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Role of particle inertia in adsorption at fluid-liquid interfaces
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It is shown that the inertia of a particle plays an important role in its motion in the direction normal to a
fluid-liquid interface, and in determining its adsorption trajectory and orientation in the adsorbed state. Although
the importance of inertia diminishes with decreasing particle size, on an air-water interface the inertia continues
to be important even when the size is as small as a few nanometers. Furthermore, similar to an underdamped
system, an adsorbed particle has characteristic linear and rotational frequencies that can be excited by an external
forcing.
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In recent years, there has been much interest in the absorbed
state of colloidal particles at fluid-liquid interfaces, i.e., their
positions and orientations within the interface, because of
their importance in a range of applications [1,2]. In these
studies, the stable state is determined by a static analysis of
the forces and torques that act on the particle. The momentum
equation governing the motion in the direction normal to the
interface and the angular-momentum equation governing the
orientation, as well as the role of the particle inertia, are not
considered. However, since nonspherical particles can have
multiple stable states, a static analysis, as noted in Refs. [2]
and [3], is not sufficient for determining which of these
states are likely to be assumed by the particle. Furthermore,
we have recently shown that the motion of particles in the
direction normal to the interface while being adsorbed gives
rise to a secondary lateral flow on the interface that causes
newly adsorbed particles to disperse and those already present
on the interface to move away (see Ref. [4]). This can
influence the distribution as well as the state of particles on the
interface.

In this paper, we show that, although the assumption that
the inertia of small particles is negligible is justified in many
problems involving colloidal particles because of their small
mass, it may not be appropriate in the modeling of their
adsorption at fluid-liquid interfaces. In fact, the motion of a
particle in the direction normal to the interface is similar to that
of an underdamped system in that it has characteristic linear
and rotational frequencies that are excitable by an external
forcing.

To show this, let us assume that the inertia is negligible.
Then, the velocity V of the particle is determined by a balance
of the capillary and drag forces, which gives V = γ12

μ
. Here

γ12 is the interfacial tension between the upper and lower
fluids, and μ is the viscosity (which for simplicity is taken
to be the larger of the upper-fluid or lower-fluid viscosity).
The role of other forces such as gravity, as discussed below,
is negligible for small particles. The kinetic energy Ek of

the particle then becomes Ek = 1
2mV 2 = 2πρp R3

3 ( γ12

μ
)2, where

m is the particle mass, R is the particle radius, and ρp is
the particle density. The adsorption energy Wa of a spherical
particle is Wa = πR2γ12(1 + cos α)2, where α is the contact

angle [1,2,4]. Assuming that the contact angle is 90◦, the ratio
of the kinetic and adsorption energies becomes

Ek

Wa

= 2ρpRγ12

3μ2
. (1)

Clearly, Ek

Wa
must be less than 1 because the particle

accelerates under the action of the capillary force and so its
kinetic energy must be less than the interfacial work done on
it. Furthermore, the inertia of the particle can be considered
negligible only if its kinetic energy, a measure of the particle’s
inertia, is much smaller than the interfacial energy released
during its adsorption, i.e., Ek

Wa
� 1.

We next evaluate this ratio for a neutrally buoyant particle at
an air-water interface, i.e., μ = 0.001 Pa s, ρp = 1000 kg/m3,
and γ12 = 0.07 N/m: Ek

Wa
∼ 108R. Thus, the inertia of a parti-

cle can be considered negligible only when R is much smaller
than 10 nm. Furthermore, for R � 10 nm, we erroneously
obtain Ek

Wa
> 1, which is a consequence of neglecting the inertia

of the particle.
Momentum conservation: When a particle comes in contact

with a fluid-liquid interface, or moves away from its equilib-
rium position in the interface, the component of the capillary
force in the direction normal to the interface acts to bring
it back to its equilibrium position (Fig. 1). The motion of
the particle is given by the governing equations for the two
fluids and the momentum equation for the particle, which
are coupled, along with the interface stress condition and a
condition for the contact-line motion. This is a formidable
problem which can be solved analytically only in simple
situations [4–7].

To quantify the role of various forces that act on a particle,
let us consider the decoupled momentum equation in which
the fluid forces that act on the particle are modeled [3,8]. The
forces that act on the particle are the vertical capillary force
(Fst ), the buoyant weight (Fg), the Brownian force (FB), and
the viscous drag (FD). The acceleration of a particle under the
action of these forces can be written as

m
dV

dt
= Fst + FD + Fg + FB, (2)

where m is the effective mass of the particle which includes the
added mass contribution, and V is the velocity. The Brownian
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FIG. 1. (Color online) Vertical oscillation of a particle adsorbed
at an air-liquid interface. The contact angle is assumed to be 90◦, and
so in equilibrium it floats with its center at the undeformed interface.
(a) The particle is pushed up from its equilibrium position. (b) The
particle is pulled downward by the interfacial force (γ ). (c) The
particle oscillates about the equilibrium height. (d) After oscillations
subside, the particle assumes its equilibrium position.

force which is included here for completeness is negligible
compared to the capillary force, as will be discussed below,
and therefore need not be considered.

For a spherical particle, Fst = 2πRγ12 sin(θc) sin(θc + α)
(see Fig. 2) [6]. We will assume that the drag force is given by
FD = 6πμRVfD , where μ is the viscosity of the lower liquid,
and fD is a coefficient which accounts for the fact that the
particle is immersed in both upper and lower fluids. If fD = 1,
this expression reduces to Stokes law. Also, for simplicity, we
will assume that the added mass is one half of the mass of the
fluid displaced [8]. Although this result is for a particle fully
immersed in a fluid and not for a particle on the interface, it is
not likely to change the qualitative nature of results.

The angular velocity � of the particle is given by

d(Ip�)

dt
= Tst + TD + Tg, (3)

where Ip is the moment of inertia of the particle, Tst is the
torque due to the interfacial tension, TD is the torque due to
the viscous resistance, and Tg is the torque due to gravity. Here
we have assumed that the shape of the particle is symmetric,
e.g., a rod or an ellipsoid, and therefore only one component
of the angular-momentum equation needs to be considered.

The torque on a spherical particle due to the interfacial
tension is zero [9], and thus the rotational motion is not
important for spherical particles. To illustrate the role of inertia
in the rotational motion, we will consider a rod of length L and
radius R, which in equilibrium floats on a liquid surface with
its axis parallel to the surface (see Fig. 3). We will assume
that the contact angle is 90◦, and that it floats such that
one half of it is immersed in the liquid below. When the angle
between the axis of the rod and the undeformed liquid surface
is θ , an interfacial torque of γL2 ( L

6R
+ 2R

L
) sin θ acts on

the rod to bring it back to its equilibrium horizontal orientation.
In addition, a frictional torque TD = −πμL3

3 ln( L
2R

)� acts on

FIG. 2. Schematic of a heavier-than-liquid hydrophilic (wetting)
sphere hanging on the contact line at θc. The point of extension of the
flat meniscus on the sphere determines the angle θ1 and h2.
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(a) (b) (c) (d)

FIG. 3. (Color online) Rotational oscillation of a cylindrical rod
adsorbed at an air-liquid interface. The contact angle is assumed to
be 90◦, and so in equilibrium the rod floats with its center at the
undeformed interface and axis parallel to the interface. (a) The rod is
rotated clockwise from its equilibrium orientation. (b) The rod rotates
in the direction of the torque, but is pulled back by the interfacial
torque toward its equilibrium orientation. (c) The rod oscillates about
the equilibrium orientation. (d) After the oscillations subside, the rod
assumes equilibrium orientation.

a rotating rod [10]. The moment of inertia of a rod about a
direction normal to its axis is mL2

12 , where m is the mass of the
rod.

Brownian forces: The Brownian force in Eq. (2) is neg-
ligible compared to the capillary force. To show this, we
note that the Brownian force cannot cause a particle to move
away from its equilibrium position within the interface or
deadsorb when Wa is larger than kT, i.e., Wa

kT
= πR2γ12

kT
> 1.

Here we have assumed α to be 90◦. The same result can be
obtained from the Peclet number, defined to be the ratio of
the capillary and Brownian forces, Pe = RU

DB
= 6π R2γ12

kT
> 1,

where U = γ12

μ
is the characteristic velocity and DB = kT

6πμR

is the Brownian diffusion coefficient [10,11]. This is the
same condition except for a constant factor of 6 in the
definition of the Peclet number. On an air-water interface, for
R = 1 μm, Pe ≈ 108, and for R = 10 nm, Pe ≈ 104. Therefore,
for R � 10 nm, the Brownian force is several orders of
magnitude smaller than the capillary force (in the direction
normal to the interface), and thus can be neglected.

Governing dimensionless parameters: Assuming that the
characteristic velocity, length, and time are U = γ12/μ, R, and
R/U, respectively, Eq. (2) can be nondimensionalized to give
(see Ref. [6])

We m′ ρp

ρ

dV ′

dt ′
= sin(θc) sin(θc + α) + 3V ′fD

+2

3
B

ρp − ρc

ρ
fb

(
ρa

ρ
,
ρp

ρ
,θc,

h2

R

)
. (4)

Here the primed variables are dimensionless. fb is the
dimensionless buoyancy which is O(1) but depends on the
profile of the deformed interface. θc and h2 are defined in Fig. 2.
ρ and ρa are the densities of the lower and upper fluids, ρc is
the effective density of the volume displaced by the particle,
and ρp is the particle density. The dimensionless parameters
in the above equation are the Weber number We = 2

3
ρ Rγ12

μ2 ,

the Bond number B = ρR2g/γ12, the density ratio ρp

ρ
, and the

contact angle α. The Weber number is the ratio of the fluid’s
inertia and surface tension, and the Bond number is the ratio
of gravity and surface tension forces. As the characteristic
velocity is the capillary velocity, the capillary number is unity
(see Ref. [6]). Thus, the Reynolds number (Re), which is a
product of the We and capillary number, becomes the same as
We, i.e., Re = We.
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Similarly, assuming that the characteristic angular velocity,
length, and time are γ12

μL
, L, and μL

γ12
, respectively, Eq. (3) can

nondimensionalized to give

π

8

R

L

ρp

ρ
We

d�′

dt ′
= sin θ

(
L

6R
+ 2

R

L

)
− π

3
ln

(
L

2R

)
�′

−1

6
B

L

R

ρp − ρc

ρ
sin α tan θ cos θ. (5)

The dimensionless parameters in this equation are R
L

, and those
in Eq. (4): We, B, ρp

ρ
, and α.

To illustrate our results, we consider the case of a particle
on an air-water interface, assuming the parameters to have
the values μ = 0.001 Pa s, ρ = ρp = 1000 kg/m3, ρp−ρc

ρ
=

0.1, and γ12 = 0.07 N/m, and μa = ρa = 0, m′ = 1.5, fd =
0.5, and fb = 1. Therefore, for an air-water interface, We ∼
108R and B ∼ 105R2.

The role of particle inertia becomes negligible only when
We � 1 or R is much smaller than 10 nm. The influence of
gravity on an air-water interface becomes negligible when B
is small or R � 1 mm in the sense that such small particles
float so that the interfacial deformation is negligible [1,4–6].
However, even a negligibly small deformation of the interface
gives rise to attractive lateral capillary forces which, even
though small, cause floating particles to cluster. This happens
because a particle floating on a liquid surface is free to
move laterally. The only resistance to its lateral motion is
the hydrodynamic drag that can slow its motion but cannot
stop it.

Therefore, only very small particles, for which lateral cap-
illary forces are smaller than Brownian forces, do not cluster.
For example, on an air-water interface, lateral capillary forces
become smaller than Brownian forces when R � 10 μm, and
so micrometer and smaller sized particles undergo Brownian
motion on the interface and do not cluster [4–6]. Meanwhile,
the capillary force which acts vertically to pull the particle back
toward its equilibrium position in the interface remains much
stronger than the Brownian force, even for nanoparticles.

Vertical oscillation of a sphere: Our experiments and
direct numerical simulations show that when a particle being
adsorbed reaches the equilibrium height for the first time, its
velocity is nonzero, and so it continues to move downward [4].
However, when the particle center moves below the equilib-
rium height, the vertical capillary force changes direction and
acts upward to bring the particle back to the equilibrium height.
This suggests that the motion of the particle in the direction
normal to the interface is inertia dominated. This can be also
seen by linearizing Eq. (4) about the particle’s equilibrium
position. It can be shown that the behavior of the particle de-
pends on the sign of D = 9R2μ2[1 − 8

9We
ρp

ρ
[2 + B( ρp−ρc

ρ
)]].

Here we have assumed that the contact angle is 90◦. When
D < 0, the particle undergoes underdamped oscillations about
the equilibrium height, and when D > 0, its displacement from
the equilibrium height decays exponentially with time (see
Ref. [4]). For small particles, B is small, and thus D is zero
for We = 9

16
ρ

ρp
. Above this critical value of We (or R), D is

negative and the particle motion is underdamped.

The dimensionless frequency of oscillation ω′ for D < 0 is
given by

ω′ = ω
Rμ

γ 12

= 3

8π We

ρ

ρp

√
−1 + 8

9
We

ρp

ρ

[
2 + B

(
ρp − ρc

ρ

)]
. (6)

The frequency ω increases with decreasing R (or We). For
an air-water interface for ρp

ρ
= 1, for R = 1 mm, ω = 51.6 Hz;

for R = 10 μm, ω = 5.2 × 104 Hz; and for R = 100 nm, ω =
4.8 × 107 Hz.

The above results imply that for a particle adsorbed on
an interface there is a characteristic frequency which can be
excited by an external forcing. To show that this is indeed the
case, we conducted experiments in which a particle floating on
a water surface was subjected to an oscillatory magnetic field
of variable frequency generated by an electromagnet mounted
directly above the interface and the particle (see Fig. 4) [12].
The particles used in this study were steel or plastic beads
that contained a smaller magnetizable particle inside. When
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FIG. 4. (Color online) (a) Schematic of the experimental setup
used to study the forced oscillations of a steel bead floating on a
liquid surface. An oscillating voltage from a function generator was
amplified and then applied to an electromagnet mounted directly
above the interface to produce an oscillating magnetic field. The bead
was subjected to an oscillating magnetic force in the direction normal
to the interface. The vertical oscillations of the bead were recorded
using a high-speed camera. (b) The scaled amplitude of oscillation for
three spherical steel beads floating on the surface of water is shown
as a function of the forcing frequency. The radii of the beads were
250, 316, and 350 μm. The amplitude is scaled by a constant factor
so that it has a value of unity at the smallest measured frequency. The
amplitude of forced oscillation for the 350-μm bead was maximal
around ∼20 Hz and for the 250-μm bead around ∼24 Hz.

041606-3



P. SINGH, D. D. JOSEPH, I. S. FISCHER, AND B. DALAL PHYSICAL REVIEW E 83, 041606 (2011)

the magnetic field was switched on, the particle was subjected
to an oscillatory magnetic force in the direction normal to
the interface. The amplitude of oscillation of the particle due
to this forcing was measured by analyzing high-speed video
recordings of the particle’s vertical motion. Figure 4(b) shows
the amplitude of oscillation for three steel beads as a function
of the frequency. For R = 350 μm, the amplitude was maximal
at the frequency of ∼20 Hz; for R = 316 μm, at ∼20 Hz; and
for R = 250 μm, at ∼24 Hz. The latter is approximately the
smallest size for which such measurements could be made
using our present experimental setup.

This behavior of a particle adsorbed at the interface is
similar to that of an underdamped mass-spring-dashpot system
subjected to forced oscillations. The frequency at which the
amplitude is maximal is comparable to that given by Eq. (6)
for this system. Also, the frequency increases with decreasing
particle radius, in agreement with Eq. (6). The approximate

agreement is noteworthy considering that Eq. (6) contains only
the fluid and particle properties, and that there are no adjustable
parameters.

Rotational oscillation of a rod: Similarly, Eq. (5) can be
linearized about the equilibrium orientation to show that the
rotational behavior of a rod when disturbed from equilibrium
orientation depends on the sign of

Dr =
[
π

3
ln

(
L

2R

)]2 {
1 − 9

2π

We[
ln

(
L

2R

)]2

ρp

ρ

×
[

1

6
+ 2

(
R

L

)2

− 1

6

ρp − ρc

ρ
B

]}
.

The contact angle has been assumed to be 90◦. The rod
undergoes underdamped rotational oscillations about the
equilibrium orientation when Dr < 0. The dimensionless
rotational frequency ω′

r of the rod for Dr < 0 is given by

ω′
r = ωr

μL

γ12
= 4

3

L

R
ln

(
L

2R

)
1

We

ρ

ρp

√√√√(
−1 + 9

2π

We[
ln

(
L

2R

)]2

ρp

ρ

[
1

6
+ 2

(
R

L

)2

− 1

6

ρp − ρc

ρ
B

])
. (7)

Notice that the rotational frequency ω′
r depends on We,

B, the density ratios and the aspect ratio L
R

, and that it
is different from the characteristic frequency with which a
rod oscillates vertically. The frequency ωr increases with
decreasing R (or We), and decreases with increasing aspect
ratio L

R
. For example, for an air-water interface for L

R
= 4,

ρp

ρ
= 1, for R = 1 mm, ωr = 568.6 Hz; for R = 10 μm, ωr =

5.9 × 105 Hz; and for R = 100 nm, ωr = 4.9 × 108 Hz. For
L
R

= 8, ρp

ρ
= 1, for R = 1 mm, ωr = 323.8 Hz; for R = 10 μm,

ωr = 3.6 × 105 Hz; and for R = 1 μm, ωr = 9.5 × 106 Hz.
For this larger value of the aspect ratio, when R is O(100 nm)
the rotational motion of the rod becomes overdamped.

In conclusion, it is shown that the behavior of particles
adsorbed at fluid-liquid interfaces in the direction normal to

the interface is different from that in the lateral direction
to the interface. This is a consequence of the fact that
particles are free to move laterally on the interface just
as when they are fully immersed in a fluid, but in the
direction normal to the interface the capillary force keeps
them at their stable positions in the interface. Consequently,
although inertia can be usually neglected for a colloidal
particle fully immersed in a fluid, this may not be case for
a particle trapped at a fluid-liquid interface even when its
size is as small as a few nanometers. Furthermore, for an
adsorbed particle there are characteristic linear and rotational
frequencies that can be excited by an external forcing. This
latter behavior of particles is similar to that of an underdamped
mass-spring-dashpot system.
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