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Time-dependent correlations in a supercooled liquid from nonlinear fluctuating hydrodynamics
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We solve numerically the equations of nonlinear fluctuating hydrodynamics (NFH). A coarse graining of the
density field is applied at each time step to avoid instabilities which otherwise plague the algorithm at long times.
The equilibrium correlation of the density fluctuations at different times obtained directly from the solutions
of the NFH equations are shown here to be in quantitative agreement with corresponding molecular dynamics
simulation data. Low-order perturbative treatment of the these NFH equations obtains the mode coupling model.
The latter has been widely studied for understanding the slow dynamics characteristic of the supercooled state. A
crucial aspect of this theory is a rounded version of a possible ergodic-nonergodic transition in the supercooled
liquid at a temperature Tc between melting point Tm and the glass transition temperature Tg . In the present work
we demonstrate numerically the role of strongly coupled density fluctuations in giving rise to slow dynamics and
how the 1/ρ nonlinearity in the NFH equations of motion is essential in restoring the ergodic behavior in the
liquid. The relaxation data indicate that at moderate supercooling near Tc, the time temperature superposition
holds. The relaxation gets increasingly stretched with increased supercooling. The relaxation time τ shows an
initial power-law divergence approaching a transition temperature Tc generally identified as the mode coupling
temperature. From the direct solutions we obtain a value for Tc much lower than that typically estimated from
solution of low-order integral equations of mode coupling theory. This is in agreement with the trend seen in
computer simulations.
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I. INTRODUCTION

The conserved densities of mass, momentum, and energy
constitute the simplest set of slow modes which is characteris-
tic of an isotropic liquid. The dynamic behavior of these liquids
is often determined in terms of the correlation of fluctuations in
these slow modes at different times. The microscopic balance
equations satisfied by these slow modes correspond to the
respective conservation laws for the relevant physical property,
i.e., mass, momentum, and energy. These equations also form
the basis of the nonlinear fluctuating hydrodynamics (NFH)
model for the dynamics of these slow modes in terms of
nonlinear differential equations having regular and stochastic
parts. The different terms in these equations thus represent
widely different time scales of variation signifying the complex
nature of the time evolution of the dense liquid. The regular
parts in the NFH equations involve nonlinear coupling of slow
modes, while the random parts represent noise which can be
linear [1–3] or multiplicative [2,4].

The most widely studied theoretical model for the slow
dynamics characteristic of a supercooled liquid approaching
vitrification is termed as the self-consistent mode coupling
theory (MCT) [5–7], and can be obtained from the NFH
equations. The basic idea implemented in the MCT model
is that in a strongly interacting dense liquid, the coupling of
density fluctuations is dominant and gives rise to a nonlinear
feedback mechanism [5] which produces extremely slow
dynamics. In its simplest version the MCT predicts that above
a critical density, the long time limit of the time correlation C(t)
of density fluctuations is nonzero. This signifies an ergodic-
nonergodic transition (ENE) in the liquid at a temperature Tc.
This dynamic transition is considered to be a precursor to the
liquid-glass transition which occurs in the deeply supercooled

liquid at a temperature Tg < Tc. The relaxation time of the
liquid crosses the typical laboratory time scales at Tg . The
dynamics of the supercooled liquid near Tc involves several
different regimes of relaxation and has been widely used in
fitting experimental data on different liquids. However, the
simple MCT approach is known to exaggerate the tendency to
produce a slow dynamics, predicting a complete freezing at a
rather low density or high temperature. In this regard it is useful
to note that the perturbation expansion for the renormalized
transport coefficients used in the MCT, though systematic, is in
terms of a dimensionless parameter which is not small. It has
also been shown [1,8] that the 1/ρ nonlinearities in the NFH
equations remove the sharp ENE transition predicted in the
simplified theory. Thus, in seeking agreement to experiments,
the coupling constants appearing in the low-order perturbative
model of MCT have often been used as free parameters in
obtaining a satisfactory fit with experimental data. However,
a first-principles treatment of the dynamics avoiding the low-
order perturbation theory and adjustable fit parameters has not
been attempted. In the present work we study the consequences
of the nonlinear coupling of the density fluctuations in a
nonperturbative manner using numerical methods. We report
here the study of the slow dynamics of a dense monatomic
Lennard-Jones liquid by numerically solving the stochastic
equations of NFH. Our nonperturbative calculation shows
good agreement with the direct computer simulation results
of the same system in equilibrium and demonstrates the roles
of the various nonlinearities on the asymptotic dynamics.

II. EQUATIONS OF NFH

We present below a brief description of the equations of
fluctuating hydrodynamics which we solve numerically to
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compute the correlation functions. For an isotropic liquid
we consider the model equations for the mass density ρ and
momentum density g [1] in the simplest form as follows:

∂ρ

∂t
+ ∇ · g = 0, (1)

∂gi

∂t
+ ∇j

[
gigj

ρ

]
+ ρ∇i

δFU

δρ
+ Lij

gj

ρ
= θi . (2)

The correlations of the Gaussian noise θi are related to the
bare damping matrix Lij [9],

〈θi(x,t)θj (x ′t ′)〉 = 2kBT Lij δ(t − t ′)δ(x − x ′). (3)

For an isotropic liquid, the bare transport coefficients are
obtained as

Lij = (ζ0 + η0/3)δij∇2 + η0∇i∇j , (4)

where ζ0 and η0, respectively, denote the bare bulk and shear
viscosities. The stationary solution of the Fokker-Planck equa-
tion corresponding to the generalized Langevin equation (2)
is obtained as exp{−βF [ρ,g]} with β = 1/kBT is the Boltz-
mann factor. The coarse-grained free energy functional is
obtained as

F [ρ,g] = FK [ρ,g] + FU . (5)

The kinetic part is dependent on the momentum density

FK =
∫

dx g2/(2ρ), (6)

and the so-called potential part is given by

FU = Fid + Fint, (7)

where Fid represents the purely entropic contributions related
to the noninteracting system. This part termed as the ideal gas
contribution is obtained in the form:

βFid =
∫

drρ(r)

[
ln

(
ρ(r)

ρ0

)
− 1

]
. (8)

The interaction part Fint up to quadratic order in density
fluctuations [10] is obtained as

βFint = − 1

2m2

∫
dr dr′c(r − r′)δρ(r)δρ(r′), (9)

where c(r) is the two point Ornstein-Zernike direct correlation
function [9] and m is the mass of the particles.

For the glassy dynamics we focus on the coupling of
slowly decaying density fluctuations present in the pressure
functional, represented by the third term on the left-hand
side of Eq. (2). With the choice of FU as presented above
in Eqs. (7)–(9), the nonlinear contribution in this term reduces
to

ρ∇i

δFU

δρ
= ρ∇if (r,t), (10)

with the function f (r,t) being presented in the form of a
convolution

f (r,t) = m−1
∫

dr c(r − r′)δρ(r′,t). (11)

If we replace ρ by ρ0 in the right-hand side of Eq. (10) then
we have a dynamics linearized in density fluctuations.

III. NUMERICAL SOLUTION OF NFH EQUATIONS

We now present the steps followed in solving the above-
described NFH equations numerically on a cubic grid with
mesh size h in three dimensions. We consider here a classical
system of N particles, each of mass m interacting via the
Lennard-Jones potential

u(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
. (12)

The present problem therefore involves two characteristic
length scales: the scale σ of the interacting potential, and length
h of the cubic lattice grid on which ρ and g are computed.
The ratio σ/h is chosen to be noninteger =4.6 to reduce
the likelihood of crystallization in the system. In the results
presented here, time is scaled with the Lennard-Jones (LJ)
unit of τ0 = (mσ 2/ε)

1
2 , and length with h. The thermodynamic

state of the fluid is described in terms of the reduced density
n∗ = n0σ

3 and the reduced T ∗ = (kBT )/ε. For numerical
solution the conserved densities are scaled to dimensionless
forms:

n(r) = [h3m−1]ρ(r), j(r) = [
h3(mε)−

1
2
]
g(r). (13)

A microscopic frequency for the liquid state corresponding
to fluctuations at wave number q is obtained as �q =
q/[βmS(q)]. The inverse �q represents a microscopic time
scale for the system. The speed of sound c0 in the hydrody-
namic limit is given by c2

0 = kBT /[mS(0)].
The numerical solution scheme used here starts with an

initial distribution of the fluctuating variables n(r) and j(r) over
a set of points 203 on a cubic lattice. The equation of motion
for the density variable ρ(x,t), i.e., the continuity equation,
is linear. Let us consider the various nonlinear terms present
in the equation of motion for the momentum density. First,
the nonlocal integral f (r,t) defined in Eq. (11) appears in the
reversible part of the equation of motion and is evaluated as a
sum of contributions from the successive shells,

f (r,t) = h3
∑

i

c(Ri)
∑

α

δn
(
Rα

i ,t
)
, (14)

where Rα
i for α = 1, . . . ,mi denotes radii vectors of the mi

lattice points in the ith spherical shell of radius Ri . Second,
the 1/ρ nonlinearity in the dissipative term of the momentum
equation is computed by replacing the density field in the
denominator with the ρ(x) averaged over a length scale close
to σ around the corresponding point r. Finally, we ignore the
convective nonlinearity in the present calculation and focus
on the role of the pressure nonlinearity in producing the slow
dynamics.

A major hurdle encountered in the numerical scheme used
here arises from an instability which occurs from the numerical
artifact in the solution scheme by which n(x,t) becomes
negative at certain grid points. To avoid this situation, we
adopt a coarse-graining scheme in which the density n(x,t) on
the grid is redefined at each step of the numerical integration.
In devising the steps for the coarse graining, we make use
of the following physical interpretation of the definition of
ρ(x,t) of the density field: the integral

∫
�V

dx ρ(x,t) over
an elementary volume �V of the system represents the total
mass in this volume. To maintain this at each time step of
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the numerical integration, the positivity of the field n(x) over
the whole grid is checked. If the density turns negative at
a point after numerical integration, we reduce n(x) at some
or all of the neighboring sites by taking equal contributions
from each and add the sum total to the original site. It is
also ensured that the density at none of the neighboring sites
becomes negative as a result of this redistribution. The sum of
the densities at the original and the contributing sites remains
unaltered and hence global conservation is maintained at all
times. If the above redistribution involving contributions only
from the nearest-neighbor sites is insufficient to make n(x)
positive everywhere, we include the next-nearest neighbors
in the redistribution and so on. In reality, however, it turns
out from the execution of the program that we hardly need to
include beyond the second shell of neighbors surrounding the
original site. With the density instability being corrected with
this coarse-graining procedure, the numerical algorithm can
be run up to much longer times than in the earlier works [11].
The arbitrary regularization of the strength of the noise [11]
is avoided, and the fluctuation dissipation relation is respected
in the proper form given in Eq. (3).

Starting from a uniform configuration of density and
momentum density on the grid of points, we solve the
equations of motion progressively in time and the results
for the density fluctuations are saved in selected time bins.
The whole array consisting of the density fluctuations n(x,t)
at different lattice points x are then transformed using fast
Fourier transform subroutines and stored as ρ(k,t) in selected
time bins. These data repeated over different sets of initial
conditions are averaged to obtain the correlation functions.
From these data the correlation of density fluctuations at two
different times is obtained. Equilibrium is inferred for the
system when time translational invariance of the correlation
function is obtained, i.e., C(t + tw,tw) is a function of t only.

IV. EQUILIBRIUM CORRELATION FUNCTIONS

We adopt the above-described method of computing the
time correlation functions for the equilibrium system. As a
check we compute the equal time correlation function from
the solution of the FNH equations. First, we obtain from the
density field ρ(xi) ≡ ρi at the point x on the grid, the two point
pair correlation function g(r) as follows. The latter is defined in
terms of the density fields {ρi} at the different points (denoted
by i) on the grid as

g(r) =
〈

�i>jρiρjfij

ρ2
0�i>jfij

〉
, (15)

where ρ0 is the average density. The weight function fij = 1
if the separation between mesh points i and j lies between r

and r + �r (�r is a suitably chosen bin size), and fij = 0
otherwise. The angular brackets refer to an average over the
noise. We compute this correlation function directly from
the density fields computed on the lattice at times when the
time translational invariance has been attained indicating a
thermally equilibrated state. The equilibrium g(r) vs r plot
corresponding to T ∗ = 2.0 and n∗

0 = 0.97 is displayed in
Fig. 1. As it was already pointed out, replacing the ρ in the
right-hand side of Eq. (10) with ρ0, the dynamics gives rise to
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FIG. 1. (Color online) Pair correlation function g(r) vs r (in units
of σ ) at T ∗ = 2 and n∗

0 = 0.97 for nonlinear dynamics (line-point)
and as computed from input c(r) (dashed line). The corresponding
result for the linear case is shown in the inset.

a linear dynamics and the corresponding numerical solution
is trivially obtained with almost no coarse graining. The g(r)
obtained with the linear equations of motion is also displayed
in the inset of Fig. 1. The coarse graining has some though
not drastic influence on the solution as we can see from the
difference of the two results.

The size of the grid h (≈0.23σ here) also limits the
numerical computation. The solution of the NFH equations in-
volves first and second spatial derivatives of the hydrodynamic
fields ρ and g. The accuracy of these numerically calculated
derivatives depends on the grid size. And we need to make
an optimum choice for limitation with computation time. The
effect of this spatial grid size shows up in the static quantities,
which show a considerable amount of scatter.

During the process of equilibration, as the system evolves,
the corresponding equal time correlation g(r) is obtained at
each stage. In Fig. 2 we display for two distances r = σ and
2.0σ how the g(r) reaches the respective time-independent
value. The corresponding results obtained from the solutions of
the the linear equations are also shown in the inset of Fig. 2 for
comparison. In this case the equilibration occurs over shorter
time scales, since the relaxation time is also shorter.

Next, we use the solutions for the density field ρ(x,t) on the
cubic grid to obtain the dynamics of the correlation functions
involving two different times. The normalized time correlation
of the density fluctuations is defined as

C(q,t + tw,tw) = 〈δρ(q,t + tw)δρ(−q,tw)〉
〈δρ(q,tw)δρ(−q,tw)〉 . (16)

where q is the wave vector corresponding to the scale of the
fluctuations. We focus here primarily on the density correlation
functions at the wave number q = qm. The decay of C(qm,t)
is compared with the results from corresponding molecular
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FIG. 2. (Color online) Evolution of the pair correlation function
g(r,t) vs t/τ0 for r = 1.0 (circles) and 2.0 (squares) (in units of σ )
at T ∗ = 2 and n∗

0 = 0.97 for nonlinear dynamics. The corresponding
result for the linear case is shown in the inset.

dynamics (MD) simulation. In comparison to the present
approach, MD simulation is a direct reproduction of the
microscopic dynamics, and the coordinates of the different
constituent particles of the fluid are obtained by solving the
equations of motion at the microscopic level. The dynamic
correlation function is directly obtained from the microscopic
coordinates of the particles and averaged over different initial
configurations in this case.

The one-component Lennard-Jones system is often difficult
to simulate at supercooled densities avoiding crystallization
of the liquid into an ordered state. Ullo and Yip simulated
a Lennard-Jones system with only the repulsive part and
computed [12] the corresponding time correlation functions
using the microscopic coordinates of the particles. The
interaction potential between the particles chosen by Ullo and
Yip have only the purely repulsive part of the Lennard-Jones
interaction, i.e., the so-called cut Lennard-Jones potential [12]
defined as follows:

u(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
+ ε for r � σ0, (17)

= 0 for r > σ0, (18)

where σ0 = 2
1
6 σ0. For comparing solutions of the FNH

equations with Ullo and Yip’s simulation data, we use the input
c(r) in the FNH equations to be the same for the above cut
Lennard-Jones potential. The bare transport coefficients which
determine the noise correlations are chosen such that the short
time dynamics agrees with computer simulation results. C(t)
obtained by solving the stochastic equations linearized in the
fluctuations decays very fast. We first start with a uniform
initial density configuration and let the ρ(x,t) fields driven by
the Gaussian noise evolve with time. Generally an evolution
up to a time scale of the corresponding α-relaxation time is
required to reach the stage in which C(t + tw,tw) is a function
of time t only. For large tw as the system equilibrates, time
translational invariance holds, making C(t + tw,tw) ≡ C(t).
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FIG. 3. (Color online) Variation of C(t + tw,tw) as a function of
tw/τ0 at a fixed time t/τ0 = 40 at T ∗ = 0.6 for density n∗

0 = 1.10.
The corresponding result for density n∗

0 = 1.24 is shown in the inset.

We display convergence to this behavior in Fig. 3 for the
two densities nσ 3 = 1.10 and 1.24. Beyond a time of 700
and 800 (in Lennard-Jones units) for nσ 3 = 1.10 and 1.24,

respectively, we assume the time translational invariance and
obtain the corresponding time correlation functions.

In Figs. 4 and 5, correlation functions for the equilibrated
systems at T ∗ = 0.6 for two densities n∗

0 = 1.10 and n∗
0 =

1.24, respectively, are shown. Considerable slowing down of
the decay of C(t) occurs on solving the full NFH equations.
From our comparison the agreement of the numerical solution
of the fluctuating hydrodynamic equations with the simulation
results seems to be better at n∗

0 = 1.24 than at 1.10. At higher
densities the mean-free path of the fluid particles gets smaller
and approaches the atomic length scale. As a result, the
validity of generalized hydrodynamic equations at short length
scales (corresponding to wave vector q ∼ qm) improves with
increasing density. This trend is clearly seen in our results
displayed in Figs. 4 and 5 for C(t). In the present calculation
we notice that the density correlation functions decay over
time and only the relaxation time grows. The corresponding
result obtained from the one-loop MCT equations will have
the density correlations completely frozen at this density
[13].

The numerical solutions of the equations of the NFH which
provide nonperturbative results are in much better agreement
with simulation data than the usual low-order perturbation
theory results for such systems. This agreement is without any
adjustable parameter in the theory and demonstrates that the
solution of the basic equations of the nonlinear fluctuating
hydrodynamics (which is the starting point of MCT) provides
the correct dynamics for the dense liquid. While making
that observation, it should be noted that the bare transport
coefficients have been adjusted here to get agreement with
the short time dynamics. However, this does not affect the
long time decay of the correlation functions in any significant
manner.
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FIG. 4. (Color online) C(t) vs t/τ0 graph at T ∗ = 0.6 for density
n∗

0 = 1.10 (solid curve), and the corresponding MD simulation data
[12] (dashed curve).

The nonperturbative treatment of the FNH equations pre-
sented here and the relations to the low-order MCT results
are further understood by analyzing the roles of the specific
nonlinearities in the equations of motion. For this we focus
on the 1/ρ nonlinearity in the dissipative term in Eq. (2). The
ENE transition of the simple MCT is driven by the nonlinear
couplings of density fluctuations in the pressure term (third
term on the left-hand side) of the generalized Navier-Stokes
equation. On the other hand the 1/ρ nonlinearity crucial for
the absence of the ENE transition is in the dissipative term
of the same equation, i.e., fourth term on the left-hand side
of Eq. (2). We therefore consider two cases here to test the
role of the relevant nonlinearities from a nonperturbative
approach. In case A the 1/ρ nonlinearity in Eq. (2) is
replaced with 1/ρ0 while keeping the density nonlinearity in
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FIG. 5. (Color online) Same as Fig. 4, but for density n∗
0 = 1.24.
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FIG. 6. (Color online) Pair correlation function g(r) vs r (in units
of σ ) at T ∗ = 0.6 and n∗

0 = 1.10 for case B (line-point), and as
computed from input c(r) (dashed line). The corresponding results
for case A are shown in the inset.

the pressure term. In case B, the complete model with both
nonlinearities are included. The input c(r) here corresponds to
the full Lennard-Jones potential [14]. The results for C(qm,t)
at T = 0.6 and n∗

0 = 1.10 corresponding to cases A and B
are shown in Fig. 7. We extend the numerical solution to
the longest possible time scale (>103 in LJ units) which is
about four orders of magnitude beyond the microscopic time
scales. The decay of the dynamic correlation is very different
in the two cases and agrees with the previous theoretical results
on the role of 1/ρ nonlinearity on the long time dynamics [1,8].
The static correlations in the two cases mentioned above are
not very different, as is shown in Fig. 6 with the pair correlation
function for the two cases mentioned above. The effects on the
dynamic correlation on the other hand is rather drastic. Case
A will give rise to the ideal transition model typically called
the simple mode coupling model with a sharp ENE transition,
while the full implication of all the density nonlinearities is
obtained from case B.

The 1/ρ nonlinearity in the dynamics is a consequence of
the form of the kinetic energy part FK of driving free energy
[see Eq. (6)]. Thus, case A above, in which the 1/ρ nonlinearity
appearing in the equations for momentum density is replaced
by 1/ρ0, would appear to follow from the purely Gaussian free
energy or effective Hamiltonian with a kinetic energy term as

FK =
∫

dxg2/(2ρ0), (19)

However, with a completely Gaussian free energy with FK as
above, the equations of motion for ρ and g are not those
considered in case A. The NFH equations with a purely
Gaussian free energy are obtained as

∂ρ

∂t
+ ρ−1

0 ∇ · [ρg] = 0, (20)
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FIG. 7. (Color online) C(t) vs t/τ0 at T ∗ = 0.6 and n∗
0 = 1.10 for

case A (circles) and case B (triangles). The solid lines are the best fit
curves to the corresponding data.

and
∂gi

∂t
+ ρ∇i

δFU

δρ
+ Lij

gj

ρ0
= θi . (21)

Both Eqs. (20) and (21) are now nonlinear. The actual
dynamics for the Gaussian free energy model is more involved
and violates the continuity equation. In fact the nonlinearities
in the density equation give rise to the same ergodicity
restoring mechanism [15,16] as obtained in the models with
1/ρ nonlinearity. In case A, on the other hand, we have
considered a completely linear dynamics apart from the
nonlinearity in the pressure term. Even a purely Gaussian
form of the potential or interaction part FU of the effective
Hamiltonian gives rise to the pressure nonlinearity. The kinetic
part of the effective Hamiltonian does not influence this.
The case A considered here is motivated to demonstrate the
relative importance of the different nonlinearities appearing
in the equation of the full model of case B. In Figs. 8 and 9
we show the same analysis being applied, respectively, at two
more densities n∗ = 1.20 and 0.9. At low density ρ = 0.9 the
difference between the two cases is not much pronounced. On
the other hand at higher density n∗

0 = 1.12 the Nonergodicity
parameter (NEP) value at which the density correlation freezes
in case A is comparatively higher than at n∗

0 = 1.10. These
results are along expected lines with the analytical treatment
of the problem [1,8].

With the application of coarse graining we are able to
extend the study of the coupled dynamics of the slow modes
up to times much longer than that of Ullo and Yip. We
will focus here primarily on the relaxation behavior of the
density correlation functions in the supercooled state. We
have equilibrated the system for ρ = 1.10 and five different
temperatures T = 1.4,1.2, 1.0, 0.9, and 0.8, all lying below
the freezing point Tm(=1.86) [17] and in the vicinity of Tc. We
have calculated the equilibrium correlation function C(t) from
Eq. (16). The α relaxation time τα and the stretching exponent
β at a given temperature are obtained by fitting a stretched
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0.8

1

C
(t

)

FIG. 8. (Color online) C(t) vs t/τ0 at T ∗ = 0.6 and n∗
0 = 1.2 for

case A (circles) and case B (triangles). The solid lines are the best fit
curves to the corresponding data.

exponential form [Kohlrausch-Williams-Watts (KWW)] to
the equilibrium correlation functions C(t). In order to obtain
the equilibrium correlation functions we first made sure
that the stage of time translational invariance was reached.
For the temperature T = 0.8 (and above) as tw becomes large
the density correlation function becomes independent of the
waiting time, and the plot of C(t + tw,tw) vs t for different
tw overlaps. This behavior is displayed in Fig. 10. In the inset
of Fig. 10, the C(t + tw,tw) vs tw plot for two fixed times
t = 200 and 400 (in LJ units) shows clearly how the system
equilibrates. The overlapping data for large tw represents the
equilibrium relaxation. The equilibrium curve fits well to a
stretched exponential curve as shown by a solid line.
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FIG. 9. (Color online) C(t) vs t/τ0 at T ∗ = 0.9 and n∗
0 = 0.9 for

case A (dashed line) and case B (solid line).
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FIG. 10. (Color online) Variation of C(t + tw,tw) as a function
of t/τ0 for tw/τ0 = 100 (circles), 150 (squares), 200 (triangle up),
250 (stars), 300 (diamonds), 350 (plus), and 400 (triangle down)
at T ∗ = 0.8 and n∗

0 = 1.10. Solid line is the best fit curve of the
overlapping data for large tw having the KWW form. The variation of
C(t + tw,tw) as a function of tw/τ0 at time t/τ0 = 200 (circles) and
400 (squares) at T ∗ = 0.8 for density n∗

0 = 1.10 is shown in the inset.

We have studied the equilibration of the system for even
lower temperatures 0.7 and 0.6. For such low temperatures the
relaxation time becomes large and we need to go to long wait-
ing times (tw) to reach a stage of time translational invariance.
This is increasingly difficult for lower temperatures. Therefore
we have adopted an extrapolation scheme to obtain the time
translational invariant correlation function. For a fixed t

we extrapolate the C(qm,t + tw,tw) at different tw to obtain
its value for large tw. This is demonstrated in Fig. 11. For
the lowest temperature T = 0.6 we observe two qualitatively
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FIG. 11. (Color online) C(t + tw,tw) vs tw/τ0 for temperature
T ∗ = 0.6 and n∗

0 = 1.10 at times t/τ0 = 900 (main graph) and 300
(inset) shown by circles. The dashed lines are the best fit curve.
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FIG. 12. (Color online) Equilibrated C(t) vs t/τ0 for temperature
T ∗ = 0.7 (circles) and 0.6 (squares) at n∗

0 = 1.10. The solid lines are
the best fit curves having the KWW form.

different kinds of tw dependence. Up to a time t < 650 (in
Lennard-Jones (LJ) units) we notice that the C(qm,t + tw,tw)
vs tw graph (at fixed t) randomly moves around a mean
curve indicating overlapping curves in a C(qm,t + tw,tw) vs
t plot (for different tw). On the other hand for t > 650 (in LJ
units), the tw dependence of C(qm,t + tw,tw) asymptotically
approaches a limit which is assumed to be its time translational
invariant value.

This asymptotic value (for large tw) represents the equili-
brated value of C(t). The resulting curve C(t) vs t is shown
in Fig. 12 for T = 0.7 and 0.6. The decay conforms to
the stretched exponential form similar to what followed at
higher temperatures, but with different exponents β = 0.84
and 0.69 for T = 0.7 and 0.6, respectively. Thus the stretching
increases with the fall of temperature. The temperature
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FIG. 13. (Color online) Variation of the stretching exponent β as
a function of T ∗. The dashed line is the best fit curve.
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FIG. 14. (Color online) C(t) vs t/τα at n∗
0 = 1.10 and tempera-

tures T ∗ = 1.4 (circles), T ∗ = 1.2 (squares), T ∗ = 1.0 (triangles up),
T ∗ = 0.9 (diamonds), T ∗ = 0.8 (stars). Solid line is the best fit to the
overlapping function having the KWW form. The overlap of the short
time data is not good, as shown in the inset.

dependence of the stretching exponent β is shown in Fig. 13.
Note that for the high-temperature regime the stretching
exponent is weakly temperature dependent. Indeed for the
high-temperature regime the data for different temperatures
overlap as shown in Fig. 14, and the temperature-independent
β which fits to this overlapping curve corresponds to the
average value of β shown in Fig. 13. The equilibrium C(t) for
different temperatures T decays with stretched exponential
form f exp[−(t/τα(T ))β]. Therefore the time temperature
superposition works approximately in the high-temperature
region, while in the deeply supercooled state it breaks down,
with the stretching increasing as the temperature is lowered.

Since the relaxation is not over several time decades we
also considered a fit in Fig. 15 to rule out the possibility of
a power-law relaxation. We find the C(t) vs t curves (both in
log10 scale) for different temperatures are nonlinear over the
range at which we fitted them to the KWW form. In fact in the
above fits of the correlation function obtained directly from
the solution of the FNH equations, not much of the two-step
relaxation process predicted in the one-loop mode coupling
theory is displayed. It should be noted that the power-law
behavior of the correlation function over the intermediate times
requires that the system gets close enough to the ideal transition
point of MCT. Therefore consideration of the equations
with all the relevant nonlinearities implies a qualitatively
different dynamics. We discuss this point further in the next
section.

The α relaxation time τα is plotted with temperature
in Fig. 16. In the temperature dependence we observe a
power-law growth (T − Tc)−a with a T ∗

c = 0.34 and exponent
a = 2.22. We also attempt to fit the data with the Vogel-Fulcher
form exp( B

T −Tc
) and find a Tc = 0.27. The quality of fitting

in the two cases is shown in Fig. 16. The time translational
invariance seen here for T = 0.7,0.6 is valid over scales of the
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FIG. 15. (Color online) Variation of C(t) (log10 scale) vs t/τ0

(log10 scale) at n∗
0 = 1.10 and temperatures T ∗ = 1.4 (circles), 1.2

(squares), 1.0 (triangles up), 0.9 (diamonds), 0.8 (stars), 0.7 (triangles
down), and 0.6 (pluses).

order of the corresponding relaxation time τα . The apparent
divergence at Tc is removed at low temperatures. The value
of the mode coupling transition temperature obtained from
integral equations of the MCT [6] at one-loop order has
the value Tc = 1.05 [18]. Thus the critical temperature falls
with the nonperturbative calculation. This is in qualitative
agreement with the trend seen in computer simulations
[19].

V. DISCUSSION

We have shown that the direct numerical solutions of
the NFH equations provide a reliable way of studying the
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FIG. 16. (Color online) Relaxation time τα vs T ∗ (filled circles)
fitted with a power-law (solid line) and Vogel-Fulcher (dashed line)
form.
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dynamics of fluctuations in a dense liquid in the vicinity of the
avoided ergodic-nonergodic transition. The NFH equations
studied here represent a coarse-grained description of the
system in terms of a set of stochastic partial differential
equations signifying basic conservation laws. This is different
from a typical molecular dynamics simulation in which the
actual dynamics of a small number of particles are tracked.
The size of the box considered in the present work is about
∼(4.3σ )3 and is not large compared to the typical MD
simulation volume. However, it should be noted that we are
solving the equations of motion for the densities ρ(x,t) and
g(x,t) over such length scales as compared to the case of
solving actual particles being confined in boxes of this size.
While the present method is not appreciably more efficient
than molecular dynamics from a computational standpoint,
it provides a way of investigating theoretical assumptions
that are made in the analytical treatment of these equations.
In particular our work clearly shows the role of the 1/ρ

nonlinearity present in the dissipative term of Eq. (2) in
restoring ergodicity [1] and is in agreement with previous
analytic studies. The equations of fluctuating hydrodynamics
studied here are obtained for a state which corresponds to
a single fluid type minimum of the free energy and does
not involve an activated process of hopping between states
of different free energy minima. The present method can be
easily extended to a larger set of hydrodynamic variables,
which would permit a description of the dynamics in binary
mixtures.

An important theoretical development in understanding
the slow dynamics in the supercooled liquid coming from
the liquid side is the mode coupling theory (MCT). The
model equations for the MCT have been obtained [1,20]
from the same NFH equations we studied here. In the MCT
formulation the primary quantity of focus is the normalized
density correlation φ(q,t) which acts as an order parameter in
the theory. The Laplace transform of φ is written in terms of
the renormalized viscosity �R(q,z) as

φ(q,z) =
[
z − �2

q

z + i�R(q,z)

]−1

,

where �2
q = q2/[βmS(q)] is a microscopic frequency of the

liquid state, and we use the initial value φ(q,t = 0) = 1.
The crucial feedback mechanism for the MCT follows as a
consequence of renormalization of the transport coefficient
�R due to the nonlinearities in the equations of motion of
the slow modes. The nonlinearities in this case are in the
equation for the momentum density g. The equation for density
ρ, i.e., the continuity equation, is linear in the fields. The
strong enhancement of viscosity characteristic of the slow
dynamics and the consequent ENE transition of simple MCT is
driven by the nonlinear couplings of density fluctuations in the
pressure term of the generalized Navier-Stokes equation. For
the nonperturbative solution of the FNH equations considered
here, if we include only the effects of this nonlinearity (case A
above) then the correlation function shows a freezing over the
time scales considered. On the other hand for the full model
(case B) the density correlation function decays in agreement
with the simulation results. We demonstrate here that the 1/ρ

nonlinearity in the momentum equation plays a crucial role

in the observed behavior. The numerical solution of the FNH
equations also allows us to easily compute the correlation
functions when the quenched liquid is evolving to equilibrium
by choosing for the two point correlation function different
values for the initial time.

The two-step relaxation is very closely related to the
formation of a plateau in the relaxation over intermediate
times. In the one-component system at the densities and over
the time scale we could extend the solutions of the NFH
equations, we do not observe a plateau. Nor does the simulation
results of one-component systems show such a two-step decay.
The corresponding time scales, namely, about 50 LJ units is
not very small compared to that of the short time dynamics of
such systems. We have extended the solutions by another order
of magnitude in time but no plateau is seen. MD simulations
of a simple two-component system (Kob-Andersen mixture)
indeed shows a plateau over a couple of decades.

It should be noted that the NFH equations for such a
system will be quite different from what we have solved
here. Solutions of the more involved set of NFH equations
for a binary system would settle such an issue and possibly
demonstrate the role of single-particle dynamics in cage
formation and occurrence of the plateau. Another related issue
is that traditionally two-step relaxation is a prediction of the
approximate MCT which follows from the NFH equations that
we solve here numerically. And yet the two-step relaxation is
absent here.

What is important to note is that it is only the simplified
form of the MCT model (with a sharp ENE transition)
for which this holds. Such a MCT model ignores all other
processes other than the density nonlinearity driving the
system to a ergodic-nonergodic transition. It is simply assumed
that the ergodicity restoring processes are absent. From our
observation of the solutions of the NFH we do not see that
such an assumption holds in the one-component system that
we consider here. Indeed, as already noted and observed
by others [22,23] working with microscopic models, if the
magnitude of the ergodicity restoring mechanism or the
so-called hopping kernel does not decrease upon supercooling,
much of the dynamical behavior predicted by the original MCT
gets masked, and the meaning of the special temperature Tc

becomes questionable.
In closing this discussion on the NFH equations for a liquid,

it is useful to consider a similar model for slow dynamics
of supercooled liquids that has often been used in recent
literature. This is the so-called dynamic density functional
theory (DDFT) model involving a single stochastic equation
for the coarse-grained density ρ(x,t) with multiplicative noise.
This equation [21] isreached starting from the NFH equations
used in the present paper and integrating out the momentum
field g(x,t) within the so-called adiabatic approximation. As a
consequence of this, the 1/ρ nonlinearity is eliminated from
the problem and the simple noise in the {ρ,g} formulation gets
changed into multiplicative noise for the single ρ equation.
At the one-loop order of renormalization, this model (with the
FNH equation for the density variable only) also predicts a
sharp ENE transition. This is similar to the dynamic transition
in the mode coupling model (considered in the present work)
obtained from the {ρ,g} formulation with simple driving noise.
However, the complete description of the dynamics following
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from this DDFT model equation is still unclear. Here one
does not face the 1/ρ nonlinearity but the driving noise is
multiplicative noise [24]. The mechanism for the sharp ENE
transition being finally smoothed out would require extending
the analysis further. This will require doing a proper analysis
of the perturbative field theory corresponding to the nonlinear
equation for ρ(x,t) with multiplicative noise and possibly
inclusion of higher loop corrections in the perturbation theory.
Solving these equations in a manner similar to what we have
done in the FNH case with additive noise will be a useful step

in understanding this problem. These two models may belong
to the same dynamic universality class, though applying the
critical phenomena terminology will not be totally appropriate
in this context.
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