly disordered system can be
written as

S(q) ∝ Athermal

1 + ξ 2
‖ (qz − q0)2 + ξ 2

⊥q2
⊥

+ Adisorder

[1 + ξ 2
‖ (qz − q0)2 + ξ 2

⊥q2
⊥]2

. (1)

The Lorentzian term represents the (dynamic) thermal layer
fluctuations and the square Lorentzian the (static) variations
in the smectic order due to the quenched random field. The
correlation lengths ξ‖ and ξ⊥ describe the extent of local
smectic order parallel and perpendicular to local nematic ori-
entation n, respectively. A similar combination of a Lorentzian
and a square Lorentzian describes accurately short-range
correlations induced by quenched disorder in random-field
Ising magnets, and has been justified theoretically for various
types of system [12,18,24]. For low-molecular-mass smectics
confined to aerogels, the quasi-long-range translational order
is clearly suppressed by the presence of the last term, which
becomes dominant at lower temperatures. Even at very low
density, the aerogels and aerosils destroy the 1D smectic
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order that persists only locally on a macroscopic length scale
ξ (T ) � 100 nm, the x-ray correlation length. This length is
not characteristic for the aerogel structure—as would be the
case for a cutoff in standard porous materials—but results
from the competition between the randomizing effect of the
defect network and the smectic elastic field. Thus there is no
distinct SmA phase and SmA-N transition in such a system.
The situation is different for smectic elastomers, in which
algebraic decay of positional correlations survives up to a
certain cross-link density. Experimentally, we find for the
10% samples at room temperature still some indications for
algebraic decay for E70/30 but not for E60/40 anymore. At
higher temperatures near the SmA-N transition, no algebraic
decay comes into play anymore and the disorder term in Eq. (1)
is dominant. Nevertheless, compared to aerogels, elastomer
networks are more resistant to the introduction of disorder.

The source of random disorder in polymer networks is a
local variation in cross-link density that manifests itself as a
mechanical random field that disturbs local layer positions and
orientations. The effect of cross-links on the smectic layering
was introduced via a corrugated potential, which penalizes
deviations of cross-links from the local layer positions [25,29],

FRF = γ

∫
c(r)|ψ(r)| cos{q0[z − u(r) + vz(r)]}dr. (2)

Here γ is the interaction strength, c(r) is the cross-link
concentration, ψ(r) is the smectic order parameter, and vz(r)
is the relative displacement of the rubber matrix. Equation (2)
was recently evaluated further by Witkowsky and Terentjev
[43] for |ψ(r)| = 1, which is valid deep in the smectic phase
far below any SmA-N transition. Using the so-called replica
trick, they integrated out the rubbery matrix fluctuations and
obtained an effective free-energy density depending only on
the layer displacements u(r). For wave-vector components
along the layer normal dominating over in-layer ones, q⊥ 	
qz, and considering only long-wavelength fluctuations, the
authors obtained an expression for mean-square amplitude
of the displacement modes that contains a Lorentzian and
a square Lorentzian term like in Eq. (1). Though different
coefficients come into play, the former term again corresponds
to ordinary thermal fluctuations, modified by the coupling of
smectic layering to the rubbery matrix, whereas the latter term
represents the effect of the random field of cross-links. Now
the induced short-range order is characterized by a correlation
length ξ = (B/2�)1/2, in which the coupling constant � is a
measure of the strength of the interaction between smectic
ordering and rubbery matrix. As � depends linearly on
the volume density of cross-links c, the relation between
correlation length and cross-link density becomes

ξ ∝
√

B/[2(c − cmin)], (3)

in which cmin, the minimum density of cross-links needed to
form a continuous rubbery network (percolation limit [25]),
has been introduced [43].

We shall attempt to make some estimates using this
equation and the experimental data for ξ and B. First, at a
cross-link density of 10%, the modulus B for E60/40 is a
factor of 3 smaller than for E70/30. Dividing ξ � 50 nm,
characterizing the low-temperature state of E70/30, by

√
3,

we arrive at ξ � 29 nm, which is close to 27 nm, the value for

E60/40. Second, a reasonable value of percolation limit for the
present elastomers is cmin � 0.04. Then, neglecting possible
differences in B, the ratio ξ5%/ξ10% should be

√
6 � 2.4.

Taking for E70/30 ξ5% � 150 nm (as at the transition to the
nematic phase) and ξ10% � 50 nm at low temperatures, we
arrive at a ratio ξ5%/ξ10% = 3 close to our estimate. However,
for E60/40, the experimentally observed ratio ξ5%/ξ10% � 6
is too large. This discrepancy could indicate that for E70/30
10%, the distortion of the layered system at low temperatures
is due to random fields, whereas for E60/40 10%, the
contribution from thermal disorder is still appreciable. From
these observations, the following picture emerges. Smectic
layer order has a more robust resistance to random cross-links
than most other systems to quenched random fields. This is
because in smectic elastomers, the cross-links are not rigidly
frozen defects but consist of flexible chains embedded in
the slowly fluctuating elastomer gel. As a result, in a pure
smectic like E100/0, a rather large cross-link concentration
of about 20% is needed before disorder is reached. In the
present systems with a SmA-N transition, the increasing ne-
matogenic tendency makes the smectic phase more susceptible
to distortions, culminating in the fully disordered phase for
E60/40 10%.

When interpreting the experimental results, it is important
to consider how the smectic elastomer sample has been
prepared. If the smectic layers are aligned by a surface or
an external field and then cross-linked, we can expect the
cross-links to be in registry with the smectic layers and to
stabilize the lamellar structure against layer displacement
fluctuations. This situation will facilitate the theoretical pre-
diction [26,27] that, under certain circumstances, translational
order can be enhanced and even become truly long-range. If
the cross-linking is first done in the nematic or isotropic phase,
uniaxial alignment will be accomplished in a monodomain
nematic elastomer, and after the sample is cooled down to
the smectic phase the result will be opposite. Though the
sample will preserve uniaxial alignment, the layer positions
will be frustrated due to random cross-link positioning. In that
case, the cross-links provide a random network of defects that
destroys the smectic order. The final thermodynamic state of
the sample will depend on the relative impact of cross-linking
at the first stage and at the final stage where the network is
fixed. In most experiments on LC elastomers—including our
present ones-“single-crystal” elastomers have been made via
the two-step cross-linking process, which involves stretching
in the LC state. There is increasing evidence that this situation
represents a special thermodynamic state [44]. Evidently, there
is room for experiments on nematic and smectic elastomer
samples oriented in different ways, for example also by
photo-cross-linking. In such a way, any memory of the aligning
procedure imprinted in the samples may be avoided (at least
partially), and probably new features of phases and phase
transitions could be revealed.

In conclusion, we have put together thermoelastic data,
stress-strain measurements, and high-resolution x-ray scatter-
ing data to investigate the effects of disorder due to random
cross-linking on the SmA-N transition in LC elastomers.
At a cross-link density of 5%, the algebraic decay of posi-
tional correlations in the smectic phase survives, providing
a well-defined phase transition. At an increased cross-link
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concentration of 10%, the smectic order disappears and is re-
placed by extended short-range layer correlations of the order
20–50 nm. According to thermoelastic variations, stress-strain
relations, and the temperature dependence of positional cor-
relations, both the smectic-nematic and the nematic-isotropic
transitions disappear. As this only happens at an appreciable
cross-link concentration, smectic layer order has a more
robust resistance to a quenched random field than most other
systems. For the most nematogenic compound E60/40 10%,
the temperature variation of the correlation length resembles
a parasmectic regime connected to a (virtual) first-order
smectic-isotropic transition. The precise interpretation of these

results constitutes a major theoretical challenge for further
research.
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