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Metastable droplets on shallow-grooved hydrophobic surfaces
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The equilibrium shapes of water droplets on shallow-grooved hydrophobic surfaces are studied experimentally.
The dependence of the two final states, notably metastable Cassie-Baxter and Wenzel, on the underlying geometric
pattern is analyzed and discussed. Surprisingly, in contrast to theoretical expectations, a significant portion of the
droplets are in the Cassie-Baxter state. The anisotropy of the patterns, defined by the relative groove and ridge
widths, allows studying the influence of different mechanisms of spreading in orthogonal directions on the final
shape of the droplets. The validity of the Cassie-Baxter and Wenzel models in the case of anisotropic surfaces
is investigated, comparing the experimental data with theoretical predictions in the two respective regimes.
The influence of varying ridge widths for fixed groove widths on the final state adopted by the droplets, i.e.,
Cassie-Baxter or Wenzel, is discussed.
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I. INTRODUCTION

The behavior of liquids on surfaces, which have been
modified in a controlled way both structurally and chemically,
is of great interest from a theoretical as well as a practical
point of view. Of particular interest are studies on “lotus
leaf” or superhydrophobic surfaces, on which a liquid will
have large contact angles (CAs) and roll off easily, making
them exhibit self-cleaning properties [1–3]. The range of
applications for these superhydrophobic surfaces extends from
car windows to microfluidics. This in turn explains the amount
of research dedicated to designing robust lotus surfaces as
well as studying the behavior of liquid droplets they support.
Despite the vast amount of work being carried out in this field
of research, numerous questions remain unanswered regarding
the influence of particular surface structures on the equilibrium
shape as well as, especially, dynamic behavior of liquid drops.

Summarizing the experimental and theoretical research
until now, on hydrophobic rough surfaces (θSt > 90◦) the liquid
droplet can end up in two distinct equilibrium states: (i) the
Wenzel state, in which all asperities are filled with liquid, or
(ii) the “fakir” or Cassie-Baxter state, in which air pockets
are trapped in the structures beneath the droplet. Both states
effectively increase the apparent CA as denoted by θW or θCB,
respectively, for the two aforementioned states. However, for
the so-called lotus effect, the fakir state is required.

When a liquid fills all of the underlying structural features,
there is a complete wetting of the liquid-solid interface. This
leads to an increase of the total wetted area with respect to
the flat surface. In this case the Wenzel equation [4] is used to
estimate the apparent macroscopic CA θW :

cos θW = r cos θSt, (1)

where r is the roughness factor, defined as the ratio of the
actually wetted surface to the projected flat area under the
droplet; r is always greater than 1. The angle θSt corresponds
to the Young CA the liquid assumes on the same smooth,
chemically homogeneous surface.
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In the Cassie-Baxter or fakir state, the droplet rests on
the tops of surface asperities, trapping pockets of air within
the structure. The Cassie-Baxter equation [5] is used to
estimate the apparent macroscopic CA θCB for a droplet on
a composite surface consisting of air and a hydrophobic solid:

cos θCB = fs(cos θSt + 1) − 1. (2)

Here fs represents the fraction of the liquid interface that is
in contact with the solid as compared to the projected surface
area [6].

In a number of studies dealing with morphologically struc-
tured, hydrophobic surfaces, the Cassie-Baxter state appears
to have a higher energy as compared to the Wenzel state.
In other words, complete wetting of the surface structures
corresponds to a situation of thermodynamic equilibrium.
Nevertheless, the metastable Cassie-Baxter state is frequently
observed on these surfaces due to the fact that the droplets
are deposited from the top, effectively experiencing a lo-
cal energy minimum [7–9]. The presence of an activation
energy between metastable and thermodynamic equilibrium
situations gives rise to droplets residing in the Cassie-Baxter
state without spontaneous decay into the energetically more
favorable Wenzel state. To gain insight on the transition
mechanism, complete wetting of the structures can be induced
by an increase of the Laplace pressure for example arising
from evaporation [10,11], by application of an electric volt-
age [12], or vibrations [13]. Although various approaches,
supported by experimental data, have been suggested to
model the transition [14–20], the exact mechanism remains
elusive.

The aforementioned studies of the relative stability of the
Cassie-Baxter and Wenzel states, as well as the transition from
one state to the other, are typically performed on well-defined,
isotropically structured surfaces. Highly appealing are surfaces
with an anisotropic pattern that favors spreading of liquid in
certain directions and hindering spreading in other directions.
This generally leads to static droplet shapes deviating from
spherical ones. Understanding of droplet dynamics on such
surfaces is of considerable interest both from a theoretical as
well as an application point of view [21]. Anisotropic surfaces
are abundant in nature [22,23]; their artificial equivalents with
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controlled structures can be used to study the occurrence of
both states as well as their interdependence. Nevertheless, such
studies prove to be rare owing to the difficulty to analyze the
directional wetting characteristics. Consequently, the range
of applicability of Cassie-Baxter and Wenzel equations in
the case of anisotropic surfaces remains an open question.
The most often investigated anisotropic surfaces consist of
parallel grooves, being attractive for their relative simplicity
in modeling the results and the wide range of possible
applications. The studies are typically carried out either for
complete wetting, i.e., systems in the Wenzel state [24–26], or
for liquid droplets suspended on top of the grooves, i.e., the
Cassie-Baxter state [27].

Here we present an experimental investigation into the
behavior of liquid droplets on shallow groove-patterned
hydrophobic surfaces. Calculations to estimate the relative
stability of the Cassie-Baxter and Wenzel states using actual
geometric parameters reveal that for all surfaces the equilib-
rium situation corresponds to the Wenzel regime. Nevertheless,
we observe systematically that droplets adopt either Cassie-
Baxter or Wenzel states depending on the underlying pattern.
Furthermore, the influence of the anisotropic pattern on
the final shape and macroscopic CAs are studied for both
regimes and compared to what is expected on the basis of the
aforementioned models.

II. EXPERIMENTAL DETAILS

A. Surface preparation

We prepare our surfaces using standard clean room methods
as schematically shown in Fig. 1. First, the oxide layer is
removed from the Si wafers to assure an identical thickness of
native oxide, therewith providing better homogeneity between
different batches of wafers. Next, freshly cleaned wafers
are spin-coated with positive photoresist. Subsequently, the
photoresist is soft baked and the pattern is transferred via
standard optical lithography [Fig. 1(a)]. Once the exposed
photoresist is washed off, the remaining photoresist is baked.
The exposed Si regions are etched by reactive ion etching
(RIE) [28]. Anisotropic etching is used to create well-defined
profiles of grooves 2 μm deep [Fig. 1(b)]. After removing the
photoresist, the depth and the homogeneity of the etching at
different places on wafers are assessed using a profilometer
(Veeco Dektak 8). Finally, the wafers are thoroughly cleaned
in nitric acid to prepare for hydrophobization of the surface
with a self-assembled monolayer (SAM) of 1H,1H,2H,2H-
Perfluorodecyltrichlorosilane (PFDTS, 97%, ABCR, Ger-
many) [Fig. 1(c)]. The assembly of molecules creates a densely
packed thin layer with a height on the order of 1 nm, on
which water has a static CA θSt = 110◦. On our experimental
surfaces we measured static CA θSt = 109◦ (averaged over
8 independent measurements on flat parts of the wafer),
confirming the good quality of our SAMs. Vapor deposition
of the PFDTS molecules is done in a degassed chamber that is
exposed in successive turns to PFDTS and water reservoirs to
introduce the respective vapors, initiating the reaction on the
wafer surface. Using a controlled environment ensures good
quality and reproducibility of the SAMs [29].
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FIG. 1. (Color online) Schematic representation of the different
surface preparation steps. (a) A photoresist layer on the Si wafer is
exposed to light through a mask. Parts of the positive photoresist that
are exposed to the light will be washed away, therewith creating a
pattern on the surface. (b) Parts of the wafer that are not protected
by photoresist will be removed by reactive ion etching (RIE) [28].
(c) After removal of the photoresist, a self-assembled monolayer of
PFDTS is deposited. Wafers are placed in a glass chamber that is
degassed below 50 mbar (vapor pressure of PFDTS). Subsequent
steps are (i) the chamber is connected to a reservoir containing liquid
molecules, introducing PFDTS; (ii) the chamber containing PFDTS
vapor is connected to a water reservoir, introducing water vapor,
initiating silanization on the surface of the wafers [29].

B. Droplet deposition

Droplet deposition and characterization, including mea-
surements of CAs, is done using an OCA 15+ apparatus
(DataPhysics, Germany). The equipment enables determina-
tion of CAs with as accuracy of 0.5◦. Droplets are created
using a computer-controlled syringe. The liquid used is high
purity water (from a Millipore Simplicity 185 system). For all
droplets the volume is fixed at 1 μl.

Deposition of droplets for part of the patterns (the relatively
more hydrophilic substrates) is achieved by gentle lowering of
a syringe with a suspended droplet until it contacts the surface.
The droplet spreads on the surface while still remaining
attached to the needle. The detachment from the needle is
induced by manual retraction of the syringe. Due to the
relatively small volume of droplets in our experiments, the
gravitational influence can be neglected.

For other patterns (relatively more hydrophobic), gentle
lowering of the syringe will give rise to spreading of the droplet
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FIG. 2. (Color online) Water droplets on grooved surfaces, showing top-view images of the final droplet shape on two surfaces with
identical groove width but different ridge width. At the top a schematic representation of our experimental surfaces is shown, defining relevant
parameters a and b. (a) Droplet in the Cassie-Baxter state residing on a pattern with groove and ridge widths of 9 μm and 6 μm, respectively.
The bright-yellow lines correspond to the empty grooves, while dark stripes correspond to ridges. The dimensions seen through the droplet
(which acts as a lens) appear larger; this magnification is even more obvious in case of the Wenzel state. (b) Droplet in the Wenzel state for
groove and ridge widths of 9 μm and 36 μm, respectively. The brightness contrast is limited due to the shallow groove depth (h = 2 μm). The
ridge edges appear darker due to scattering of light there. At the bottom, side-view images of the droplets reveal the directionally dependent
CAs (θ‖ and θ⊥) as well as the diameter of the wetted area in directions perpendicular and parallel (left and right, N and P , respectively, as
shown in the schematic drawings) to the grooves.

due to the pressure applied by the needle. However, when the
needle is retracted the droplet remains attached to the needle
and detaches from the surface. In these cases, the deposition
was done by dropping droplets from a low height.

An additional camera is mounted above the substrate to
assess the final shape of the droplets. Using the reflected
light, it is possible to see through the droplet and view the
liquid interface with the solid; the droplet effectively works
as a magnifying glass. This property can be used to confirm
the final state of the droplet as the light reflects differently
from water-solid and water-air interfaces; typical examples
are presented in Fig. 2 and Fig. 6. In the Cassie-Baxter state
[Fig. 2(a) and Fig. 6(a)] the air-liquid interfaces suspended
above the grooves appear to be bright due to light scattering as
compared to the dark liquid-solid interfaces of the contact
regions. In the Wenzel state [Fig. 2(b) and Fig. 6(b)] the
wetted area appears to have a more uniform color as the
grooves are filled with liquid; the grooves appear to have a
slightly darker shade as less light reflects from the sides of the
grooves.

III. RESULTS

Depending on the ridge width, while keeping the groove
width constant, the droplets end up in different static situations:
Either the Cassie-Baxter or Wenzel states are adopted. As a
general rule, for patterns with ridge widths smaller or equal to
the width of the grooves, the final state adopted by the droplets

is the Cassie-Baxter regime. As the ridge width becomes larger
than the groove width, droplets end up in the Wenzel state.

An example of a droplet in the Cassie-Baxter state is
presented in Fig. 2(a). The droplet has a spherical shape,
reflecting little influence from the underlying anisotropic
pattern. Indeed, the side-view images show that CAs (θ‖
and θ⊥) and diameters both perpendicular and parallel to the
grooves (N , resp. P ) have similar values.

The second set of photos [Fig. 2(b)] shows the droplet in
the Wenzel state. From the top view, the elongation in the
direction of the grooves can be observed, similarly to what
was previously described for chemically patterned surfaces
[21,30]. The side-view photos show the difference in CAs (θ‖
and θ⊥) and diameter lengths of the wetted area in orthogonal
directions. The θ⊥ and N appear to have similar values to those
of the droplet in the Cassie-Baxter state [compare Fig. 2(a)].
However, the θ‖ have markedly smaller values, and the length
P is larger as for the droplet in the Cassie-Baxter state.

A. Droplet spreading parallel to the grooves

In Fig. 3 the CAs measured in the direction parallel to the
grooves (θ‖) are presented. To illustrate the general trend, in
Fig. 3(a) θ‖ for a set of patterns having the same groove width
of 9 μm is plotted. As the plot reveals, θ‖ is maximum for the
smallest ridge width of 3 μm; CA values decrease as the ridge
width becomes larger. A similar trend for θ‖ is observed for all
groove widths we investigated. The two final states observed
are separated by the dotted line: The line is arbitrarily placed

041607-3



BLIZNYUK, VELIGURA, KOOIJ, ZANDVLIET, AND POELSEMA PHYSICAL REVIEW E 83, 041607 (2011)

5 10 15 20 25 30 35

105

110

115

120

125

130

135

140

145 Groove 9 m:

CB

CA
exp

W

Ridge ( m)

(a) (b)

4 6 8 10 12 14

CA
CB

CA
W

CA
Crit

Groove ( m)

W

CB

R
id

g
e

FIG. 3. (Color online) Experimental static water CAs measured in the direction parallel to the grooves (θ‖). All patterns have a groove
depth of h = 2 μm. (a) Variation of θ‖ as a function of ridge width for patterns with groove width b = 9 μm. Solid lines represent theoretical
curves for θCB (black line) and θW (gray line). The vertical dotted line indicates the separation between ridge values corresponding to the
Cassie-Baxter state (a < 9 μm) and the Wenzel state (a > 12 μm). (b) θ‖ for all ridge widths studied, plotted as a function of groove width.
For every groove width studied, the trend presented in (a) is observed; i.e. patterns with a ridge width smaller than the groove width are in the
top part of the plot. Going from top to bottom in each column, the ridge width increases and consequently θ‖ decreases. The triangles indicate
whether droplets are in the Cassie-Baxter (up triangle) or Wenzel (down triangle) state. The dashed and solid lines are discussed in the text.

between two experimentally studied ridge widths to indicate
where the transition takes place. Furthermore, the θ‖ values
can be compared to the isotropic θCB and θW calculated by
inserting our experimental parameters into Eq. (1) and Eq. (2).
As observed in the plot, the θCB values agree fairly well with
the trend of the θ‖ for droplets suspended on the top of the
ridges, although theoretical values are slightly higher. In the
Wenzel regime, the values of θW are in better agreement with
the θ‖ despite the fact that we are still dealing with anisotropy
for which Eq. (1) is in principle not valid.

The static θ‖ values for all patterns included in this study
are plotted in Fig. 3(b). The groove width is presented on the
x axis: Each vertical column of data points corresponds to a
single value for the groove width while the ridge widths are
varied, enabling us to present all data in one single graph. The
dotted line indicates the separation between two regions: In the
upper part of the graph the droplets are in the Cassie-Baxter
state, while in the lower part they are in the Wenzel regime.
The distinct separation between the two regimes suggests a
systematic dependence on the underlying pattern and allows
us to use existing equations to account for the results.

In Fig. 4(a) and Fig. 4(b) we plot θ‖ as a function of scaling
parameters characteristic for each regime. We use the solid
fraction fs = a/(a + b) to plot the data for Cassie-Baxter
state, while in the Wenzel state the groove-to-ridge ratio b/a

is employed following Patankar’s suggestion [15]. Although
there is no rigorous theoretical background for using the
groove-to-ridge ratio as scaling parameter, trends exhibited by
experimental data are most pronounced when the ratio b/a is
employed. Equally, theoretical θCB and θW values are plotted,
which have been calculated assuming a circular shape of the
contact area.

In the Cassie-Baxter regime [Fig. 4(a)] the θ‖ values appear
to scale to a single line as a function of the solid fraction
fs , following the trend predicted by Eq. (2). Such behavior

can be seen as a supplementary confirmation of the regime
the droplets are in. The systematically lower experimental
values may be due to a slight elongation of the wetted area
in the direction of the grooves, resulting in aspect ratios
ξ = P/N (defined as the ratio of length P and width N ; see
Fig. 2) between 1.2 and 1.4 [see Fig. 4(c)]. Another reason
for observing smaller θ‖ values may arise from the way the
droplets are deposited on the surface. Previously, it has been
observed that releasing droplets from a small altitude leads to
lower contact angles due to the kinetic effects [8].

In the Wenzel regime [Fig. 4(b)], the θ‖ appear to scale as
a function of the groove-to-ridge ratio b/a. Despite the fact
that the roughness r is a scaling parameter for the Wenzel
regime, using it for plotting masks the trend observed in the
experimental data. Both θ‖ and θW values increase with b/a

ratio, although the trends are different. For the θ‖, the patterns
with low b/a ratios exhibit the lowest CAs with values similar
to the θSt on the flat surface. As the b/a ratio, and thus the
number of grooves under the droplet, increases, so does θ‖,
until it reaches a maximum value of 120◦. The trend predicted
by the Wenzel equation [Eq. (1)], shown by the black dots
in Fig. 4(b), also exhibits a rise of θW with b/a, but less
pronounced as compared to the experimental data. The reason
for the relatively small variation of calculated θW values lies in
the shallow depth of the grooves (2 μm). For ratios b/a below
approximately 0.3, i.e., patterns having large ridge widths
compared to the grooves, the θ‖ are smaller than θW . For the
b/a ratio around 0.5, theory and experiment exhibit similar
values. Once the ratios exceed 0.6, i.e., when the ridge width
approaches the groove width, the calculated θW values are
smaller than the θ‖.

Furthermore, the values of θ‖ measured in the Wenzel
regime for b/a > 0.6 are similar to those exhibited in the
Cassie-Baxter regime for solid fractions fs between 0.6 and
0.7, corresponding to situations in which the ridge is slightly
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FIG. 4. (Color online) Top panels show experimental θ‖ values of the droplets. (a) θ‖ in the Cassie-Baxter regime as a function of solid
fraction fs [fs = a/(a + b)]. The theoretical θCB is given by the solid line. (b) θ‖ in the Wenzel regime as a function of groove-to-ridge ratio
b/a. Theoretical θW values are represented by the black dots. More than one calculated CA value for a single b/a ratio are due to roughness
r = (a + b + 2h)/(a + b) definition. In our experiments, several groove/ridge combinations corresponding to a single b/a ratio, give slightly
different r values. We choose to plot θW as function of b/a ratio and not the scaling parameter of the Wenzel regime, i.e., roughness r , as
plotting CAs versus roughness does not exhibit a clear trend. Droplet aspect ratios are shown in the bottom panels for the Cassie-Baxter (c)
and Wenzel (d) regimes.

larger than the groove, as can be seen from Fig. 4(a). Such
elevated θ‖ values in the Wenzel regime may be explained
based on the observation that, despite the deposition of the
droplets via gentle lowering (characteristic of liquid filling the
underlying structures), they tend first to reside for a short
period of time in the partial Cassie-Baxter state (see also
Fig. 6). Spontaneous collapse into the energetically more
favorable Wenzel state always occurs within seconds. More
details pertaining to the kinetics of droplet deposition
are presently under investigation and are considered beyond
the scope of this report.

To study the influence of the anisotropic pattern on the final
shape and to quantify the distortion from a spherical shape,
the aspect ratios ξ for droplets in both regimes are plotted in
Fig. 4(c) and Fig. 4(d). To identify trends in the experimental
data, the ξ values are plotted as a function of groove-to-ridge
ratio b/a in the Wenzel regime, while in the Cassie-Baxter
regime the solid fraction fs is used to present the data.

In the Cassie-Baxter regime, the final shape of the droplets
shows a relatively small deviation from a spherical geometry
due to the underlying anisotropic pattern. For small fs , i.e.
when the droplet is primarily suspended over the air pockets
between the ridges, the final shape is almost spherical, showing
only a very slight elongation in the direction of the grooves
(ξ ≈ 1). As the solid part in contact with the droplet increases,

the influence of the pattern on the final shape becomes more
pronounced with ξ increasing to reach values of 1.4 for fs >

0.5. Furthermore, both diameters parallel P and perpendicular
N to the grooves become larger as fs increases.

The highest experimental ξ values are observed in the
Wenzel regime, reaching maximum values of approximately
1.6 [Fig. 4(d)]. Considering that the θ‖ values for these
substrates are nearly equal to those on a flat surface
[Fig. 4(b)], it seems that the elongation cancels an increase of θ‖
due to the grooves beneath the droplet. As the groove-to-ridge
ratio b/a increases, the ξ decreases to finally scatter around
1.4. Interestingly, all droplets in the Wenzel regime have
N values scattering around 0.85 mm; the observed trend for ξ

is governed solely by the variation of the droplet length P (see
Fig. 5).

B. Droplet spreading perpendicular to the grooves

The θ⊥ and N trends allow a better assessment of
equilibrium shapes. Other than presenting a very different
behavior compared to the results in the direction parallel
to the grooves, they provide a more profound indication of
similarities between the regimes (in the case of fs > 0.5 and
b/a > 0.5). In Fig. 5 the apparent macroscopic CAs θ⊥ in the
direction perpendicular to the grooves [Fig. 5(a) and Fig. 5(b)]
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FIG. 5. (Color online) Top panels show experimental θ⊥ values of the droplets. (a) θ⊥ in the Cassie-Baxter regime as a func-
tion of solid fraction fs [fs = a/(a + b)]. Theoretical θCB is plotted as solid line to show that only part of the data seem to
follow the model predictions. (b) θ⊥ in the Wenzel regime as a function of groove-to-ridge ratio b/a. The values scatter around
137.6◦ for all patterns studied. Bottom panels show the evolution of the wetted area diameter measured perpendicular to the
stripes N for the Cassie-Baxter (c) and Wenzel (d) regimes.

and the diameter N of the wetted area [Fig. 5(c) and Fig. 5(d)]
are plotted as a function of fs (Cassie-Baxter regime) and b/a

ratio (Wenzel regime).
In the Wenzel regime θ⊥ [Fig. 5(b)] scatters around a

mean value of 137.6◦ for all patterns considered in this work;
equally, the droplet diameters N scatter around 0.85 mm
[Fig. 5(d)]. Such independence of the final dimensions on
the underlying pattern, especially for large b/a ratio, would
suggest a similar spreading mechanism close to reaching the
static shape. As mentioned previously, for b/a > 0.5 parts
of the droplet remain suspended and the grooves are filled
within seconds after deposition. Given the same CA and N

values, it would mean that the filled or empty state of the
grooves away from the border of the droplet has little influence
on the static values in the direction perpendicular to the
grooves.

In the Cassie-Baxter regime [Figs. 5(a) and 5(c)] for
fs < 0.5, the θ⊥ decrease as fs increases as well as exhibit
values that are similar to θ‖; this is to be expected since
the droplets have a spherical geometry with low ξ values
close to 1.2 [see Figs. 4(a) and 4(c)]. The diameter N of the
wetted area also becomes larger as fs increases in agreement
with the variation of CA values. In short, for fs < 0.5 the
behavior expected for droplets in Cassie-Baxter regime is
observed.

Moreover, such limited influence of the underlying pattern
with small fs on the final shape in case of the Cassie-Baxter

final state is of interest by itself. Previously reported spher-
ically shaped droplets on anisotropic microscaled [22] or
grooved [31] surfaces are attributed to high roughness of
surfaces on both microscopic and nanoscopic scales, which
is not the case for our experimental surfaces. For droplets
suspended on the smooth ridge tops, the distortion of the
contact area that follows the underlying structure is observed
[27,32]. Moreover, the suspended state appears to be stable and
the spontaneous transition into the energetically more favor-
able Wenzel state does not take place. Given the shallowness
of the structures, the stability may be attributed to the pinning
of the contact line on the edges of the ridges [33].

However, for fs > 0.5 the values do not show any depen-
dence on the underlying pattern: θ⊥ scatters around a value of
137.6◦ and N scatters around 0.85 mm. The same behavior
as well as similar values are observed for the droplets in the
Wenzel regime. Studying of the top-view images of droplets
reveals no filled grooves in the regions close to the edge of the
droplets. Comparing experimental results for different groove
widths reveals identical values of θ⊥ and N once the ridge
width exceeds 8 μm, suggesting that the width of the grooves
has very limited or no influence at all. Moreover, combined
with the similarity to the results for droplets in the Wenzel
regime on patterns with b/a > 0.5, where the grooves near the
edge of the droplet are filled, it can be reasoned that the filled
or empty state of grooves is not the parameter that influences
the static shape in this case.
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IV. DISCUSSION

In the previous section we have described our observations
pertaining to droplets on morphologically stripe patterned
surfaces. Depending on the relative ridge and groove widths,
droplets adopt either the Cassie-Baxter or Wenzel state. In this
section we first discuss the observations in relation to energetic
considerations. Next, we focus on the main issue of the present
work, i.e., the transition from the metastable Cassie-Baxter to
the Wenzel state as a function of ridge width.

A. Final state of droplets: Theoretical predictions

As described in the introduction, on low surface energy
substrates in which liquid has static CAs θSt > 90◦ generally
two states are observed when the surface exhibits roughness:
the Wenzel or Cassie-Baxter state. Using energy arguments,
one can calculate the apparent CAs in both regimes for a
given rough surface. Direct comparison of calculated θCB

and θW for a given surface allows evaluation of the relative
stability of the two states: The regime exhibiting a smaller
macroscopic apparent CA corresponds to a lower energy state
and should be preferentially adopted by the liquid. Plotting
the cosines of both θCB and θW as a function of substrate
roughness presents a simple way to identify whether either
the Cassie-Baxter or the Wenzel state corresponds to the
thermodynamic equilibrium as well as gives an indication
of the energy barrier separating the two states. Generally,
if droplets end up in the fakir state on a surface where the
Wenzel regime is energetically more favorable, the droplets
are said to be in the metastable Cassie-Baxter state. Fur-
thermore, the intersection point between the two regimes,
corresponding to surface structures when both states have the
same energy and, consequently, the same apparent CA, can be
calculated.

A relatively simple way to predict a priori which state
should be adopted on a given hydrophobic structured surface
was suggested by Quéré [7,33]. If the roughness r and solid

fraction fs are known, the critical CA θCr for a flat surface with
similar properties can be calculated:

cos θCr = 1 − fs

r − fs

. (3)

Comparing θSt measured on flat surface with calculated θCr

estimates which of the two is more likely to be adopted. If
θSt on the flat surface is smaller than θCr (θSt < θCr), than
the Wenzel state is energetically more favorable. Otherwise,
the Cassie-Baxter or fakir state corresponds to the situation
with minimum energy. In our case for grooved surfaces the
roughness r is given by [4]

r = a + b + 2h

a + b
, (4)

where h is the depth of the grooves, fixed to 2 μm. Inserting
this, together with fs = a/(a + b), into Eq. (3), we obtain the
following expression for θCr:

cos θCr = −1

1 + 2h
b

. (5)

We find that the critical angle is independent of the ridge width
a but only depends on the groove width b and the ridge height
h. A similar dependence solely on pitch width and height of the
structures has been described for other geometries [8,34,35].

The resulting values for θCr are represented in Fig. 3(b)
by the solid black line, changing from 120◦ for a groove
width of 4 μm to 138.6◦ for a groove width of 12 μm. On
the unpatterned PFDTS treated silicon wafer we measure the
θSt = 109◦ which makes θSt < θCr for all studied patterns.
Consequently, the Cassie-Baxter state does not correspond
to the minimum energy situation for all surfaces consid-
ered in our present work. Most likely, the reason why we
indeed observe this metastable state on a number of patterns
is related to the way the droplets are deposited on the surface,
i.e., by dropping them from a certain height [7,8]. However,
that does not account for the Cassie-Baxter state stability on
our experimental surfaces.

a=9μm

b=9μm

a=12μm

b=9μmb a

h

(a) (b)

FIG. 6. (Color online) Snapshots of droplets observed on surfaces with (a) fs = 0.5 (Cassie-Baxter regime) and (b) b/a = 0.75 (Wenzel
regime). In both regimes the droplets appear to have almost spherical shapes irrespective of the way the droplets were deposited on the surface.
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Further, the calculated θCr [Fig. 3(b), solid line] for all
groove widths appears to follow a similar trend as, although are
systematically larger than, the border region between patterns
on which the metastable Cassie-Baxter state is observed and
patterns where droplets are in the Wenzel state. Moreover,
calculations for the critical θCr agree well with the experimen-
tally observed transition from one regime to the other when
the height-to-groove width ratio in the denominator in Eq. (5)
is multiplied by a factor of 2 [Fig. 3(b), gray dashed line]. This
correction holds for all experimental sets studied, although the
origin of this multiplication factor is unclear. Apart from the
qualitative agreement, the aforementioned model, which has
been nicely described by Bico et al. [14], seems to somehow
be in qualitative agreement with our observations; why this is
the case for our anistropic grooved surfaces is unclear.

B. Transition from metastable Cassie Baxter to stable Wenzel

Returning to the data presented in Fig. 4 and Fig. 5, on a
fraction of the patterns where the groove and ridge widths are
equal or very close (i.e., in the case of fs > 0.5 and b/a > 0.5),
both states seem to exhibit similar values for the CAs and
diameters of the wetted area. As an illustration in Fig. 6 two
snapshots are shown of droplets, one being mostly suspended
on the grooves [Fig. 6(a)] while another almost completely
fills the underlying structures [Fig. 6(b)]. The droplets ending
up in the Wenzel state are initially in a partial Cassie-Baxter
state leaving a number of grooves under the droplet not filled.
Almost immediately, these collapse into the Wenzel state. The
same happens if the droplets are dropped from a low height.

It appears that the patterns considered here are near the
critical point where both states have the same energies and,
supposedly, the transition between states occurs. On the
patterns where the Cassie-Baxter state is observed, the energy
barrier is just high enough to hinder the transition, while for
the other patterns the transition barrier to the Wenzel state is
low, allowing the droplets to go easily into the energetically
more favorable situation from the metastable suspended state
they are deposited in. Moreover, theoretically estimated critical
points between filled and suspended states do not correlate with
the experimentally observed transition, which possibly is the
result of the anisotropy of the patterns.

To understand the liquid behavior on these patterns near the
critical point, we can use the existing knowledge of contact
line motion in both regimes. Summarizing, in the case of the
Wenzel state, prior to filling of the next groove the advancing
CA condition at the edge of the ridge has to be met. Once
the dynamic CA at the edge reaches a value lower than the
advancing CA, the droplet remains pinned and spreading in
the direction perpendicular to grooves stops [24,36]. In the
Cassie-Baxter state, the advancing edge of the droplet “falls”
until it reaches the top of the neighboring ridge at the location
corresponding to the area with the largest curvature of the
droplet. Subsequently, it will advance over this next ridge if
the condition of the advancing CA for a flat surface is met [17].
In both cases, the contact line will be pinned on the edge of
the ridge before the next groove is bridged.

Assuming that both suspended and filled states have very
similar energies and, consequently, exhibit similar values for
macroscopic θCB or θW values, it is safe to suppose that the

microscopic dynamic angles reach values prohibiting further
advancing for similar macroscopic lengths. However, the width
of the ridge should be large enough (in our case >8 μm), for
similar N and θ⊥ in both regimes irrespective of the last groove
“bridged” by the droplet being filled with liquid or whether the
droplet remains suspended above it.

Considering the similar values for P and θ‖ observed on
these surfaces (Fig. 4), the explanation most likely lies in the
fact that droplets in the Wenzel state have not achieved their
minimum energy shape. In the suspended state, the advancing
contact line advances over the composite surface of air and
hydrophobic solid, encountering a low energy barrier, resulting
in static θ‖ values close to the ones predicted by Cassie-Baxter
equation. For the filled state, the complete filling of the un-
derlying structures occurs at later stages, the first shape being
to a certain degree defined by spreading over the composite
surface. Once the entire transition to the Wenzel state has
taken place, it is possible that the microscopic condition for
the advancing CA is no longer fulfilled and further filling
of grooves to achieve lower macroscopic apparent CA is not
possible. That would explain the experimental θ‖ exhibiting
larger values as compared to the ones estimated by the Wenzel
equation.

V. CONCLUSION

We have studied the equilibrium droplet behavior on
anisotropic shallow grooved surfaces. The groove geometry
creates two orthogonal spreading directions with different
properties, resulting in elongated droplets with directionally
dependent properties. From the experimental results, we find
that two states are reproducibly observed on the studied
anisotropic surfaces: (i) metastable Cassie-Baxter and (ii)
Wenzel states, the latter corresponding to the thermodynamic
equilibrium on our surfaces. Comparison between experimen-
tal θ‖ and θCB and θW predicted by theoretical equations reveals
a similar trend but systematically lower values for droplets in
the Cassie-Baxter regime. In the Wenzel regime, there is no
agreement in trend. The elongation in the direction of the
grooves is more pronounced for the Wenzel regime, while
in the Cassie-Baxter regime the influence of the underlying
pattern on the deviation of the droplet shape from a spherical
geometry is much less pronounced. The energy barrier between
the suspended state as compared to a complete filling of the
underlying structures is low on a fraction of patterns, resulting
in a spontaneous transition from the Cassie-Baxter to Wenzel
state. Moreover, elevated values for θ‖ in the Wenzel state are
observed. Finally, calculating the stability condition for both
thermodynamically stable Cassie-Baxter and Wenzel states on
surfaces with well-defined structures, we find that calculated
θCr values seem to agree with the transition trend between
patterns observed for apparent θCB and θW .
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