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The scalings in film growth by pulsed laser deposition (PLD) and modulated beam deposition (MBD) were
investigated by Monte Carlo simulations. In PLD, an atomic pulse beam with a period t0 were deposited
instantaneously on a substrate, whereas in MBD, adatoms were deposited during a short time interval t1 (0 �
t1 � t0) within each period. If t1 = 0, MBD will be identical to PLD and, if t1 = t0, MBD will become usual
molecular beam epitaxy (MBE). Specifically, logarithmic scaling was investigated for the nucleation density
reported for PLD, and the scaling of island density was studied regarding the growth for 0 < t1 < t0 in MBD. It
was found that the logarithmic scaling held for the nucleation density when growing islands were fractal-like but
the quality of data collapsing became worse when islands were compact by adatom diffusion along the edges of
islands. A crossover behavior from PLD growth to MBE growth was observed as t1 increased. The phase diagram
was also presented.
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I. INTRODUCTION

Molecular beam epitaxy (MBE) is an important tech-
nique for fabricating nanostructures of high-purity crystals
[1,2]. Many studies have been carried out on MBE, both
theoretically, using mean-field-type rate equation analysis
[3–5], scaling theories, and numerical simulations [6,7], and
experimentally, using field ion microscopy [8], scanning elec-
tron microscopy [9], scanning tunneling microscopy [10–12],
and reflection-high-energy-electron diffraction [10]. More
recently, a pulsed laser deposition (PLD) was introduced and
was increasingly used in the growth of multicomponent films
and high-temperature superconducting films, as well as for
the deposition of nanoparticles of various materials under a
wide range of growth conditions [13–15]. The MBE and PLD
techniques differ significantly from each other; in MBE, a
steady-state flux F of adatoms is deposited on a flat substrate,
whereas, in PLD, an atomic pulse beam of intensity I is
deposited instantaneously. These two techniques possess their
own characteristics and advantages; while MBE is the most
popular and feasible technique of film growth, PLD yields, in
many instances, a better layer-by-layer growth [16].

In this article, simulation results of the growth dynamics
are presented for surfaces grown by a technique which is a
combination of PLD and MBE, referred to as the modulated
beam deposition (MBD). In MBD, IL2 adatoms are deposited
on a substrate of L2 lattice sites during time t1 within a period
t0, during which monomers deposited earlier simultaneously
diffuse on a substrate. The film, then, undergoes relaxation
for the rest of time in a given period before the next pulse is
deposited. If t1 = t0, MBD is identical to MBE and, if t1 → 0,
MBD becomes PLD. As t1 increases from 0 to t0, the scaling
behavior of island density for MBD should cross over from
the PLD behavior to the MBE behavior. One can, then, raise a
question regarding which mechanism will dominate the growth
for the cases of 0 < t1 < t0.

The purpose of this article is twofold. First, the logarithmic
scaling of the “nucleation density,” discovered by Hinnemann,
Hinrichsen, and Wolf [17], is investigated for the growth with
t1 = 0, i.e., for the PLD growth, particularly when growing
islands are compact. It has been known that growing islands are

compact when adatoms attached to island edges are activated
to diffuse along the edges [18,19]. Similar logarithmic scaling
was studied by Lam, Liu, and Woo [20]; however, unfortu-
nately, these authors did not distinguish nucleation density
from island density, and it was found that logarithmic scaling
did not hold for the island density. The difference between the
nucleation density and the island density will be described in
Sec. II A. Second, in order to address the answer to the question
raised in the preceding paragraph, the power-law behaviors of
the saturated density of islands are investigated against the
ratio of the diffusion-to-deposition rates and the normalized
deposition time κ = t1/t0 for the growth by MBD, focusing
on the case for 0 < t1 < t0.

The MBD is similar to the deposition with a chopped flux
proposed sometime ago [21], in which an incident flux Fi is
chopped with a frequency f , so a steady-state flux is turned on
during the time 0 < t < d/f and is off during the rest of time in
a period. Although the turning-on-and-off procedure of the flux
appears to be similar, this technique differs intrinsically from
MBD. While the flux of an incident beam during the turning-on
period is fixed in Ref. [21], the number of particles deposited
within a period or, equivalently, the mean deposition flux is set
to be constant in the present work. With these restrictions, the
earlier model is better able to capture the essence of growth
dynamics by chopped flux, whereas MBD is more suitable
for the study of crossover behavior from PLD to MBE as the
deposition time t1 increases from 0 to t0. It should be noted that,
when d/f � τm (τm being the characteristic time), deposition
with a chopped flux also reduces to PLD with the intensity
Fi(d/f ), but d/f should not be too small and too large. (Note
that if d/f is too small, i.e., if d → 0, only a single atom will be
deposited in each pulse and the growth will become similar to
that of MBE [17].) On the other hand, MBD becomes precisely
PLD when t1 → 0. The MBD technique also enables one to
observe the scaling relations of island densities for various
values of t1 and the substrate temperature, as will be seen later.

Although the main interest of this work lies in the
theoretical viewpoint, the MBD technique may also be applied
experimentally in a way similar to that for the chopped flux by
controlling the deposition flux in an appropriate way.
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This article is organized as follows. In Sec. II, summary of
the scaling theories and details of the Monte Carlo algorithm
for MBD are presented. In Sec. III, results of the kinetic
Monte Carlo simulations for the scaling of nucleation density
in PLD and the scaling of island density in MBD are
presented, together with relevant discussions. The summary
and conclusions are given in Sec. IV.

II. THEORY AND METHODS

In this section, the key quantities and their scaling theories
are summarized, and a simulation algorithm is presented.

A. Key quantities

For the purpose of the present work, it is necessary to
calculate the nucleation density in PLD growth and the island
density in MBD growth. It is assumed that clusters of size
2 or larger are immobile and form stable islands; thus, the
critical island size is i = 1. (Note that the transient mobility
of small clusters caused by impingement and energy transfer
of incident particles which might be important in PLD for
the case of supersaturated pulse has been ignored [22].) The
nucleation density n(�) is the number of nucleation events per
unit area in the first layer integrated over time up to the time at
which coverage reaches �. The number of nucleation events
is increased by 1 whenever a new island is nucleated either
by deposition of an adatom on the nearest-neighbor site to a
monomer or by encountering two monomers with each other
by a surface diffusion and is never decreased even when two
or more islands coalesce forming a larger island; therefore, it
increases monotonically up to the coverage � = 1 monolayer
(ML) at which the first layer is completed. On the other hand,
the island density ρ, i.e., the number of islands per lattice
site, is increased by 1 whenever a new island is formed, is
unchanged when monomers aggregate to existing islands, and
is decreased when two or more islands coalesce. The island
density, therefore, increases in the early-time region, reaches
maximum in the steady-state region (often called aggregation
region), and decreases in the coalescence region, when plotted
against coverage. Although the nucleation density is not a
familiar quantity in MBE like an island density, it is introduced
in this work since the unusual logarithmic scaling was reported
for it.

Both the nucleation density and the island density are
sampled at the end of each pulse just before the new pulse
is deposited. Thus, the minimal value of nucleation density,
nmin, is the one measured at the end of the first pulse and the
maximal value, nmax, is that calculated at � = 1 ML.

B. Scaling theory

The fundamental quantities of primary interest in MBE are
the monomer and island densities ρ1 and ρ, which exhibit the
power-law behaviors [5]:

ρ1 ∼ �−νR1−z; ρ ∼ �−γ R−χ , (1)

where R is the ratio of the monomer diffusion rate D and
the adatom deposition rate F . In the steady-state region, in
which adatoms aggregate to existing islands and island density
remains in a steady state, the island density is a function

of R alone. The power χ may be obtained from the rate
equation analysis and is known to depend on the critical
island size i, which is one less than the size of the smallest
stable island, as χ = i/(i + 2). For i = 1, it is more accurately
known that χ = 2/(2 + d + df ) [23], where d is the substrate
dimension and df the fractal dimension of growing islands.
Experimentally, the index χ is determined from the images
obtained by various techniques mentioned earlier and, once χ

is known, the free surface diffusion rate D0 and the diffusion
barrier E0 are determined from the constant ρRχ for various
substrate temperatures. We will focus on how the index χ

varies when the modulated deposition time t1 varies within a
period.

On the other hand, in PLD, the unusual scaling of the
nucleation density was reported [17]. The nucleation density
scaled by its maximum value, i.e., its value at the coverage
� = 1, r = n(�)/n(1), is known to yield the logarithmic
scaling

ln r = (ln I )f (ln �/ ln I ) (2)

when growing islands are fractal. We will examine whether the
same scaling relation holds for a particular case when growing
islands are compact.

C. Simulation algorithm

Although the primary purpose of this work is to carry
out kinetic simulations for PLD and MBD techniques, the
simulation method for MBE is necessary for comparison
purposes, prior to the other two.

In MBE, the dissociation barrier of adatoms from island
edges is in general larger than the barriers of surface dif-
fusion and edge diffusion. In metal-on-metal epitaxy such
as Al/Al(111), Pt/Pt(100), and Fe/Cu(111), typical energy
barrier is Edis = 0.72 eV, while surface diffusion and edge
diffusion barriers are, respectively, E0 = 0.4 eV and Ee =
0.5 eV [24–26]. Therefore, unless the substrate temperature
is sufficiently high, the dissociation may be neglected and,
thus, the present work is restricted to the irreversible growth.
(For reversible growth with adatom detachment allowed, the
scaling relation of island density is known to be significantly
different from that for the irreversible growth; i.e., the exponent
χ defined in Eq. (1) increases smoothly as the substrate
temperature increases [27,28].) In all of the simulations in
this work, the Schwoebel barriers are completely neglected,
so the growth becomes layer by layer.

The atomic processes that should be considered in the irre-
versible growth are the deposition of FL2 atoms per second,
adatom diffusion on a substrate with a rate N0D0e

−E0/kBT ,
and edge diffusion with a rate NeD0e

−Ee/kBT , the prefactor
D0 = 2kBT /h being the frequency of atomic oscillation, N0

and Ne being the numbers of monomers and edge-diffusion
candidates, respectively, E0 and Ee being the corresponding
potential barriers, and T the substrate temperature. Adatoms
attached to island edges with only one lateral bond are assumed
to diffuse along island edges. In the experiments, atoms with
two or more bonds may also diffuse but, since the potential
barrier for such a diffusion is much higher than that of a
one-bond diffusion, atoms with more than one lateral bond
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are assumed to be stationary. The total rate is, thus, given as

Ntot = FL2 + N0D0e
−E0/kBT + NeD0e

−Ee/kBT

= F [L2 + R(N0 + Nere)] = FN , (3)

where the relations 	Ee = Ee − E0, re = e−	Ee/kBT , and
R = D/F (D = D0e

−E0/kBT ) were used. Thus, the probabil-
ities for deposition, diffusion, and edge diffusion are given,
respectively, as

pF = L2

N , pD = RN0

N , and pe = RNere

N . (4)

The evolution time should be accumulated by increasing
	t = 1/Ntot for each of the selected processes. In usual
MBE growth, the coverage in ML unit is more frequently
used for the evolution time. The time increment in an ML
unit is 	τ = 	t/	tML. Since FL2 particles are deposited
in a second, the time taken for deposition of an adatom is
	tatom = 1/FL2 and, thus, the time taken for deposition of
a monolayer is 	tML = 	tatomL2 = 1/F . Therefore, the time
increment for each of the selected processes is in an ML unit
	τ = F/Ntot = [L2 + R(N0 + Nere)]−1. In the experiments,
the coverage is measured for the evolution time; it is, therefore,
sufficient to increase the evolution time by an amount of
	τatom = 1/L2 whenever an adatom deposition is selected.

In PLD, since an atomic pulse beam is deposited with a
period t0 or, equivalently, with a frequency 1/t0, the mean
deposition flux Fav, defined by the flux when considering that
IL2 particles are deposited by a steady-state flux in a period,
is given as Fav = I/t0. In an ML units, the period is given as

τ0 = t0/	tML = I. (5)

Therefore, a pulse of intensity I is deposited instantaneously
and the film is subsequently left for relaxation during the time
τ0. Neglecting all hyperthermal nature of incident particles
which may occur in PLD, the total rate of surface diffusion
and edge diffusion is given as

Ntot = N0D + NeDre

= FavR(N0 + Nere) = FavRN1, (6)

where R = D/Fav in this case. Therefore, the probabilities for
deposition and diffusion are given, respectively, as

pD = N0

N1
and pe = Nere

N1
. (7)

During the relaxation time, the coverage does not increase;
however, the mean elapsed time for each of the selected
monomer diffusion and edge diffusion is 	t = 1/(N0D +
NeDre). Therefore, the mean evolution time in ML unit is
	t/	tML = [RN0 + RNere]−1. However, the time increment
between two consecutive hopping processes may not be
constant and may vary stochastically and, therefore, it is
increased by an amount

	τ = ln(1/q)

R(N0 + Nere)
,

q being the random number between 0 and 1, for each hopping
process. [Note that the mean of ln(1/q) is 1.]

In MBD, the situation is more complex than MBE or PLD
growth. The mean deposition flux over the period is given

by the similar way to PLD as Fav = I/t0 or, equivalently,
t0 = I/Fav. Since R = D/Fav = Dt0/I , the surface diffusion
rate can be written, in terms of R, as D = RI/t0.

During the time interval 0 < t < t1, the total rate is

Ntot = F1L
2 + D(N0 + Nere)

= F1L
2 + (RI/t0)(N0 + Nere), (8)

where F1 is the deposition flux during the time 0 < t < t1 and
is related with the mean flux by F1 = Favt0/t1. Since the pulse
intensity can be written as I = F1t1, Eq. (8) can be rewritten
as

Ntot = F1[L2 + κR(N0 + Nere)] = F1N2, (9)

where κ = t1/t0 is the modulated deposition time scaled by
a period. Therefore, the probabilities for deposition, surface
diffusion, and edge diffusion are given, respectively, as

pF = L2

N2
, pD = κRN0

N2
, and pe = κRNere

N2
. (10)

During the time interval t1 < t < t0, since monomer diffu-
sion and edge diffusion are activated, the total rate is the same
as that given in Eq. (6) and the probabilities are precisely those
given in Eq. (7).

The evolution time is updated by increasing by an amount

	τ = κ ln(1/q)

ξL2 + κR(N0 + Nere)
,

where ξ = 1 in an interval 0 < t < t1 and ξ = 0 in t1 < t < t0,
for each selected process. The factor ln(1/q) is again to take
into account the stochasticity of time increment between two
consecutive processes.

III. RESULTS AND DISCUSSIONS

In all simulations, Fav = 0.1 (atoms per site per second),
D0 = 1013 (hops per atom per second) and E0 = 0.4 eV were
used. Typical morphologies obtained by MBD using T = 400
K and I = 0.01, at the coverage of � = 0.1 ML, are compared
in Fig. 1; the upper figures are for Ee = ∞, and the lower ones
for Ee = 0.5 eV. [Note that κ = 0 and κ = 1 correspond to
the PLD and MBE, respectively.]

A. Scaling of nucleation density for PLD

In order to examine whether logarithmic scaling holds for
the nucleation density when an edge diffusion is activated in
PLD, simulations were carried out on a square-lattice substrate
of temperature T = 440 K, using Ee = 0.5 eV, t1 = 0, and
selected values of I , ranging 10−5 < I < 10−1. The selected
size of the substrate was 1000 × 1000 but, when the finite-size
effect is apparent, the same simulation was also carried out
on a 2000 × 2000 lattice. For comparison, simulations were
also carried out for Ee = ∞. When Ee → ∞, edge diffusion
is suppressed and islands formed are fractal which are similar
in morphology to the diffusion-limited aggregations (DLAs);
the growth is, therefore, referred to as the “fractal growth.” In
this particular case, the nucleation density is known to exhibit
the unusual logarithmic scaling [17]. On the other hand, for a
finite value of Ee, i.e., for Ee = 0.5 eV, the growing islands are
compact and the growth is referred to as the “compact growth.”
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 = 0.002 κ κ = 1.0 = 0.1 = 0.0κ κ

FIG. 1. Snap shot of the morphologies at the coverage of
0.1 ML, generated on a 200 × 200 square lattice by modulated beam
deposition with Feff = 0.1, I = 0.01, and E0 = 0.4 eV, for selected
values of the deposition time. The upper figures are for Ee = ∞, and
the lower ones for Ee = 0.5 eV, both with the substrate temperature
T = 400 K.

Diffusion of adatoms along island edges not only changes
the morphology of growing islands from fractal-like to
compact but it also yields islands of sizes 2 and 3 (dimers
and trimers) to mobile by alternate hopping of adatoms along
edges of the remaining atoms. Such small-cluster mobility is
known to influence significantly the power-law behaviors of
the densities of monomers and islands [28–30]. Therefore, in
order to investigate the sole influence of the morphological
changes of islands on the scaling of the nucleation density, it
is necessary to suppress mobility of small islands. For this pur-
pose, it is sufficient to inhibit edge diffusion of adatoms which
are composed in dimers and trimers, because larger clusters
quickly form stable, compact islands by edge diffusions. (Note
that center of mass of compact tetramers and larger islands is
immobile, even though adatoms on island edges diffuse along
the edges.) It might also be interesting to compare both the
results obtained with and without suppressing mobility to gain
some insight into the influence of small-cluster mobility on
the scaling of nucleation density in PLD and on the formation
of islands in MBD. The nucleation density and island density
are, thus, calculated with and without suppressing mobility of
dimers and trimers.

It should be realized that there might be subtleties in
defining “stable” islands when mobility of dimers and trimers
are unsuppressed. The term island implies that clusters of
adatoms are undissociable and immobile and, in this sense,
dimers and trimers might not be considered islands for the
case when mobility due to edge diffusion is unsuppressed.
However, in the present work, since surface diffusion of dimers
and trimers is neglected (i.e., diffusion barriers are considered
to be infinite) and since mobility caused by edge diffusion of
adatoms is in general much slower than that caused by surface
diffusion, dimers and trimers are considered to be islands.

Plotted in Fig. 2 are nmax (upper set) and nmin (lower set)
against I ; it was determined that nmax = 0.340I 0.556 (circles)
for the fractal growth and nmax = 0.334I 0.510 for the compact
growth, both within the region 5 × 10−5 � I � 5 × 10−3,
when mobility of dimers and trimers is suppressed (squares),
and nmax = 0.189I 0.285 within the region of 2.5 × 10−4 � I �
2.5 × 10−2 when mobility is unsuppressed (triangles). Since
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FIG. 2. The maximum and minimum values of nucleation den-
sity plotted against pulse intensity, generated using Feff = 0.1,
E0 = 0.4 eV on a 1000 × 1000 substrate of temperature T = 440 K,
in PLD. The circles are for the fractal growth, the squares for the
compact growth using Ee = 0.5 eV with mobility of dimers and
trimers suppressed, and the triangles for the compact growth with
mobility unsuppressed. The upper sets are the maximum densities,
and the lower sets overlapped one onto another are the minimum
densities.

nmin ∝ I for all cases, by plotting the nucleation density scaled
by their maximum value, i.e., r = n/nmax, against the coverage
� on a double logarithmic scale, the right end point of each
data set falls onto a single point, i.e., onto 1. Dividing the data
by ln I , the left end points also fall onto a single point; thus,
both the right and left end points fall onto the same point.
Such plots are shown in Fig. 3; the upper set of data are for
the fractal growth, the lower set for the compact growth with
mobility of dimers and trimers unsuppressed, and the middle
set with the mobility suppressed. For the fractal growth, data
for various pulse intensities fall on the same curve, indicating
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FIG. 3. (Color online) Plot of the logarithmically scaled nucle-
ation density against the scaled coverage, for selected pulse intensi-
ties, generated using Fav = 0.1 and E0 = 0.4 eV on a 1000 × 1000
square lattice of temperature T = 440 K, in PLD. The upper set is for
the fractal growth and the remaining two sets for the compact growth
with Ee = 0.5 eV, the middle one with edge diffusion of adatoms on
dimers and trimers inhibited.
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that logarithmic scale indeed holds for the nucleation density,
as observed in Ref. [17].

For the compact growth with mobility of dimers and trimers
suppressed, data approximately fall onto the same curve,
though quality of collapse is not as good as for the fractal
growth. Therefore, the morphology of islands does not appear
to significantly influence the scaling of the nucleation density,
unlike the earlier finding by Lam, Liu, and Woo [20]. It
should be noted that they examined the scaling of island
density, but the logarithmic scaling was reported for nucleation
density [17]. On the other hand, when mobility of small
islands is unsuppressed, data do not collapse. Since dimers
and trimers move and aggregate to existing islands during
the relaxation time t1 < t < t0, leaving large empty spaces on
the substrate where nucleation may take place rather easily,
mobility of small islands greatly enhances nucleation density,
as was observed in Fig. 2. As pulse intensity increases, such
enhancement becomes more significant and, accordingly, it
appears to break the scaling.

In usual critical phenomena, it is known that logarithmic
scaling is specific in the upper critical dimension. If the ob-
served “unusual” scaling in two substrate dimensions is indeed
logarithmic, the two-dimension will be a critical dimension
and the scaling in one dimension might be of a power law or
of a different type. In the earlier work in one dimension, it was
found that similar logarithmic scaling was observed for both
the island density (normalized by a different manner) and the
nucleation density [31]. Based on the results, it was concluded
that logarithmic data collapsing was accidental. Very recently,
Barato, Hinrichsen, and Wolf carried out rate equation analysis
on the nucleation density, and it was found that the scaling was
not logarithmic in their analysis [32]. Therefore, although data
appear to collapse in Fig. 3, such a scaling may be fortuitous.
The same logarithmic scaling was also examined with the data
for κ = 10−4. Since this value of κ is sufficiently small so
the growth for 10−4 � I � 10−3 is in the PLD regime, the
logarithmic scaling should still hold if it is specific for the
PLD growth. However, data did not fall on the same curve.
This might be another indication that the logarithmic scaling
observed for κ = 0 is not real in PLD growth.

B. Phase diagram

In order to observe how the growth dynamics varies as the
pulse intensity and the modulated deposition time increases,
the island density was calculated for selected values of I ,
ranging from 10−5 to 1, and κ from 0 (PLD) to 1 (MBE), all
with E0 = 0.4 eV and Ee = ∞.

Since the steady-state region becomes narrower as I in-
creases, it was somewhat difficult to determine the steady-state
region. Considering that island density, when plotted against
the evolution time or coverage, increases in the early time,
reaches maximum in the steady-state region and decreases
sharply beyond it, the maximum value of ρ was assumed to be
the steady-state density ρss. Plotted in Fig. 4 are ρss, obtained
for a substrate temperature T = 360 K. For κ = 0, i.e., for
pure PLD case, the island density increases with a power law
ρss ∼ I 0.521 as shown with a thick dashed line. For κ = 1,
since the probabilities in Eq. (10) are identical to those in
Eq. (4) and do not depend on the pulse intensity, the island
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FIG. 4. The steady-state (maximum) values of island density,
obtained from MBD growth with Fav = 0.1, E0 = 0.4 eV, and
Ee = ∞, plotted against the intensity of incoming flux for selected
values of the modulated deposition time.

density remains the same as that for MBE, as presented by
crosses in Fig. 4. For κ > 0, the island density for small I

appears to follow the power-law behavior of pure PLD and
then saturates as I further increases The steady-state values
exhibit the power-law behavior ρss ∼ κ−α with α � 0.34,
which is close to the value of χ defined in Eq. (1). It should be
noted that in the steady-state (aggregation) region the island
density scales as ρss ∝ R−χ , with χ = 2/(2 + d + df ), which
is χ � 0.35 for the fractal islands of the fractal dimension
similar to that of DLA, df � 1.7 [33,34], and χ = 1

3 for the
compact islands [35]. Since α = χ , one can write

ρss ∝ (κR)−α, (11)

implying that, for a finite and not too small I , the growth
dynamics is similar to that of MBE but with the reduced ratio
of the diffusion-to-deposition rates κR (we refer to this as “ex-
tended MBE (EMBE) growth”). This observation is precisely
what one can expect by comparing the probability distributions
in Eq. (10) with the MBE probabilities in Eq. (4). Intuitively,
increasing κ reduces the effective deposition flux and, ac-
cordingly, enhances R within the region 0 < t < t1. However,
this argument is valid only when monomers disappear instan-
taneously as soon as they arrive on the substrate and nothing
happens during the relaxation time t1 < t < t0. As an example,
for sufficiently small κ , the effective deposition flux is very
large when flux is on, and the monomer density increases
rapidly. When flux is off and the substrate is under relaxation,
monomers nucleate and island density increases during the
relaxation. This situation is similar to that for the PLD growth
and the scaling relation in Eq. (11) is no longer valid.

From Fig. 4, it is clear that, for small values of κ , data exhibit
three different phases; (i) the MBE phase for I � 10−5, (ii) the
PLD phase in which data follows the PLD power-law behavior,
and (iii) the EMBE phase. Although the boundary between
the PLD and EMBE phases are unclear and determination of
it from the data may be subjective, the phase diagram of the
MBD growth can be drawn as in Fig. 5. For different substrate
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FIG. 5. Phase diagram of the MBD growth for the substrate
temperature T = 360 K. The regions specified by I, II, and III
correspond, respectively, to MBE, PLD, and EMBE. The boundary
line between PLD and EMBE (dotted line) was drawn from Fig. 4 by
connecting the points for various values of κ at which data begin to
deviate from the PLD power-law behavior.

temperatures, the boundaries of different phases may be shifted
but the diagram is qualitatively similar.

C. Scaling of island density for MBD

In Sec. III B, it was found that the steady-state island density
depended on κ and R via the relation ρss ∝ κ−αR−χ , with
α = χ . According to the phase diagram in Fig. 5, the same
relation should hold for any finite value of I within a certain
range of κ . Then, the data of scaled island density ρ(κR)χ

for various values of κ and R would fall on the single curve
in the aggregation region when plotted against the coverage.
The value of R is given as R = D/Feff = 1014e−Ee/kBT for the
values of D0 and Fav selected in this study and, thus, varies by
varying the substrate temperature.

Plotted in Fig. 6 are the steady-state island densities
with respect to the fractal growth (Ee = ∞) for T = 400 K
(squares) and T = 440 K (circles) and I = 0.0005, for selected
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FIG. 6. Plot of the density of islands in the aggregation region
against the modulated deposition time, generated using Feff = 0.1,
I = 0.0005, E0 = 0.4 eV, and Ee = ∞, for two selected values of
the substrate temperature in MBD.
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FIG. 7. (Color online) Plot of the scaled densities of islands,
ρ(κR)χ , against the coverage, generated using Eeff = 0.1, I =
0.0005, E0 = 0.4 eV, and Ee = ∞, for two different values of the
substrate temperature. The upper data for the same type lines are for
T = 440 K and the lower ones for T = 400 K.

values of κ . (Note that, in this case, the period of deposition is
t0 = I/Fav = 5 × 10−3 sec or, equivalently, the frequency is
200 Hz.) Both data sets appear to exhibit power-law behaviors
with the same power of α � 0.350 within the region κ � 0.03
which is indeed close to the value χ � 0.35. Figure 7 shows
the simulation data for ρ(κR)χ , with χ = 0.35, plotted against
the coverage; data in the aggregation region (0.05 � � � 1.0)
fall onto the same curve.

For the compact growth using Ee = 0.5 eV, with mobility of
dimers and trimers suppressed, similar power-law dependance
of ρss on κ is observed in the aggregation region but with the
power α � 0.33, which is again close to the known value of
χ = 1

3 for the compact growth. The scaling plot is displayed
in Fig. 8; the inset is the steady-state densities of islands
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FIG. 8. (Color online) Plot of the scaled densities of islands,
ρ(κR)χ , against the coverage, generated using Eeff = 0.1, I =
0.0005, E0 = 0.4 eV, and Ee = 0.5 eV, with mobility of dimers
and trimers suppressed, for two different values of the substrate
temperature. The types of lines are for the same deposition times as
those in Fig. 7. The inset shows the steady-state densities of islands
for T = 440 K (circles) and T = 400 K (squares), with the dashed
lines the regression fits.
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FIG. 9. Plot of the density of islands in the aggregation region
against the modulated deposition time, generated using Feff = 0.1,
I = 0.0005, E0 = 0.4 eV, and Ee = 0.5 eV, without suppressing the
mobility of dimers and trimers, for two selected values of the substrate
temperature in MBD.

plotted against the scaled deposition time, for two substrate
temperatures, T = 440 K (circles) and T = 400 K (squares).
Again, the data for various values of κ and for different
temperature values fall onto the same curve. The scaling plots
for both fractal growth and compact growth indicate that the
power-law behavior of the steady-state densities of islands
with respect to the MBD growth is identical to that of MBE
but with a reduced deposition flux.

For the compact growth, without suppressing the mobility
of dimers and trimers, it was found that, in the region of 0.1 �
κ � 1, ρ ∝ κ−0.30 for T = 440 K and ρ ∝ κ−0.23 for T =
400 K, as shown in Fig. 9; thus, the scaling relation becomes
ρss ∝ κ−αR−χ , with χ � 2

5 [28] and α being dependent on
the substrate temperature. Therefore, a universal scaling law
does not exist for various substrate temperatures, when dimers
and trimers are mobile. Failure of the universal scaling law
is attributed to the fact that small clusters diffuse during the
relaxation time t1 < t < 1 in each period and, therefore, island
density significantly decreases. As the substrate temperature
increases, the mobility increases and, accordingly, island
density decreases more rapidly as κ increases. This results in
the power α being dependent on the substrate temperature or,
equivalently, on the ratio of the diffusion-to-deposition rates,
yielding a failure of the universal scaling over the substrate
temperature. Indeed, data of the island density within the
power-law region of κ collapsed onto the same value in the
aggregation region for each substrate temperature, but those
for different temperatures did not fall on the same curve.
The scaling region became much narrower, compared with
the other two cases discussed earlier (not shown).

The results in this work may be compared with those of the
earlier work by Jensen and Niemeyer [21]. While in the earlier
work the deposition of a constant flux Fi is turned on during
0 < t < d/f in each period of frequency f , in this work it is
turned on during 0 < t < t1 in each period; therefore, 1/f and
d correspond, respectively, to t0 and κ . When plotting the island
density against f/d, three distinct regions were observed: (i)

τm � d/f , (ii) τm � d/f , and (iii) τm � 1/f , τm being the
time after which the monomer density attains its steady-state
value after each deposition process in each period. In region
(i), the steady-state island density grows as ρss ∼ R−χ , which
is precisely the island density of MBE growth. On the other
hand, in (iii), i.e., in the high-frequency region, it was given
as ρss ∼ R−χdχ ; i.e., island density increased as d increased.
It is obvious that ρss increases as d increases because more
particles are deposited in a period. However, in the present
work, the island density decreased as κ increased, as was seen
in Fig. 6, because the effective flux F1 decreased as κ increased.
The difference is clearly attributed to the difference of the two
growth models. Moreover, it was not clear from the earlier
results that the island density was similar to that of PLD in the
d → 0 limit. The present data, however, exhibited precisely
those of PLD in the κ → 0 limit and those of MBE in the
κ → 1 limit. Therefore, MBD better presents the crossover
behavior from PLD to MBE as κ increases.

IV. SUMMARY AND CONCLUSIONS

In summary, the unusual logarithmic scaling of nucleation
density was found to hold for both the fractal growth and
the compact growth with mobility of dimers and trimers
suppressed, but the quality of data collapsing for the latter
case is not as good as for the former case, unlike the results for
island density by Lam, Liu, and Woo. On the other hand, when
dimers and trimers are mobile by consecutive edge diffusions
of adatoms, such a scaling did not hold. The logarithmic
scaling was also investigated for κ � 1, for which the growth
dynamics is expected to be similar to that of PLD within the
region of small values of I , but data did not scale. Based on
these observations and the earlier results, it is concluded that
the logarithmic scaling observed in PLD is not real but appears
to be accidental.

For MBD growth, the steady-state density of islands
exhibited the power-law behavior ρss ∼ κ−αR−χ , with α = χ

when mobility of dimers and trimers is suppressed. The scaling
plot exhibited excellent data collapsing in the steady-state
region, for both the fractal growth and the compact growth.
From the results, it is concluded that the growth mechanism
of MBD is similar to that of the usual MBE but with different
deposition rates, as long as the modulated deposition time
is not too small. (If it is too small, then the growth appears
to be similar to the PLD growth.) We have presented the
results for the two substrate temperatures. The substrate
temperature is associated with the monomer hopping rate via
D = D0e

−E0/kBT � 9.12 × 107 [hops per second per atom]
for E0 = 0.4 eV and T = 400 K; therefore, R ≈ 109, which is
the value certainly accessible by experiments. With this value,
monomers disappear instantaneously as soon as they arrive
on the substrate and nothing happens during the relaxation
time. If R is not large enough, e.g., if R ∼ 106 or smaller, the
scaling relation in Eq. (11) will no longer be valid. It might be
interesting to observe whether such scaling regions exist for
much smaller substrate temperatures, and such a problem is
left for future study.

On the other hand, when small clusters are mobile, the
power-law region of the saturated density of islands becomes
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narrower and the universal power-law behavior for various
substrate temperatures was not observed, implying that mo-
bility of small clusters significantly influences the power-law
behaviors for both the PLD and MBD growth.
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