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Roughness exponents and grain shapes
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In surfaces with grainy features, the local roughness w shows a crossover at a characteristic length rc, with
roughness exponent changing from α1 ≈ 1 to a smaller α2. The grain shape, the choice of w or height-height
correlation function (HHCF) C, and the procedure to calculate root-mean-square averages are shown to have
remarkable effects on α1. With grains of pyramidal shape, α1 can be as low as 0.71, which is much lower than
the previous prediction 0.85 for rounded grains. The same crossover is observed in the HHCF, but with initial
exponent χ1 ≈ 0.5 for flat grains, while for some conical grains it may increase to χ1 ≈ 0.7. The universality
class of the growth process determines the exponents α2 = χ2 after the crossover, but has no effect on the initial
exponents α1 and χ1, supporting the geometric interpretation of their values. For all grain shapes and different
definitions of surface roughness or HHCF, we still observe that the crossover length rc is an accurate estimate of
the grain size. The exponents obtained in several recent experimental works on different materials are explained
by those models, with some surface images qualitatively similar to our model films.
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I. INTRODUCTION

Scaling properties of the local surface roughness w and
of the height-height correlation function (HHCF) C are very
useful to understand the growth dynamics of thin films
and other deposits [1–3]. The usual approach is to measure
exponents from plots of w or C as a function of the box size
r (roughness exponent) or time t (growth exponent) and to
relate their values to some universality class of growth [1].
However, a very small number of systems exhibit simple
scaling features to match those theories. For instance, the
presence of grains in the film surface leads to a crossover
between two regimes where w increases with r with different
roughness exponents α1 and α2, as illustrated in Fig. 1 [4–10].
For the HHCF, the same crossover occurs with exponents χ1

and χ2. Similar crossover is observed in other systems, such as
fresh snow on the ground and pyroclastic deposits on volcanic
surfaces [11,12].

In Ref. [13], the crossover with α1 ≈ 1 was shown to be
a geometric effect of the grainy surface structure and of the
gliding box method (an analogous result is obtained with the
box counting method). It was also shown that the crossover
took place when r was close to the average grain size. If the
grain surface is flat, α1 is very close to 1, while for rounded
grains it decreases to values close to 0.85 [13]. These results
match those of a large number of experimental works [4–10].
However, other experimental works show film surfaces with
grainy structure, the same crossover in roughness scaling or
HHCF, but with much smaller exponents α1 [14–22]. The usual
interpretation for those exponents is that small-scale surface
features are determined by a different growth dynamics.
Indeed, even the crossover with α1 ≈ 1 was already interpreted
as an anomalous scaling, with α1 being called the local
roughness exponent (denoted αloc) and α2 called the global
roughness exponent. For these reasons, in many systems it is
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still unclear whether a crossover similar to that in Fig. 1 should
be interpreted as a purely geometric effect or as a consequence
of a competitive growth dynamics.

Here we study several growth models with grainy surface
features to show the possible effects of the grain shape, of
the method of calculation of averages of squared quantities,
of the working quantity (w or C), and of the universality
class of the growth process. For all growth models, grain
shapes, and methods of analysis, we observe crossovers at
box sizes very close to the average grain size. We also show
that a very broad range of α1 can be found, depending on the
grain shape and the working quantity, but independently of the
universality class of growth, which determines only the value
of α2. Similar conclusions are obtained for the exponents χ1

and χ2. The comparison with experimental works with several
materials and deposition methods gives additional support to
the geometric interpretation of the crossover in those systems.

The rest of this work is organized as follows. In Sec. II
we define average quantities and present the growth models.
In Sec. III, we recall the results of some exactly solvable
models with grains at the surface, which explain the crossover
with α1 ≈ 1 and χ1 ≈ 0.5 (with the usual definition of the
HHCF). In Sec. IV we analyze the effects of the grain
shape, particularly some very sharp grains, considering models
in different universality classes. In Sec. V, we show the
applications of our approach to real films. In Sec. VI, we
summarize our results and present our conclusions.

II. DEFINITION OF AVERAGE QUANTITIES
AND MODELS

First we define the average quantities analyzed in this work.
The surface roughness in square boxes of size r at time t is
usually defined as

w(r,t) ≡ 〈
(h − h)

2
1/2〉

. (1)

The overbars in Eq. (1) denote averages of the height h inside
a given box position (spatial average) and the angular brackets

041608-11539-3755/2011/83(4)/041608(7) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.041608


T. J. OLIVEIRA AND F. D. A. AARÃO REIS PHYSICAL REVIEW E 83, 041608 (2011)

r

α2

α1

r
c

FIG. 1. (Color online) Typical behavior of the local roughness as
a function of box size in grainy surfaces.

represent the configurational average as the box scans the
whole surface of a deposit. This is called the gliding box
method, in which the scanning box moves one pixel each
time it performs a new spatial average. In box counting
methods, the surface is divided into nonintersecting boxes for
the configurational average.

Alternatively, some authors define the roughness as

w′ ≡ 〈
(h − h)

2〉1/2

, (2)

i.e., they calculate the configurational average of the square
height fluctuation and take the square root of that average.

When several images of a deposit are available, or several
configurations are grown with the same model, these different
samples also contribute to the above configurational averages.

For window sizes below the grain size, the roughness scales
as

w(r,t) ∼ rα1 , (3)

which defines the initial roughness exponent α1 (Fig. 1). The
height-height correlation function at distance r and time t is
usually defined as

C(r,t) ≡ 〈[h(r0 + r,t) − h(r0,t)]
2〉1/2

, (4)

with configurational averages taken over all different initial
positions r0. Alternatively, it can be defined as

C ′(r,t) ≡ 〈|h(r0 + r,t) − h(r0,t)|〉, (5)

which corresponds to an interchange of the configurational
average and the calculation of the square root in Eq. (4). In
this sense, the calculation of C(r,t) parallels that of w′, while
the calculation of C ′(r,t) parallels that of w.

For window sizes below the grain size, the HHCF scales as

C(r,t) ∼ rχ1, (6)

which defines the initial roughness exponent χ1 for that
function. For window sizes much larger than the grain size
(i.e., r � rc—see Fig. 1), a surface obeying normal scaling has
w ∼ rα2 and C ∼ rχ2 , with α2 = χ2. The quantities w′ and C ′
obey the same scaling. Those exponents are representative of

the large-length-scale kinetics governing the growth process.
Typical examples of growth kinetics are those of Edwards
and Wilkinson (EW) [23] and of Kardar, Parisi, and Zhang
(KPZ) [24], and the diffusion-dominated ones, linear [Mullins
and Herring (MH) [25]] or nonlinear [Villain, Lai, and Das
Sarma (VLDS) [26,27]].

Now we present the models for growth of thin films with
grains at the surface. Intrinsic corrections to scaling for large
r and large t should be avoided in those models, so that
any crossover is solely due to the grainy structure. This
constraint excludes the grain deposition models introduced
in Ref. [13] and related ballisticlike models [28,29] because
they have remarkable scaling corrections. On the other hand,
some models with smooth surfaces and particle enlargement
presented in Refs. [7,13] satisfy that condition. They are
described below.

The first model has KPZ kinetics. The first step is to
grow a deposit with cubic particles of unit size following the
rules of the restricted solid-on-solid (RSOS) model: the aggre-
gation of the incident particle is accepted only if the height dif-
ferences of nearest neighbors are always 0 or 1 (otherwise the
aggregation attempt is rejected) [30]. We recall that α2 = χ2 ≈
0.39 for the KPZ class in two-dimensional substrates [31].

The second model has VLDS kinetics. The initial deposit
is grown with the rules of the conserved restricted solid-on-
solid (CRSOS) model, where the incident particle executes
a random walk between neighboring columns until finding a
column where it can aggregate, respecting the conditions on
height differences [32,33]. We recall that α2 = χ2 ≈ 0.67 for
the VLDS class in two-dimensional substrates [33,34].

After growing the initial deposit, with the KPZ or VLDS
model, the size of each particle is enlarged by a factor l, i.e.,
each particle is transformed into a cubic grain of side l. Most
of our simulations are performed with l = 32. The final step
is replacing the top cube grains (surface grains) by rounded
or sharp structures. Three shapes are used: semiellipsoids of
horizontal radius l

√
2/2 and vertical radius h, cones with that

radius and height h, and pyramids of square basis of side l and
height h. They are illustrated in Fig. 2. Several values of h are
considered for each shape, typically between l and 3l.

In the scaling of w or C, the role of the height h depends
on its size relative to the height of the surface steps, which is l.
The horizontal scaling factor is also l for the cubic grains, but
this is not important for the scaling exponents. For instance, if
the grains were constructed with the shape of parallelepipeds
of height l and horizontal side l‖, the scaling exponents would
not change. Thus, the aspect ratio of the grains considered here
is not a limitation of the model.

FIG. 2. (Color online) Shapes of surface grains after enlargement
of the original deposits: (a) semielliptical, (b) conical, and (c)
pyramidal. Semiellipsoids and cones are cut at the sides so that their
bases are squares of side l that fit the shape of the cubic grain at their
bottom. This is the reason for the radius l

√
2/2 of their bases.
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The simulations of the KPZ and VLDS models were
performed on square substrates (three-dimensional deposits)
of lateral size L = 128 at times of order 104. For the RSOS
model, it corresponds to approximately 5 × 103 layers of unit
size particles; for the CRSOS model, it corresponds to 104

layers. After replacement of the original particles by grains of
size l = 32, the deposits have lateral size 4096. Simulations
in smaller sizes (L = 64 and 32 for the original models) and
with different grain size (l = 16) give similar results for all
exponents, indicating that finite-size and finite-time effects
are negligible.

III. THEORETICAL PREDICTIONS FOR α1 and χ1

As the scanning box glides along the surface, it frequently
encloses high surface steps created between neighboring
grains. These are the box positions where the largest height
fluctuations are encountered; thus they give the main con-
tribution to the roughness [Eq. (1) or (2)]. If the box has
size r (i.e., r pixels in each direction), then the number of
box positions that involve each high step is proportional to r .
Thus, the configurational average of Eq. (1) gives roughness w

proportional to r . This gives α1 = 1, as explained in Ref. [13]
and confirmed by simulations of several models.

When Eq. (2) is used, w′2 is a configurational average.
The main contribution to that average also comes from box
positions enclosing high surface steps; thus, that average is
proportional to r . This gives w′ proportional to r1/2, i.e., α1 =
1/2.

These results are confirmed by our simulations of the RSOS
model with cubic grains, as shown in Fig. 3(a). It clearly shows
the remarkable difference in the scaling of w and w′ for box
sizes smaller than the grain size, while the same exponent
α2 after the crossover represents the universality class of the
process.

A similar situation is observed with the HHCF. Again
the main contribution for the configurational average comes
from box positions which involve high surface steps; thus this
average is proportional to r . With the most used definition of
that function [Eq. (4)], we have C(r,t) proportional to r1/2,
and thus the crossover takes place with χ1 = 1/2. Instead, if
the scaling of C ′(r,t) is analyzed, we expect χ1 = 1.

Simulations of the RSOS model with cubic grains show the
predicted crossover, as illustrated in Fig. 3(b). The exponent
χ1 is very close to 1/2 for C(r,t) and slightly below 1 for
C ′(r,t). Again, the universal exponent χ2 is obtained after the
crossover; as expected, α2 ≈ χ2.

With the usual definitions of surface roughness [w, Eq. (1)]
and HHCF [C, Eq. (4)], the roughness exponents measured
before the crossover (α1,χ1) are different. This contrasts with
the expected universality after the crossover (α2 ≈ χ2). Our
analysis shows that those discrepancies are effects of the grainy
morphology and the calculation method, in particular the order
of calculation of the square root and configurational average
in Eqs. (1) and (4).

IV. EFFECTS OF GRAIN SHAPE

Rounding of the surface grains may lead to α1 between
0.85 and 1, as shown in Ref. [13]. However, the replacement
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FIG. 3. (Color online) Scaling with the window size r of data for
the KPZ model with cubic grains: (a) w (blue squares) and w′ (red
triangles); and (b) C ′ (blue squares) and C (red triangles).

of the cubic grains by the rounded or sharp structures in Fig. 2,
with h � l, leads to much more drastic changes in the initial
exponents of w(r,t) and C(r,t).

This result is illustrated in Figs. 4(a) and 4(b) for films
grown with the KPZ model and pyramidal grains of height
h = 64: α1 decreases to 0.71 and χ1 increases to 0.61 (while
α2 ≈ 0.39). Figure 4(b) also shows the formation of a plateau
in the HHCF before the second scaling regime, which is
characteristic of all sharp grains with large heights.

In Table I, we show the values of α1 and χ1 obtained
for semielliptical, conical, and pyramidal grains with several
heights. A remarkable result is that films grown with the
VLDS model have the same exponents α1,χ1 up to the second
decimal place, despite the significant change in the asymptotic
roughness exponent (α2 ≈ 0.67). In Figs. 5(a) and 5(b), we
show results for conic grains with height h = 32, which give
α1 = 0.809 and χ1 = 0.539. Those values are close to the
KPZ values shown in Table I for the same grains. The main
differences from the models with KPZ scaling are that the
change in the slope of the roughness plot is smaller and there
is a slope increase in the HHCF plot when passing from the
first to the second scaling regime.
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FIG. 4. (Color online) (a) Roughness (w) and (b) HHCF (C) as
a function of the window size r , for the KPZ model with pyramidal
grains of height h = 64.

Table I shows that α1 is much smaller than the limit
0.85 obtained in previous work [13] for many grain shapes,
particularly for sharp conic and pyramidal grains. With the
structures studied here, the lower limit is close to 0.71, obtained
with pyramidal grains. For h � 3l, the general trend is that the
increase of h leads to decrease of α1. For larger h (not shown
in Table I), a very slow increase of α1 toward 1 is observed.

The relative changes in χ1 are much larger, attaining almost
40% for conic grains with h = 3l (see Table I). Indeed, this is
the grain shape that provides higher deviations from the flat

TABLE I. Exponents obtained from w (α1) and C (χ1) in KPZ
films with semielliptical (SE), conical (C), and pyramidal (P) grains.

h 32 64 96

αSE
1 0.826 0.773 0.763

χSE
1 0.504 0.551 0.589

αC
1 0.806 0.768 0.768

χC
1 0.539 0.633 0.694

αP
1 0.755 0.710 0.708

χP
1 0.535 0.606 0.645
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FIG. 5. (Color online) (a) Roughness (w) and (b) HHCF (C) as
a function of the window size r , for the VLDS model with conical
grains of height h = 32.

grain value χ1 = 0.5. A monotonic increase of χ1 is observed
when taller grains are studied.

The above results show that sharp grain shapes bring the
exponents α1 and χ1 closer together, in contrast with the very
different values for flat grains (1 and 0.5, respectively; Sec. III).
In some cases, they are surprisingly close; for instance, they
differ by only 10% for conic grains with h = 3l.

In Table II, we show exponents α1 and χ1 obtained from
the scaling of w′(r,t) and C ′(r,t). They should be compared
with the respective flat grain values 0.5 and 1.

TABLE II. Exponents obtained from w′ (α1) and C ′ (χ1) in KPZ
films with semielliptical (SE), conical (C), and pyramidal (P) grains.

h 32 64 96

αSE
1 0.523 0.576 0.621

χSE
1 0.754 0.711 0.705

αC
1 0.554 0.650 0.719

χC
1 0.712 0.693 0.710

αP
1 0.556 0.638 0.687

χP
1 0.664 0.633 0.640
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FIG. 6. (Color online) Film surface with 1/4 of the grains flat and
3/4 pyramidal with heights h = 32, 64, and 96 equally distributed.

Comparison of results in Tables I and II shows that sharp
grain shapes also bring closer the values of α1 measured from
w and w′ scaling, which are very different for flat grains (1
and 0.5, respectively; Sec. III). It is particularly interesting to
observe that α1 differs by only 3% when calculated from w or
w′ in films with pyramidal shapes with h = 3l. These values
may be incorrectly interpreted as true roughness exponents
because the same α2 is expected for w and w′. This type of
erroneous interpretation can be avoided if one accounts for
the effects of a wide range of grain shapes and sizes and
investigates other quantities, such as the HHCF.

The crossover size rc is defined at the intersection of the
linear fits of the initial regime and the second scaling regime
of roughness or HHCF, as illustrated in Fig. 1. Despite the
wide range of values of α1 and χ1 shown in Tables I and II, a
remarkable result is that rc is always very close to the grain size
l, for the KPZ and VLDS models. Using l = 32, our estimates
range between rc = 30 and rc = 34, which corresponds to a
maximum difference of 7%. Consequently, rc can always be
used as a reliable estimate of the grain size.

In the above models, we considered surfaces with uniform
grain height. However, we also analyzed the effect of distribu-
tions of grain heights, since this is the situation in real surfaces.
In all cases, we observe that the exponents α1 and χ1 are near
the averages of those obtained with a single value of grain
height.

An example of a film surface with such random grain
distribution is shown in Fig. 6: 1/4 of the grains are flat and
3/4 have pyramidal shape, with equally distributed heights
h = 32, 64, and 96. For that surface, we obtain α1 = 0.742
and χ1 = 0.554, which is close to the average of the results in
Table I for those shapes.

V. COMPARISON WITH EXPERIMENTAL RESULTS

In the experimental works discussed below, the exponent α1

defined here is frequently named the local roughness exponent
αloc, as a reference to the small-length-scale behavior and/or
to a possible anomalous scaling. Several experimental works
have already shown the crossover of Fig. 1 with α ≈ 1, which is
explained by the growth models with flat or slightly rounded
grains [13]. Among those works, we highlight the study of
rf-sputtered LiCoOx films by Kleinke et al. [5], which gives

0.91 � α1 � 0.95; the spray pyrolysis growth of ZnO films by
Ebothé et al. [6], which gives 0.94 � α1 � 0.97 for high flow
rates; the electrodeposition of cooper by Mendez et al. [8]
and of gold by Vázquez et al. [7], which give α1 = 0.87 ±
0.06 and α1 = 0.90 ± 0.06, respectively; the electrochemical
roughening of silver electrodes by Otsuka and Iwasaki [9],
which gives α1 between 0.95 and 0.98; and the pulsed laser
deposition of La-modied PbTiO3 films of Vasco et al. [10],
which have α1 = 1.

However, many works show the same crossover with ex-
ponents α1 between 0.7 and 0.85, and surface images confirm
the presence of grains of approximately conic or pyramidal
shape, much higher than the steps between neighboring grains.
These features are observed in films of various materials and
substrates, deposited with different techniques. This justifies
our approach with geometrical models, independently of the
particular growth dynamics.

Among the applications to inorganic materials, we find
some vapor-deposited gold films by Vazquez et al., which
have α1 ≈ 0.83—see Fig. 1(c) and Fig. 3 of Ref. [14]. One
of the niquel oxide film samples deposited by sputtering in
Ref. [15] has α1 = 0.70, and the atomic force miscroscopy
(AFM) image shows the qualitative features of our models with
sharp grainy structure. Nearly the same exponent (α1 = 0.71)
is obtained with Ni films electrodeposited on indium tin
oxide substrates in Refs. [16,17]. Several Ni-Zn alloy films of
Ref. [18] show the crossover in roughness scaling, with most
estimates of α1 in the range [0.80,0.83]. This is consistent with
our models of semielliptical grains of lower h, and the images
actually show a smooth grain morphology.

The same features are also observed in organic materials.
Films formed with bilayers of poly(allylamine hydrochloride)
and a side-chain-substituted azobenzene copolymer (Ma-co-
DR13), after deposition of 10 or 20 bilayers, show grains with
a broad size distribution, and the initial roughness exponents
0.81 and 0.79 [19]. AFM images of chemically deposited
polyaniline thin films on glass substrates [20] have similar
features, but, as far as we know, roughness scaling was not
studied with those images. The surfaces of Langmuir-Blodgett
films of polyaniline and a neutral biphosphinic ruthenium
complex (Rupy) of Ref. [21] also show those grainy features
with some high peaks, and initial roughness exponents are in
the range 0.66 � α1 � 0.81 for thicknesses between 1 and 21
layers. However, most estimates of α1 are between 0.72 and
0.76 [21], in good agreement with our results for pyramidal
grains.

It is interesting to observe that some surface images shown
in Refs. [16,17,19–21] have features similar to the model
illustration in Fig. 6 (in most cases without the flat grains).
This comparison reinforces our interpretation of the exponents
measured in those works.

Similar results are obtained in etching of silicon surfaces
in Ref. [22]: α1 is found between 0.70 and 0.87 when the
(111) surface is etched by an NaOH solution in contact with a
non-saturated aqueous environment.

It is also important to recall that there are systems with
crossover in the roughness scaling which do not show the
sharp grainy features of our models, and consequently deserve
separate investigation. For instance, the image of another
sample from Ref. [15] does not show those features, but the
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roughness shows a slow crossover with α1 = 0.52. Pyroclastic
deposits of Mt. Etna show roughness scaling crossover with
α1 between 0.47 and 0.67, but the images do not support
modeling by grainy structures [12]. There are also systems with
sharp grainy structures and small α1, such as some Ni films
of Ref. [17] (0.55 � α1 � 0.61), which also would deserve
a separate investigation (those films have 0.12 � α2 � 0.22,
which also cannot be easily explained with the well-known
kinetic growth theories [1]).

The crossover in HHCF scaling obtained in some systems
can also be related to our models. For instance, Manes et al.
[11] used HHCF as a measure of fresh snow roughness and
obtained χ1 between 0.58 and 0.62 in a set of five experiments.
These values are consistent with our model with very high
semiellipsoidal grains (h = 3l) or with conic or pyramidal
grains with h = 2l or less.

Again, there are also systems where a crossover of HHCF
scaling is observed but whose images do not show the features
of our models. An example is shown in Ref. [35], where χ1 =
0.84 was obtained for paraffin films deposited on stainless steel
covered with amorphous carbon.

Results of the recent work on pentacene island growth
on stepped oxide surfaces [36] can also be related to our
models. First, for long lengths, the HHCF has exponent
2χ = 1, which is expected for height fluctuations dominated
by the surface steps; indeed, arguments analogous to those
for flat grains (Sec. III) give χ = 1/2. However, for small
lengths, height fluctuations in the surface terraces (due to
pentacene islands) lead to the increase of the HHCF exponent
to the range [0.69,0.8]. Recent works showing evidence of
anomalous scaling in organic and inorganic film surfaces also
give estimates of HHCF exponents above 1/2 at short length

scales [37,38]. Although both short- and long-range dynamics
may be much more complex than in our models, a simple
geometric interpretation of the short-range exponents may also
be considered due to the presence of grainy structures in the
surface images.

VI. CONCLUSION

We extended the work on growth models with grainy
surfaces to analyze the effects of the grain shape, of the method
of calculation of averages of squared quantities, of the working
quantity (roughness or HHCF), and of the universality class of
the growth process. For all models, grain shapes, and methods
of analysis, we observe crossovers at box sizes very close
to the average grain size. We also show that a very broad
range of the initial exponent α1 is found for the roughness
scaling, decreasing from 1 for flat grains to 0.71 for some
sharp pyramidal grains. The initial exponent χ1 of HHCF
scaling increases from approximately 0.5 for flat grains to
values larger than 0.7 for sharp conic grains. Simulations
of KPZ and VLDS models show that the universality class
has no significant effect on the estimates of α1 and χ1. The
range of α1 presented here explains results of some recent
experimental works with different materials and deposition
methods. This gives additional support to the geometric inter-
pretation of the crossover in roughness scaling for a variety of
systems.
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