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Starting from a phase-field description of the isothermal solidification of a dilute binary alloy, we establish a
model where capillary waves of the solidification front interact with the diffusive concentration field of the solute.
The model does not rely on the sharp-interface assumption and includes nonequilibrium effects, relevant in the
rapid-growth regime. In many applications it can be evaluated analytically, culminating in the appearance of an
instability that, interfering with the Mullins-Sekerka instability, is similar to that found by Cahn in grain-boundary
motion.
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I. INTRODUCTION

Crystal growth from an undercooled fluid phase is fre-
quently described by a diffusion equation for heat or par-
ticle density, complemented by boundary conditions at a
moving sharp interface between the solid and fluid phases.
As explained in the review by Langer [1], one of the
boundary conditions comprises the conservation of the density
field in terms of the related flux and source terms at the
interface. A second boundary condition is the Gibbs-Thomson
relation, which is adequate in cases of local thermodynamic
equilibrium. For applications in the rapid-growth regime Aziz
and Boettinger [2] have extended the Gibbs-Thomson relation
by including nonequilibrium effects that they derived in an
intermediate step from an atomistic picture of the initially
extended interface region.

One of the most exciting achievements of the sharp-
interface approach is the explanation of dendritic growth in the
diffusion-limited regime, opening up at low undercooling. The
initiation of this process is described by the Mullins-Sekerka
instability [3], whereas the cumbersome route to an analytic
calculation of the fully developed three-dimensional dendrite
by Brener [4] is reviewed in Ref. [5]. Another exciting
case of pattern formation in the kinetics-limited rapid-growth
regime is the periodic formation of layers with alternating
homogeneous and dendritic microstructures in dilute binary
alloys [6]. A crucial point in explanations of this effect by
Carrard et al. [6], and by Karma and Sarkissian [7] is the
nonmonotonous dependence of the interface temperature on
the growth velocity, observed in Ref. [2].

A fundamentally different access to a theory of crystal
growth rests on the use of a phase-field order parameter
that allows a continuous transition between the solid and
fluid phases. This approach is closely related to that used by
Halperin, Hohenberg, and Ma [8] for studying dynamic critical
behavior in their model C and, in the context of crystal-growth
processes, has been described by Collins and Levine [9],
Caginalp and Fife [10], and Langer [11]. Phase-field models
for binary alloys have been established by Wheeler et al. [12]

and later by Kim et al. [13]. In the article by Langer [11] it
is emphasized that one reason for promoting the phase-field
approach is the hope that similar to the identification of
universality classes for dynamic critical phenomena, one may
obtain a fundamental understanding of various pattern-forming
mechanisms in solidification problems. A quite different
reason for the interest in the phase-field approach is that it
presents a convenient basis for simulations, avoiding the costly
interface-tracking procedure necessary in the sharp-interface
description.

Within a phase-field approach Löwen et al. [14] have
investigated the long-time crossover behavior between the
diffusion- and the kinetics-limited regime. One of their results
is the appearance of metastable branches where the steady-
state motion of a planar solidification front can occur in
the diffusion-limited regime. These branches are part of the
trajectories, which show the nonmonotonous dependence of
the interface temperature on velocity, later found in Ref. [2].
In a phase-field model of rapid solidification Ahmad et al. [15]
have considered the effects of solute trapping and solute
drag and found partial agreement with the results obtained
in Ref. [2]. A good example for the computational use of
the phase-field approach is the work of Karma and Rapell
[16] on a quantitative description of dendritic growth. In
their treatment the above-mentioned nonmonotonic velocity
dependence of the interface temperature is noticed by the
appearance of a negative kinetic coefficient, joining the term,
linear in velocity. Since such an anomaly does not arise in the
sharp-interface description of dendritic growth, the authors
invented a compensation device for the unwanted term.

Among the numerous papers on derivations of sharp-
interface descriptions from a phase-field model the work
by Elder et al. [17] is probably the most elaborate. Their
approach avoids the assumption of a zero interface width,
but instead uses the products of this width with the interface
curvature, and with the growth rate divided by the diffusion
constant, as small expansion parameters. Since, however, the
second parameter is of order one in the rapid-growth regime,
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applications to this regime are excluded. The result for the
Gibbs-Thomson relation in the low-velocity regime contains
a kinetic undercooling term where, as in Ref. [16], the kinetic
coefficient can, in some parameter range, become negative,
an effect that regrettably has not been scrutinized by the
authors.

In the present paper we advertise a model description where,
retaining a finite interface width, the interface position is
used as basic field variable, in addition to a bulk-diffusion
field. Although the energy density is a feasible example of
a bulk field, we will predominantly consider the isothermal
solidification of a dilute binary alloy, in which this role is taken
by the concentration of the solute component. An advantage
of our approach is that it remains valid in the rapid-growth
regime, which can be seen in a thorough derivation from
a phase-field model. Our description can, however, also
be derived in a self-contained way from first principles,
in the first line from the observation that the presence
of an interface breaks Euclidean symmetry and, therefore,
implies the existence of Goldstone modes [18]. These are
capillary waves of the solidification front that interact with
the bulk-diffusion mode. The interaction kernel as well as the
diffusion coefficient can be freely chosen in our approach,
which, therefore, can be applied to a sizable variety of model
systems.

For a subset of models with a location-independent dif-
fusion constant, we have derived a universal form of the
dispersion relation of interface eigenmodes. These modes
determine all possible morphological instabilities of the
solidification front, and in all cases we encounter the Mullins-
Sekerka instability. It is the only instability that survives the
sharp-interface limit in our scheme. As soon as we allow
a finite interface width, we become aware of an additional
instability that already features a finite amplification rate
for a planar perturbation, a behavior previously discovered
by Cahn [19] in grain-boundary motion. The nature of this
instability is closely related to the nonmonotonic velocity
dependence of the interface temperature. In our approach
the shift of this temperature from the melting point of the
solvent enters as a driving force, which we also evaluated
analytically for several models. Although these subjects are,
like the distantly related Corriel-Sekerka instability [20],
mostly discussed in connection with the rapid-growth regime,
they also affect the low-velocity behavior, as illustrated
by the previously mentioned sign problem of the kinetic
coefficient.

One of the toy models, investigated in the frame of our
capillary-wave approach, allows a surprisingly simple analysis
of some attributes of the solidification process. In this model
both input functions, the solute-interface interaction and the
solute-diffusion coefficient, are taken to linearly interpolate
between the solid and fluid bulk phases, assuming a finite
interface width. The effect of solute trapping is measured by
the partition coefficient, for which we found an expression,
coinciding with that derived by Aziz and Kaplan [21], up
to some rescaling of the involved characteristic velocity.
We, furthermore, have established a simple analytic relation
between the driving force and the growth rate that reflects
the nonmonotonous behavior of the interface temperature.
The minima of all driving-force trajectories are connected

by a kinetic spinodal line, which we also have determined
analytically, finding agreement with an analogous line in the
nonisothermal growth of a one-component crystal, discussed
by Umantsev [22]. The image of this spinodal line in the
temperature-concentration phase diagram is located between
the solidus line and a static spinodal line, established by Baker
and Cahn [23]. Within our model this provides an answer to
an issue concerning this matter, discussed by Hillert [24].

In our concluding discussion we present an expression
for the entropy production in the steady-state growth of a
planar solidification front. The result demonstrates that the
appearance of a negative kinetic coefficient, also in our
approach, is not in conflict with basic principles of linear
irreversible thermodynamics. Also included in our discussion
are some estimates for the relevant model parameters that
determine the range of validity of our approach. We, finally,
emphasize the flexibility of our description, concerning gen-
eralizations and the inclusion of additional field variables.

II. PHASE-FIELD DESCRIPTION

In order to derive our capillary-wave model from a stan-
dard phase-field model, we initially describe the isothermal
solidification of a dilute binary alloy by a phase field �(r,t)
for the solvent and a concentration field C(r,t) of the solute
component. In terms of these field variables the effective
Hamiltonian of our model reads

H =
∫

d3r

{
σ

ξ

[
ξ 2

2
(∇�)2 + W(�)

]

+ κ(T )

2
[ C − U(�,T )]2

}
. (1)

Here W(�) is a double-well potential with degenerate minima
at � = +1 and � = −1, representing the liquid and solid
equilibrium phases of the solvent. In the present paper we will
exclusively use the explicit form

W(�) = �(−�) 1
2 (� + 1)2 + �(�) 1

2 (� − 1)2, (2)

shown in Fig. 1. Contrary to that, the potential U(�,T ) is
adaptable, up to the relations

U(−1,T ) = CS(T ), U(+1,T ) = CL(T ), (3)

where CS(T ) and CL(T ) are the solute concentrations in the
solid and liquid phases at temperature T , depicted in the
temperature-concentration phase diagram in Fig. 2.

The values (3) follow from the mean-field free-energy
densities

fS(C,T ) = κ(T )

2
[C − U (−1,T )]2 + μE(T )C ,

(4)

fL(C,T ) = κ(T )

2
[C − U (+1,T )]2 + μE(T )C ,

by the double-tangent construction, visualized in Fig. 3. In
this procedure the terms, involving the equilibrium chemical
potential μE(T ), cancel. The intersection point in Fig. 3 at

C0(T ) = CS(T ) + CL(T )

2
(5)
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FIG. 1. Double-parabola potentialW(�) with equilibrium phase-
field values � = +1 in the liquid and � = −1 in the solid phase.

borders the regions where the two bulk phases can exist in a
metastable state. In Fig. 2 the inverse function T0(C) defines
a kind of spinodal line, promoted by Baker and Cahn [23].
Within the often-used approximation of a constant miscibility
gap this line has the form

T0(C) = TS(C) + TL(C)

2
. (6)

The equilibrium chemical potential μE(T ) in Eqs. (4) obeys
the Clausius-Clapeyron equation

TM

dμE

dT
= − L

�C(T )
, (7)

C
L

C
S

T
S
(C) T

L
(C)T

0
(C)

C

T

FIG. 2. Temperature-concentration phase diagram, showing the
liquidus and solidus lines TL(C),TS(C), which enclose the two-
phase region. The values CL and CS define the miscibility gap at
the temperature TL(CL) = TS(CS). Also shown is the equilibrium
spinodal line T0(C) according to Baker and Cahn.
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f
S,L

C

FIG. 3. Double-tangent construction, applied to the free-energy
densities fS(C,T ) and fL(C,T ). The intersection point C0(T ) defines
the T0 line in Fig. 2.

where TM is the melting temperature of the pure solvent, L the
latent heat, and

�C(T ) ≡ CL(T ) − CS(T ) (8)

is the miscibility gap. Following Langer [1], we can use Eq. (7)
to extract an expression for κ(T ) by forming the total derivative
of the chemical potential

μL(C,T ) = κ(T )[C − CL(T )] + μE(T ) (9)

with respect to temperature, taken at C = CL(T ). The result
reads

κ(T ) = −
(

∂CL

∂T

)−1
L

TM

1

�C(T )
, (10)

where, as already seen in Eq. (7), only leading terms in �C

have been taken into account. We later will realize that the
assumption of a small miscibility gap is a crucial assumption
in the derivation of an interface description from a phase-field
model.

The equilibrium conditions

δH
δ�

= 0,
δH
δC = 0 (11)

have the single-kink solution

�E(z) = �(−z)[−1 + exp (z/ξ )] + �(z)[1 − exp (−z/ξ )],

(12)

describing the solid-liquid phase-field profile, displayed in
Fig. 4, and an attached solute-concentration profile

CE(z) = U[�E(z)], (13)

which leads to identify 2ξ with the width of the interface,
and the parameter σ in the Hamiltonian (1) with the surface
tension.
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FIG. 4. Single-kink phase-field profile in thermal equilibrium,
following from the potential W(�).

For the dynamics of the system we adopt the equations of
motion

∂t� = 

ξ

σ

[
F − δH

δ�

]
,

∂tC = ∇ · D(�)∇ 1

κ

δH
δC (14)

where 
 is the phase-field relaxation rate, and D(�) the
diffusion coefficient of the solute atoms. The relations

D(+1) = DL, D(−1) = DS (15)

allow in general different values DL and DS in the liquid and
solid phases. Furthermore,

F(�) = F [�(�)(� − 1) − �(−�)(� + 1)] (16)

is a driving force which is operating near the interface and,
for F > 0, supports the solid at the expense of the fluid phase,
thus activating the solidification process. The form (16) can be
viewed as arising from a potential

WF (�) = �(−�)
1

2

[(
1 + ξ

σ
F

)
(� + 1)2 − ξ

σ
F

]

+�(�)
1

2

[(
1 − ξ

σ
F

)
(� − 1)2 + ξ

σ
F

]
, (17)

replacing W(�) in the Hamiltonian (1). A convenience of
this modeling is that it remains meaningful even close to the
apparent spinodal point at F = σ/ξ , noted in Ref. [25]. We
finally mention that Langevin forces, representing thermal-
noise effects, have been ignored in Eqs. (14), because we are
primarily interested in the nonequilibrium effects, induced by
the force F .

A dimensionless form of our model equations can be
established by the mappings

1

ξ
r → r,

DL

ξ 2
t → t,

1

DL

D → D,

(18)
2

�C
(C − CS) → C,

2

�C
U → U ,

ξ

σ
F → F,

where the shift of the field C has been made with regard to
the case of an undercooling at constant concentration CS . The
equations of motion (14) then assume the form

∂t� = p

[
∇2� − dW

d�
− F + γ (C − U)

dU
d�

]
,

(19)
∂tC = ∇ · D∇(C − U).

Here two independent parameters,

γ ≡ ξκ

σ

(
�C

2

)2

, p ≡ VC

VD

, (20)

appear, the latter expressed in terms of a crystallization and a
diffusion velocity,

VC ≡ 
ξ, VD ≡ DL

ξ
. (21)

In the following we are going to reduce Eqs. (19) to an
interface description, valid up to growth rates of the order of
VD , and keeping a finite interface width 2ξ . This will be done
adopting the specific forms (2) and (16) for W(�) and F(�),
but successively using different choices for the parameters γ

and p, and for the functions U(�) and D(�).

III. SINGLE-COMPONENT SOLIDIFICATION

We first consider the case γ = 0 which offers to describe
the solidification of the pure solvent by the remainder

1

p
∂t� = ∇2� − �(−�)(1 + F )(� + 1)

−�(�)(1 − F )(� − 1) (22)

of Eqs. (19). In this scheme the propagation of a planar
solidification front with constant velocity

V = vVD (23)

in the z direction is represented by the single-kink solution

�(r,t) = �F (z − vt) ≡ �F (ζ ) (24)

in the comoving frame where Eq. (22) reduces to

�′′
F − � (−ζ ) (�F + 1) − � (ζ ) (�F − 1)

= − v

p
�′

F + F [� (−ζ ) (�F + 1) − � (ζ ) (�F − 1)].

(25)

Assuming that �F is an odd function of ζ , both sides of
Eq. (25) vanish separately. As a consequence one finds

�F (ζ ) = � (−ζ ) [−1 + exp (ζ )]

+� (ζ ) [1 − exp (−ζ )], (26)

which is identical to the equilibrium phase-field profile �E(ζ ).
Moreover, Eq. (25) fixes the relation between the growth rate
v and the driving force F in the form

F = v

p
. (27)

The simple results (26) and (27) are due to the specific choices
(2) and(16) of our model. In particular, the former will allow
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us to largely copy the derivation of an interface description
near thermal equilibrium, presented in Ref. [26].

In order to study small perturbations of the steady-state
solution (26), we linearize Eq. (22) in

ϕ(x,z − vt,t) ≡ �(r,t) − �F (z − vt). (28)

This leads to the equation(
1

p
∂t − ∂2 + �

)
ϕ(x,ζ,t) = 0, (29)

involving the two-dimensional Laplacian

∂2 ≡ ∇2 − ∂2
ζ (30)

and the one-dimensional Schrödinger-like operator

� ≡ −∂2
ζ − F∂ζ − 2δ(ζ ) + 1 + F [�(−ζ ) − �(ζ )]. (31)

By taking the derivative of Eq. (25) with respect to ζ one finds
that �′

F (ζ ) is an eigenfunction of � with zero eigenvalue. It is
identical to the bound state of the delta potential in Eq. (31) and
also follows from translational symmetry of the system in the
ζ direction. The excited state, closest to this ground state, can
be found by application of the pseudogauge transformation

exp

(
+F

2
ζ

)
� exp

(
−F

2
ζ

)

= −∂2
ζ − 2 δ(ζ ) +

(
1 + F

2

)2

�(−ζ ) +
(

1 − F

2

)2

�(ζ ).

(32)

The operator (32) has a band of eigenstates

ψk(ζ ) = �(−ζ ) exp (κζ )

+�(ζ )

[
cos (kζ ) + κ − 2

k
sin (kζ )

]
(33)

above the ground state that are parametrized by the wave
number k. The related eigenvalues read

ε(k) =
(

1 + F

2

)2

− κ2 =
(

1 − F

2

)2

+ k2 (34)

and are identical to those of the operator �. The second
identity in Eqs. (34) implies that the band of eigenvalues ε(k) is
separated by a gap �ε � 1/4 from the ground-state eigenvalue
ε = 0, provided F � 1. This constraint excludes the regime
beyond the ghostly spinodal point of the potential (17) and, in
view of the result (27), is equivalent to the statement V � VC .

In Eq. (29) solutions of the form

ϕ(x,ζ,t) = �′
F (ζ ) exp (i q · x − εt) (35)

represent a band of soft modes, which have been identified
in Ref. [18] as Goldstone modes due to broken Euclidean
symmetry in space. They are well separated from the hard
modes, arising from the excited states (33), and physically are
overdamped capillary waves.

In order to implement the interface position R as a collective
coordinate in the comoving frame, we follow Ref. [27] where
any point Q = (x,ζ ) near the interface is represented in the
form

Q = R(s,t) + u N(s,t). (36)

FIG. 5. Definition of the local curvilinear coordinates {s,u} where
Q ≡ {x,ζ } is some position close to the point R(s,t) at the interface,
and N(s,t) is the normal vector at R(s,t).

Here N is a unit vector, normal to the interface, as shown in
Fig. 5, and

u = ũ(x,ζ,t), s = {s1,s2} = s̃(x,ζ,t) (37)

define mappings to a normal coordinate, and to a set of
curvilinear coordinates within the interface, respectively. With
the notation ∂i ≡ ∂/∂si the rate of any quantity

�(s,u,t) ≡ �̃(x,ζ,t) (38)

at constant x and ζ can be written in the form

∂t �̃ = (∂u�) ∂t ũ + (∂i�) ∂t s̃
i + ∂t�. (39)

The rates ∂t ũ and ∂t s̃
i are given by the relations

∂t ũ = −N · ∂tR,

(40)
(gij − uKij ) ∂t s̃

i = −(∂tR + u ∂tN) · ∂j R,

which follow from Eq. (36) and involve the metric and extrinsic
curvature tensors of the interface,

gij ≡ (∂iR) · ∂j R,

(41)
Kij ≡ −(∂iN) · ∂j R.

As shown in Ref. [27], the metric tensor of the three-
dimensional embedding space, induced by Eq. (36), is block
diagonal with Guu = 1, and with the two-dimensional subma-
trix

Gij = (gik − uKik) gkl(glj − uKlj ), (42)

where gijg
jk = δk

i . This form is needed to evaluate the
Laplace-Beltrami representation

∇2�̃ = 1√
G

(∂i

√
GGij∂j + ∂u

√
G∂u)�, (43)

again with GijG
jk = δk

i , and G ≡ det{Gij }.
We next decompose �(r,t) in the form

�(r,t) = �F (u) + η(s,u,t), (44)

along with the Fadeev-Popov condition [28]∫ +∞

−∞
du�′

F (u) η(s,u,t) = 0. (45)
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This condition ensures that η(s,u,t) is a pure hard-mode field
and implicitly defines R(s,t) as a collective field variable. Since
excitation of the contribution η requires one to overcome the
gap �ε in the eigenvalue spectrum of the operator (31), η may
be treated as a perturbation in Eqs. (22). An expansion of this
equation to linear order in η yields

�′
F (u)

(
1

p
∂t ũ − ∇2ũ

)
+ O(η) = 0, (46)

where the zeroth-order term derives from Eqs. (39) and
(43), applied to �(u) = �F (u). All other terms of zeroth
order cancel due to the identity (25), with ζ replaced by u,
and v by the normal velocity component vN = vNz. If, by
multiplication with �′

F (u) and integration over u, Eq. (46) is
projected onto the soft-mode subspace, the terms linear in η

either drop out due to Eq. (45), or they carry prefactors of the
type (40) or (41), and, due to this, are of higher order in our
basically hydrodynamic approach.

In view of Eqs. (40) and (43) this procedure leads to the
result

1

p
N · ∂tR =

∫ +∞

−∞
du [�′

F (u)]2 Tr

(
K

g − uK

)
(47)

adopting matrix notations for the metric and curvature tensors.
The singularity, emerging in the integrand of this expression,
if u approaches the smallest curvature radius of the interface,
is cured by the factor [�′

F (u)]2, which decays on the scale of
the interface thickness. As discussed in Ref. [27], this allows
us to expand the singular part in Eq. (47) in powers of u, giving
rise to moments of the weight [�′

F (u)]2. Following this line,
one finds, up to higher-order curvature corrections,

1

p
N · ∂tR = Tr

(
K · g−1

) ≡ K, (48)

where K is the local mean curvature of the interface.
We now add the result (48) as a perturbation to the relation

(27), and, for an undercooling from the melting temperature
TM to some temperature T < TM , assume

F = L
TM − T

TM

. (49)

After going back to physical units via Eqs. (18), (20), and (21),
we then arrive at the Gibbs-Thomson relation

L
TM − T

TM

= −σK + σ

D

VD

VC

(V + N · ∂tR), (50)

including a kinetic undercooling term. It locally relates the
growth rate to the curvature of the interface under isothermal
conditions. We mention that the derivation of this result relies
neither on a sharp-interface description nor on a restriction to
the low-velocity regime.

For practical calculations it is convenient to evaluate
Eq. (48) in a Monge representation with respect to the
planar steady-state motion. In this representation the interface-
position and normal vectors are given by

R(s,t) = {s,h(s,t)},
(51)

N(s,t) = 1√
g(s,t)

{−∂h(s,t),1}.

Here h(s,t) is a local height variable, ∂ ≡ (∂1,∂2) the in-plane
nabla operator, and

g(s,t) ≡ 1 + [∂h(s,t)]2 (52)

is the Jacobian of the interface metric. The metric and extrinsic-
curvature tensors read in Monge representation

gij = δij + (∂ih)(∂jh) ,Kij = 1√
g

∂i∂jh. (53)

Implementation of these expressions into Eq. (48) leads to the
differential equation

1√
g

∂th = p δij ∂i

1√
g

∂jh. (54)

For a stability analysis of the uniform reference motion (25) it
is sufficient to linearize this equation in h(s,t). The result is a
two-dimensional diffusion equation with a diffusion constant
p, which, within this model, implies stability of the planar
interface morphology.

In terms of physical units, the nonlinear equation (54) can
be written in the equivalent form

1√
g

∂th = −�
δHD

δh
, (55)

involving an effective Hamiltonian

HD = σ

2

∫
d2s

√
g, (56)

and an Onsager coefficient

� ≡ 
ξ 2

σ
. (57)

This representation can be read as a dynamical version of the
drumhead model, which, complemented by Langevin forces,
has been established and analyzed with regard to critical
fluctuations in Ref. [29].

IV. BINARY-ALLOY SOLIDIFICATION

The inclusion of a finite amount of solute particles is most
easily accomplished, if in the model equations (1) and (14) we
choose

U(�) = CL + CS

2
+ CL − CS

2
�, (58)

in accordance with the constraints (3), and

D(�) = DL = DS ≡ D. (59)

Adopting this together with the choices (2) and (16) for W
and F , the scaled equations of motion (19) assume the explicit
form

∂t� = p[∇2� − � (−�) (1 + F ) (� + 1)

−� (�) (1 − F ) (� − 1) + γ (C − 1 − �)], (60)

∂tC = ∇2(C − �),

where, according to Eqs. (18), C(r,t) means the scaled excess
concentration with respect to CS .
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In the one-dimensional stationary case,

�(r,t) = �F (z − vt) ≡ �F (ζ ),
(61)

C(r,t) = CF (z − vt) ≡ CF (ζ ),

and the last equation in Eqs. (60) can be integrated once. Since,
by definition CF (−∞) ≡ 0, one obtains

C ′
F + vCF = �′

F , (62)

which, due to the behavior �′
F (+∞) = C ′

F (+∞) = 0, implies
the steady-state boundary condition

CF (+∞) = CF (−∞) ≡ 0. (63)

In the equation

�′′
F + v

p
�′

F − �(−ζ )(1 + F + γ )(�F + 1)

−�(ζ )(1 − F + γ )(�F − �L) = −γCF , (64)

resulting from the first of Eqs. (60), the condition (63) enforces
the identification

�F (+∞) = 1 − F − γ

1 − F + γ
≡ �L. (65)

The deviation of this expression from the static value
�E(+∞) = 1 is negligible if γ � 1 − F , as also pointed out
in Ref. [14].

Elimination of CF from Eqs. (62) and (64) leads to the
third-order differential equation

(∂ζ + v)

[
�′′

F + v

p
�′

F − � (−ζ ) (1 + F + γ )(�F + 1)

−� (ζ ) (1 − F + γ )(�F − �L)

]
= −γ�′

F , (66)

which implies the matching conditions

�F (−0) = �F (+0) = 0 ,

�′
F (−0) = �′

F (+0) ,

�′′
F (−0) = �′′

F (+0) + 2 , (67)

including in the first line the definition �F (0) = 0 of the
steady-state kink position. Equation (66) has the single-kink
solution

�F (ζ ) = � (−ζ ) [−1 + A− exp (α−ζ )]

+�(ζ )[�L+B0 exp (β0ζ )+B+ exp (β+ζ )], (68)

where α−, β0, β+ are the roots of the cubic equations

(α + v)

[
α2 + v

p
α − (1 + F )

]
= γ v,

(69)

(β + v)

[
β2 + v

p
β − (1 − F )

]
= γ v

with α− > 0, Re(β0) < 0, Re(β−) < 0. The amplitudes in
the solution (68), and the connection between F and v are
determined by the relations

A− − 1 = B0 + B+ + �L = 0,

A−α− − B0β0 − B+β+ = 0, (70)

A−α2
− − B0β

2
0 − B+β2

+ = 2,

following from Eqs. (67) and (68).
In the limit γ → 0 the controlling roots of Eqs. (69)

approach, due to Eq. (27), the values

α− = 1, β0 = −v, β+ = −1. (71)

Accordingly, the term ∝ B0 in the solution (68) features
an exponential long-distance behavior that elucidates the
nonmonotonic phase-field profile, found in Ref. [30]. More
importantly, however, this behavior endangers the suppression
effect of the singularity in Eq. (47). A way out of the problem
derives from the observation that the amplitude B0 of the
dangerous term obeys the relation

B0

[
β2

0 + v

p
β0 − (1 − F )

]

= γ

(
v

α− + v
− B+

v

β+ + v
− 2

1 − F

1 − F + γ

)
, (72)

which follows from Eqs. (69) and (70). This relationship
suggests and, in fact, forces us to evaluate the model by a
perturbation expansion in γ .

In the following we choose to consider the quantity
v/p = V/VC as another small quantity. This constitutes a
noticeable restriction to the growth rates V of materials
where VC obeys an Arrhenius law, like in intermetallic
compounds. In dilute metallic alloys, however, particles need
not overcome an activation barrier in order to form a crystalline
structure. This has been pointed out by Aziz [31] and is more
explicitly demonstrated by the molecular-dynamics simulation
of the crystallization of a Lennard-Jones liquid in Ref. [32].
Consequently, in such materials our approximation scheme
allows applications to the rapid-growth regime where growth
rates can be of the order of the diffusion velocity VD . In view
of these features we now will analyze the solidification process
of a binary alloy to lowest order of a double expansion in γ

and v/p.
Starting point of the expansion are the relations

1 + F + γ

2
− 1 − F + γ

2
�2

L

= 1

p
v

∫ +∞

−∞
dζ [�′

F (ζ )]2 + γ

∫ +∞

−∞
dζ �′

F (ζ )CF (ζ ),

(73)

CF (ζ ) =
∫ ζ

−∞
dζ ′ �′

F (ζ ′) exp [v(ζ ′ − ζ )],

which directly follow from Eqs. (64) and (62). Neglecting
terms of order γ 2 and γ v/p in the first of these equations
allows the replacement �F (ζ ) → �E(ζ ). This leads to the
expressions

F (v) − GF (0) = 1

p
v − GF (v),

(74)

CF (ζ ) =
∫ ζ

−∞
dζ ′ �′

E(ζ ′) exp [v(ζ ′ − ζ )],
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where, in the first equation, the quantity

GF ≡ − γ

∫ +∞

−∞
dζ �′

E(ζ ) CF (ζ )

= − γ v

∫ +∞

−∞
dζ [CF (ζ )]2 (75)

defines the solute drag in line with the definition, used by
Hillert in Ref. [33]. On the left-hand side in the first line of
Eq. (74) we have used the identity 2γ = −GF (0). This term
derives from the contribution (κ/2)[U (�)]2 in the Hamiltonian
(1), which, due to the expression (58) for U (�), favors the
solid phase and, accordingly, acts as an internal driving force
in the steady-state growth process. The second line in Eq. (75)
follows from Eqs. (62) and (63) and implies that the right-hand
side of Eq. (74) is positive.

Insertion of the kink solution (26) into Eqs. (74) and (75)
leads to the explicit results

F (v) = v

p
+ γ

[
v + 2

(v + 1)2
− 2

]
,

CF (ζ ) = �(−ζ )
1

v + 1
exp (ζ )

+�(ζ )

[
1

v − 1
exp (−ζ ) − 2

v2 − 1
exp (−vζ )

]
.

(76)

The first of these equations implies

F ′(0) = 1

p
− 1

pc

, pc ≡ 1

3γ
. (77)

Accordingly, F (v) has a positive slope at the origin for p < pc

but shows the anomalous behavior F ′(0) < 0 for p > pc,
pointed out already in Ref. [14]. In the literature this anomaly
has repeatedly been encountered again, however, without
any clarification of its physical background. Below we will
demonstrate that the effect is due to a strong instability of

1 2

-5

0

5 γ
γ

103

FIG. 6. The external driving force F , considered as a function
of the growth rate v according to Eq. (76), for p = 100, and for
γ1 = 0.001 and γ2 = 0.01, respectively. For the latter value F (v) has
a minimum, to the left of which the anomaly F ′(v) < 0 is visible.

-10 0 10 20 30 40

0.5

1.0

1.5

3

2

ζ

1

FIG. 7. The steady-state concentration profile for the velocity
values v1 = 0.001, v2 = 0.01, and v3 = 0.9, illustrating the solute-
trapping effect.

the system, suggesting that the inclusion of random forces in
the basic equations of motion (14) might become important if
F ′(v) < 0. The results (76) are illustrated in Figs. 6 and 7 in
the unstable regime p > pc. We mention that the existence
of an anomaly of the type F ′(v) < 0 is also in line with
the velocity-dependent interface temperature, obtained in the
approach by Aziz and Boettinger [2].

The results (76) also determine the partition coefficient

K(V ) ≡ CS

CS + CF (0)�C
, (78)

which measures the solute-trapping effect, and for V = 0
reduces to the equilibrium value

KE ≡ K(0) = CS

CL

. (79)

By insertion of the value CF (0) = 1/(v + 1), following from
Eq. (76), one recovers the form

K(V ) = KE + V/V ∗
D

1 + V/V ∗
D

, (80)

suggested by Aziz in Ref. [31]. Remarkably, however, we
moreover find a reference velocity

V ∗
D ≡ VD

KE

, (81)

which shows a dependence on KE of the type proposed in
Ref. [34].

In order to examine the stability of the steady-state solutions
�F ,CF , we next expand the exact equations of motion (60) to
linear order in the perturbations

ϕ(x,z − vt,t) ≡ �(r,t) − �F (z − vt) ,

n(x,z − vt,t) ≡ C(r,t) − CF (z − vt) . (82)
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The resulting equations can be written in the form(
∂t − p ∂2 0

∂2 ∂t − ∂2

)(
ϕ

n

)

= −
(

p(� + γ ) −pγ

∂2
ζ −∂2

ζ − v∂ζ

) (
ϕ

n

)
, (83)

where, replacing Eq. (31), � now is defined by

� ≡ −∂2
ζ − v

p
∂ζ − 2

1

�′
F (0)

δ(ζ ) + 1

+F [�(−ζ ) − �(ζ )]. (84)

By taking first and second derivatives of Eqs. (64) and (62)
with respect to ζ , one finds that the matrix operator on the
right-hand side of Eq. (83) obeys the relation(

p(� + γ ) −pγ

∂2
ζ −∂2

ζ − v∂ζ

)(
�′

F

C ′
F

)
= 0, (85)

which means that translational symmetry in ζ direction again
provides an eigenstate with eigenvalue zero.

A convenient way to explore the appearance of other
eigenstates is to expand the elements of the matrix in Eq. (85) in
the small parameters γ and v/p. To leading order the resulting
eigenvalue equation reads(

p �E 0

∂2
ζ −∂2

ζ − v∂ζ

) (
ψ

θ

)
= p ε

(
ψ

θ

)
, (86)

where the operator �E is given by

�E ≡ −∂2
ζ + 1 − 2δ(ζ ). (87)

The upper component of Eq. (86) yields the autonomous
eigenvalue equation

�E ψ(ζ ) = ε ψ(ζ ), (88)

whereas the less interesting lower component in principle
allows us to calculate θ (ζ ). Equation (88) possesses two classes
of solutions, corresponding to the ground and scattering states
of the operator (87). The ground-state equation is a relict of
Eq. (85), implying ε = 0 and ψ(ζ ) = �′

E(ζ ). The scattering
states form a band with

ε(k) = 1 + k2, (89)

ψk(ζ ) ∝
[

exp (ikζ ) − 1

1 + |kζ | exp (i|kζ |)
]
. (90)

Again we have the situation that the soft modes of the system,
deriving from Eqs. (83) and (85), are separated from the hard
modes by a gap that, in leading order of our expansion, is given
by �ε = 1. Since this value will only slightly be shifted in our
expansion, we will eliminate the hard modes of the system by
suitably extending the procedure, described at Eq. (44).

As a first step we complement the decomposition (44) by
splitting C into three contributions:

C(r,t) = CF (u) + c(s,u,t) + ϑ(s,u,t)

≡ CF (u) + c̃(x,ζ,t) + ϑ̃(x,ζ,t). (91)

Here by definition, ϑ is related to

η(s,u,t) ≡ η̃(x,ζ,t) (92)

by the equation

(∂t − v∂ζ − ∇2) ϑ̃ ≡ −∇2η̃, (93)

which is a copy of the second line in Eq. (60), written in the
comoving frame. In view of Eq. (62) the remaining equation
for c̃ reads

(∂t − v∂ζ − ∇2) c̃ = −(∂t ũ − ∇2ũ) C ′
F − (∇2ũ)�′

E, (94)

where we have, in the spirit of our expansion scheme, replaced
�′

F by �′
E . When the solution c̃ of this equation is introduced

into the first line of Eq. (60), projection onto the soft-mode
component �′

E(u) leads to the result

1

p
N · DtR = K − g, (95)

where the last term appears as a perturbation

g(s,t) ≡ − γ

∫ +∞

−∞
du�′

E(u) c(u,s,t) (96)

of the drag force (75). Here, in addition to the neglected higher-
order terms, leading to Eq. (48), we have omitted terms of
order γ η. The singularities, arising from the terms ∇2ũ =
−T r[K/(g − uK)] in Eq. (94), are cured by the factor �′

E(u)
in Eq. (96). This justifies replacing these terms by −K , just as
in Eq. (48). As a result, the equation (94) can be written in the
form

(∂t − v∂ζ − ∇2) c̃ = (N · DtR − K) C ′
F + K�′

E, (97)

where the differential operator on the left-hand side can be
represented in terms of curvilinear coordinates via Eqs. (39)–
(43).

Equations (95)–(97) are the main results of the present
section. Parallel to the procedure, leading to the Gibbs-
Thomson relation (50), we are going to add the result (95) as a
perturbation to the force balance in the first line of Eq. (74). For
an undercooling from an initial point TL(CS) at the liquidus line
to some temperature T < TL(CS) at constant concentration we
assume

F = 4γ

[
TL(CS) − T

TL(CS) − TS(CS)
− 1

]
= 4γ

TS(CS) − T

TL(CS) − TS(CS)
.

(98)

Here the prefactor 4γ has been chosen such that, after
transforming to physical units, we obtain

L
TS(CS) − T

TM

= GF (0) − G(s,t) − σK

+ σ

D

VD

VC

(V + N · ∂tR), (99)

which in a natural way generalizes the previous form (50) of
the Gibbs-Thomson relation. The new term, involving GF (0)
and the total drag force

G(s,t) ≡ GF + g(s,t), (100)

acts as an additional undercooling. A similar effect is present in
the result for the interface temperature in the Aziz-Boettinger
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approach [2]. We mention that Eq. (99) also provides a new
answer to the question in Ref. [35], concerning a Gibbs-
Thomson equation, valid for nonplanar interfaces.

The rather involved evaluation of Eqs. (95)–(97) is con-
siderably simplified if the Monge representation of these
equations is used only in linear order in h and c. This is,
fortunately, adequate for a stability analysis of the planar
morphology of the interface and leads to the differential
equations

∂th = p(∂2h + g),
(101)

(∂t − v∂ζ − ∂2
ζ − ∂2) c = C ′

F (∂t − ∂2)h + �′
E ∂2h,

where g is given by Eq. (96). Within this approximation the
metric tensor in Eq. (53) reduces to that of a planar geometry,
which allows us to identify the set of curvilinear coordinates
s with the set x of Euclidean coordinates. In order to finally
transform the equations (101) to the laboratory frame and to
physical units, we define the interface position

Z(x,t) ≡ V t + h(x,t), (102)

and the soft-mode concentration field

C(r,t) ≡ C(r,t) − ϑ[x,z − Z(x,t),t]

= CF [z − Z(x,t)] + c(x,z − V t,t) + O(h2).

(103)

Assembling the results (74), (75), and (101), written in physical
units, we obtain, remembering the definitions (57), and (58),
the set of equations

∂tZ = �

{
F + σ ∂2Z − κ

∫ +∞

−∞
dz(C − U [�E(z − Z)])

× ∂zU [�E(z − Z)]

}
,

∂tC = D ∇2{C − U [�E(z − Z)]}, (104)

which determines the uniform propagation of the planar
solidification front, including its stability behavior.

Equations (104) present the requested interface description
of the solidification process, which generally holds at low
growth velocities, but also applies to the rapid-growth regime
of dilute metallic alloys. It, moreover, reconciles with the
presence of a finite interface width, entering via the static
phase-field profile �E . Remarkably, the latter is the only
remnant of the initial phase-field description. This feature
is a consequence of our expansion scheme, which has been
established by studying the phase-field model with the specific
choices (58) and (59). Once this scheme has been accepted,
the interface model essentially follows by projecting the
phase-field equation of motion to the soft-mode component
�′

E . Application of the same procedure to the more general
phase-field model, given by Eqs. (1), (14), and (16), leads to
an interface version where the quantities �E(z − Z) and D are
replaced in proper positions by the functions

U (z − Z) ≡ U[�E(z − Z)],
(105)

D(z − Z) ≡ D[�E(z − Z)].

Similar input functions enter the description of grain-boundary
motion by Cahn [19], who, however, uses an ideal-gas picture
of the impurities in a Fokker-Planck representation of the
system. In the following we are going to discuss some
properties and applications of our generalized interface model.

V. CAPILLARY-WAVE DESCRIPTION

Our first observation is that the new interface model can be
written in terms of an effective Hamiltonian

H = σ

2

∫
d2x (∂Z)2 + κ

2

∫
d3r [C − U (z − Z)]2. (106)

Even without recourse to the phase-field description it is clear
from the equilibrium condition δH/δC = 0 that

U (z − Z) = CE(z − Z) (107)

is identical to the equilibrium concentration profile of the
solute component. The equations of motion for the field
variables Z(x,t) and C(r,t) are obtained in the form

∂tZ = �

(
F − δH

δZ

)
,

(108)

∂tC = ∇ · D(z − Z) ∇ 1

κ

δH

δC
,

which can again be justified without going back to the phase-
field description. In fact, in thermal equilibrium, where, instead
of the driving force F , conveniently chosen Langevin forces
enter [26], the form of the equations (108) essentially follows
from the principle of detailed balance. As another aspect, we
mention that, after insertion of the Hamiltonian (106), the
equations of motion (108) are of a hydrodynamic type where
capillary waves are, in the simplest possible way, coupled to a
bulk-diffusion field.

Within this approach the uniform motion of a planar
solidification front is, in dimensionless form, described by
the unchanged first equation in Eqs. (74). However, the drag
force is now determined by the expressions

GF (v) = − γ

∫ ∞

−∞
dζ U ′(ζ ) CF (ζ ),

(109)

CF (ζ ) =
∫ ζ

−∞
dζ ′ U ′(ζ ′) exp −

∫ ζ

ζ ′
dζ ′′ v

D(ζ ′′)
,

where D(z − Z) has been rescaled according to the last of the
Eqs. (18). The expression for CF (ζ ) in Eqs. (109) derives from
the once-integrated equation of motion

C ′
F (ζ ) + v

D(ζ )
CF = U ′(ζ ), (110)

which for the drag force GF (v) implies the representation

GF (v) = − γ

∫ ∞

−∞
dζ

v

D(ζ )
[CF (ζ )]2. (111)

From Eqs. (109) and (111) we conclude that generally

GF (0) = −2γ, GF (∞) = 0, GF (v) � 0, (112)

where in the first equality we have used the behavior U (+∞) −
U (−∞) = 2, following after rescaling from Eqs. (3). Explicit
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evaluations of the quantities (109), of course, require specific
choices of the functions U (z − Z) and D(z − Z).

For models, characterized by an arbitrary equilibrium-
concentration profile U (z − Z), but a uniform diffusion co-
efficient D(z − Z) = 1, it is possible to determine all unstable
eigenmodes of the solidification front. In order to demonstrate
this, we start from the equations (96) and (101) with �′

E(ζ )
replaced by U ′(ζ ). If, moreover, we consider perturbations of
the form

h(x,t) = ĥ(q,ω) exp (iq · x + ωt),
(113)

c(ζ,x,t) = ĉ(ζ,q,ω) exp (iq · x + ωt),

we encounter the set of equations

(ω + p q2)ĥ(q,ω)

= −p γ

∫ +∞

−∞
dζ U ′(ζ ) ĉ(ζ,q,ω) ,

×(
ω + q2 − v∂ζ − ∂2

ζ

)
ĉ(ζ,q,ω)

= C ′
F (ζ ) (ω + q2)ĥ(q,ω) − U ′(ζ ) q2ĥ(q,ω) . (114)

The last equation is a differential equation for ĉ, which, by the
substitution

ρ(ζ,q,ω) ≡ ĉ(ζ,q,ω)

ĥ(q,ω)
− C ′

F (ζ ), (115)

can be converted into the more convenient form(
ω + q2 − v∂ζ − ∂2

ζ

)
ρ(ζ,q,ω) = U ′′′(ζ ) − q2U ′(ζ ),

(116)

where the source term on the right-hand side is directly
expressed in terms of the input function U (ζ ). Equation (116)
has the solution

ρ(ζ,q,ω) = −U ′(ζ ) + λ2 − q2

λ − μ

∫ ∞

ζ

dζ ′ U ′(ζ ′)

× exp [λ(ζ − ζ ′)] + μ2 − q2

λ − μ

∫ ζ

−∞
dζ ′ U ′(ζ ′)

× exp [μ(ζ − ζ ′)] (117)

with the characteristic roots λ,μ given by

λ ≡ −v

2
+

√
v2

4
+ ω + q2 ≡ −μ − v. (118)

Insertion of this solution into the first line of Eqs. (114) leads
to the eigenvalue equation

[ω + p q2 + �(q,ω)]ĥ(q,ω) = 0, (119)

where we have introduced a kind of self-energy,

�(q,ω) ≡ p γ

∫ +∞

−∞
dζ U ′(ζ ) [ρ(ζ,q,ω) + C ′

F (ζ )]

= −p v[GF (v + λ) − GF (v)]

−p
q2 − λ2

v + 2λ
[GF (v + λ) + GF (λ)] . (120)

The final expression for �(q,ω) has been obtained from
Eqs. (62) and (117) and is identical to that found in Ref. [36] for
the impurity-controlled motion of general domain boundaries.

According to Eq. (120), nontrivial solutions ĥ(q,ω) of
Eq. (119) exist only under the condition

ω + p q2 − p v[GF (v + λ) − GF (v)]

−p
λ2 − q2

v + 2λ
[GF (v + λ) + GF (λ)] = 0. (121)

This relation determines the amplification rates ω(q) of all
unstable eigenmodes of the model. It has a universal character,
since it applies to a whole family of models with a globally
uniform diffusion constant D, but with different equilibrium
concentration profiles U (ζ ). Given a specific form of such a
profile, the explicit evaluation of Eq. (121) requires only the
knowledge of GF (v), which follows from an analysis of the
related one-dimensional growth scenario.

By an expansion of the dispersion relation (121) in q and ω

we find two branches ω1(q) and ω2(q) with the behavior
ω1(0) = ω′

1(0) = ω′
2(0) = 0, and

ω′′
1(0) = 2

G′
F (v) − [GF (v) + GF (0)]/v − 1

1/p − G′
F (v)

,

(122)

ω2(0) = 2
1/p − G′

F (v)

{[GF (v) + GF (0)]/v}′′ .

These expressions have a universal form in the same sense as
Eq. (121). As demonstrated in Ref. [37], they even apply to
models where the diffusion coefficient D(z − Z) has a constant
value D in the liquid and the interface region, but is zero in the
solid phase. Since for v → 0 the numerator in ω′′

1(0) shows
the behavior 2|GF (0)|/v, but approaches the value −1 for
v → ∞, the mode ω1(q) is unstable at low and stable at large
velocities, provided the denominator in ω′′

1(0) is positive. Due
to the first line in Eq. (74) this denominator is given by F ′(v),
which, as demonstrated at Eq. (77), can become negative. In
this case the second mode ω2(q) becomes unstable, since the
denominator in ω2(0) turns out to be negative in all applications
of interest. An unstable point of the type q = 0, ω2(0) > 0
has previously been discovered by Cahn in a one-dimensional
model of impurity-controlled grain-boundary motion [19], in
view of which we will denote the instability of the mode ω2(q)
as a Cahn instability.

If, in a first application, we reconsider the model with

U (ζ ) = �E(ζ ) + 1, D(ζ ) = 1, (123)

we find, in accordance with the first line in Eqs. (76),

GF (v) = − γ
v + 2

(v + 1)2
. (124)

With that, a numerical evaluation of Eq. (121) in the
unstable regime of both modes leads to the dispersion curves,
shown in Figs. 8, 9, and 10 for real-valued rates ω1 and
ω2. They consecutively refer to the Mullins-Sekerka-like
instability, the Cahn instability, and the superposition of both
instabilities. The complete loop in Fig. 10 shrinks to the point
q = ω = 0, when the stability limit F ′(v) = 0 is approached,
and it opens again in the stable region ω < 0, when F ′(v)
grows from zero to positive values. Qualitatively, the same
behavior has been found by Braun et al. [38] in a phase-field
model of solidification.
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FIG. 8. Dispersion curve of the unstable Mullins-Sekerka-like
mode ω1(q) and of the stable mode ω2(q) for the parameter values
p = 100, γ = 0.001, and v = 0.0036.

A convenience of the capillary-wave description (106)
and (108) is that it intuitively invites for applications to toy
models with piecewise linear functions U (ζ ) and D(ζ ). A
similar strategy has been used in the context of grain-boundary
motion by Cahn [19] and later, more extensively, by Hillert
[33]. In the present case of binary-alloy solidification all
consecutively considered families of such models have the
equilibrium-concentration profile

U (ζ ) = �(ζ + δ)�(δ − ζ )
ζ + δ

δ
+ 2�(ζ − δ). (125)

As shown in Fig. 11, this expression linearly interpolates
between the two bulk phases and for δ = 1 mimics the
the preceding model U (ζ ) = �E(ζ ) + 1, whereas for δ → 0
it approaches the sharp-interface model U (ζ ) = 2�(ζ ). If
Eq. (125) is attended by a uniform diffusion coefficient
D(ζ ) = 1, Eqs. (109) lead to the expression

GF (v) = γ [1 − 2vδ − exp (−2vδ)]
1

(vδ)2
, (126)
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FIG. 9. Dispersion curve of the unstable Cahn mode ω2(q) and of
the stable mode ω1(q) for the parameter values p = 100, γ = 0.01,
v = 0.03.
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FIG. 10. Dispersion curves of both unstable modes ω1(q) and
ω2(q), arising for the parameter values p = 100, γ = 0.01, v = 0.05.

and, as a consequence, to the the behavior

F ′(0) = 1

p
− 1

pc

, pc ≡ 3

2 δγ
. (127)

From this result we see that the Cahn anomaly F ′(0) < 0 exists
for finite values of δ, but disappears in the sharp-interface
approximation. This is obviously the reason why the anomaly
is even not mentioned in discussions, based on sharp-interface
models, supported by local-equilibrium boundary conditions
for the concentration field. As mentioned at Eq. (77), the
anomaly is not excluded in the Aziz-Boettinger approach
[2], where an internal structure of the interface region was
effectively taken into account.

1

2

0 δ-δ-2δ

ζ

U

2δ

FIG. 11. The potential U (ζ ), which, with a free parameter δ,
linearly interpolates between the liquid and solid phases. The limit
δ → 0 defines the sharp-interface limit in our approach.
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In Ref. [37] we have considered a set of model systems
that included the profile (125) but was complemented by a
diffusion coefficient

D(ζ ) = �(ζ + δ). (128)

Whereas for finite δ the Cahn anomaly again appeared, we
recovered in the limit δ → 0 the instability, discussed by
Misbah et al. [39], which is a kind of extension of the
Mullins-Sekerka instability [3] from the diffusion- into the
kinetics-limited regime.

As a final application we now consider a class of models
where the equilibrium concentration (125) is attended by the
diffusion coefficient

D(ζ ) = 1
2 U (ζ ), (129)

which, consequently, also linearly interpolates between the
two bulk phases. This behavior mimics the result of numerical
calculations, derived in Refs. [40] and [41] from the mean-
square particle displacements. Adopting the form (129), one
easily verifies that the steady-state equation

C ′
F (ζ ) + v

D(ζ )
CF (ζ ) = U ′(ζ ) (130)

has the, again linearly interpolating, solution

CF (ζ ) = �(ζ + δ)�(δ − ζ )
1

1 + 2vδ

ζ + δ

δ

+�(ζ − δ)
2

1 + 2vδ
exp [−v(ζ − δ)]. (131)

In view of the special value CF (0) = 1/(1 + 2vδ) we observe
that the partition coefficient K(v) again has the form (80),
however, with the new reference velocity

V ∗ = 1

2δ

VD

KE

. (132)

In the measurements [34] of K(v) the quantity δ may be used
as a fitting parameter. Moreover, from the first formula in
Eqs. (109) and the result (131) we obtain

GF (v) = −γ
2

1 + 2vδ
, (133)

which, via the force-balance relation in Eqs. (74), implies

F (v) = v

p
− v

pc

1

1 + 2vδ
, pc ≡ 1

4δγ
. (134)

This function is convex in the sense F ′′(v) � 0 and has a
minimum at

vm = 1

2δ

(√
p

pc

− 1

)
,

(135)

Fm = −2γ

(
1 −

√
pc

p

)2

,

so that the Cahn anomaly F ′(v) < 0 occurs in the whole regime
v < vm. By means of Eq. (98) the value Fm corresponds to the
temperature

Tm = TS + 1

2

(
1 −

√
pc

p

)2

(TL − TS), (136)

where all temperatures refer to the density CS . The value Tm

limits the temperature range, up to which a metastable kinetics-
limited solidification is possible inside the diffusion-limited
regime. In the constant-miscibility-gap approximation the line
Tm(C) is, due to Eq. (6), located below the Baker-Cahn line
T0(C), and approaches it in the limit p → ∞.

If Eq. (134) is rewritten in terms of the scaled variables

w ≡ 1

2γ

V

Vc

, f ≡ 1

2γ
F, (137)

it assumes the simple form

f (w) = w − p

pc

w

(
1 + p

pc

w

)−1

, (138)

where only the ratio p/pc enters as a tunable parameter.
Elimination of this parameter from Eqs. (135) leads to the
trajectory

w =
√

−f (1 −
√

−f ) (139)

in Fig. 12, enclosing a regime of unstable behavior in the
sense f ′(w) < 0. The outside region, up to the line f = 0,
is a a regime of metastable solidification. Accordingly, the
trajectory may be considered as a spinodal line of kinetic origin
that starts at the origin w = f = 0 for p = pc and approaches
the point w = 0,f = −1 for p → ∞, corresponding to the
limit DL → 0.

Remarkably, the result (139) precisely agrees with an analo-
gous stability limit, derived by Umantsev for the nonisothermal
solidification of a pure one-component substance [22]. Since,
in this case, the diffusion constant DL has to be replaced by
the heat-diffusion coefficient DT , the above-mentioned limit
DT → 0 corresponds to the process of adiabatic solidification.

-1.0 -0.5 0.0
0.0

0.1

0.2

0.3

0.4

0.5

f

w

FIG. 12. (Color online) Kinetic spinodal line w(f ), enclosing the
region where the Cahn instability f ′(w) < 0 occurs in the f,w plane.
The limiting point w(−1) = 0 corresponds to the adiabatic limit in
the one-component system. Also shown are some curves f (w) for
different values of the parameter p/pc.
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VI. DISCUSSION

The most remarkable implication of our approach is the
existence of the Cahn instability ω2(q) > 0 that arises in the
case of the anomaly F ′(v) < 0. A regime with this behavior
occurs in all considered models, except in the sharp-interface
limit, where only the Mullins-Sekerka instability survives. The
behavior F ′(v) < 0 even exists at the origin v = 0, which has
also been noticed in many approaches based on a phase-field
description.

In view of the anomalous behavior F ′(0) < 0 one may
question the consistency of our model, and also that of standard
phase-field models, with the basic principle of a positive
entropy production. It has been shown, however, by Bi and
Sekerka [42] that, for a general class of phase-field models,
the entropy production is positive. Applied to our model, and
using our notation, their expression for the entropy production
can be written in the form

� =
∫

d3r

[
1



(∂t�)2 + D

κ

(
∇ δH

δC

)2]
, (140)

which obviously is positive. In order to ensure that the
expansion scheme, underlying our capillary-wave model,
does not endanger this property, we apply Eq. (140) to the
one-dimensional steady-state solidification, replacing every-
where �F (ζ ) by the static profile �E(ζ ). The result for the
entropy production per unit area then reads in dimensionless
units

π =
∫

dζ

[
v2

p
(∂ζ�E)2 + Dγ (C ′

F − U ′)2

]

= v

[
v

p
− GF (v)

]
= v[F (v) − GF (0)], (141)

where we have used the expression (26) for �E(ζ ), the
representation of GF (v) in the first line of Eqs. (109), the
relation (110), and the force balance in Eqs. (74). In view of
Eq. (112) the quantity (141) again is positive, which remains
true in the expanded form

π ≈ v[2γ + vF ′(0)] (142)

and, consequently, demonstrates that the strange-looking
behavior F ′(0) < 0 is not in conflict with the second law of
thermodynamics.

To complete our presentation, we add a few estimates that
border the range of applicability of our approach. First, it is
clear that the two small parameters γ and v/p of our approach

can be tuned by the miscibility gap �C and by the driving
force F , respectively. From Eqs. (10) and (20) we know that

γ ≡ − ξL

4σ

(
∂CL

∂T

)−1
�C

TM

. (143)

According to Turnbull [43] there is a correlation between the
surface tension and the latent heat of the form

σ = CT La, (144)

where a measures the average atomic distance, and, for
essentially all metals, CT ≈ 0.45. Assuming ξ ≈ 1.8 a, and
expressing the miscibility gap by the temperature gap

�T ≡ TL(CS) − TS(CS), (145)

Eq. (143) reduces to

γ ≈ �T

TM

. (146)

For the values �T = 10 K and TM = 1000 K this yields γ ≈
0.01, which is sufficiently small, and identical to the value
underlying Figs. 9 and 10. The value p = 100, also used in
these figures, has been adopted from Ref. [21] and, in the
rapid growth regime v ≈ 1 implies v/p ≈ 0.01 for our second
expansion parameter.

As a final remark we point out that the capillary-wave
model, defined by Eqs. (106) and (108), is amenable to a
variety of generalizations without going back to a phase-
field description. One generalization in the surface part of
the effective Hamiltonian (106) is the replacement of the
integral expression by the exact area of the interface, which
in the equation of motion leads to the appearance of the full
mean curvature. Simultaneously, one may also incorporate an
anisotropy of the surface tension. Further generalizations are
the inclusion of the energy density or other bulk fields, which
then generates a number of cross-couplings in the Hamiltonian.
Parallel to this, Eqs. (108) will be replaced by an enlarged set
of equations of motion which in general is equipped with a
matrix of Onsager coefficients. A consistent discussion of the
directional solidification of a dilute binary alloy requires a
coupling of the energy density to the interface position, which
we will consider in a forthcoming paper.
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