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Predicting microstructures in polymer blends under two-step quench in two-dimensional space
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The formation of nanostructures during two-step quench in binary polymer systems having various types of
liquid miscibility gaps are investigated systematically via computer simulations using the phase field method.
Coupled liquid spinodal decomposition and fluid flow processes are considered by solving simultaneously the
Cahn-Hilliard and Navier-Stokes equations. Various interesting phenomena and morphological patterns are
predicted. It is found that the primary microstructures developed at the first quench and isothermal holding
temperature greatly affect the secondary microstructures developed during the second quench and isothermal
holding. Depending on the morphology and scale of the primary microstructure, either multicore and multishell or
unicore and unishell structures are predicted. The breakup of annuluses in a core-shell structure in two dimensions
is analyzed. The effects of viscosity on the formation of core-shell structure and on the growth and coarsening

behaviors of bimodal droplets produced by the two-step quench in systems are also investigated.
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I. INTRODUCTION

When two polymers mutually dissolve, various types of
miscibility gaps exist, which are different from those observed
in small molecule systems and thus offer opportunities for mor-
phological pattern design through phase separation in polymer
blends via different processes [1,2], such as thermal-induced
phase separation (TIPS), nonsolvent-induced phase separation
(NIPS), and polymerization-induced phase separation (PIPS)
methods [3-5]. Recently, interesting heat treatment procedures
such as two-step quench have gained much interest from
researchers [6-11]. A two-step quench consists of a first
shallow quench into the miscibility gap from a single-phase
region followed by a second deep quench into the miscibility
gap [6], as schematically shown in Fig. 1. The two-step
quench has produced unique nanostructures [7] that, to the
best of our knowledge, have not been observed in the usual
single-step quench experiments. In addition, the hierarchic
microstructures induced by a two-step quench were found
to have complex coarsening characteristics [6—11]. Thus, a
detailed understanding of phase separation processes during a
two-step quench leading to various two-phase mixtures is of
both fundamental interest and practical importance.

Therefore, extensive numerical simulations have been car-
ried out [2], [12—16] to study pattern formation under different
two-step quench conditions. Podariu et al. [2] studied a two-
step quench process in an asymmetric binary mixture having
an upper critical solution temperature (UCST) and showed
that the average size of the secondary domains increased with
the increasing depth of the second quench and the increasing
initial quench temperature at a fixed depth of the two-step
quench. Clarke et al. [12,13] investigated phase separation in
a symmetric binary polymer system using the Flory-Huggins
thermodynamic model and the Cahn-Hilliard kinetic equation.
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They mainly considered the early stage of a two-step quench
and studied the effect of quench depth. They also quantified the
kinetics of microstructural evolution using the time-dependent
structure factor. Chan et al. [14] studied the two-step thermal-
induced phase separation phenomenon in symmetric polymer
blends via spinodal decomposition in one dimension. They
indicated that a dimensionless diffusion coefficient may be
used as a parameter to control the formation and evolution of
the phase-separated regions. Huang et al. [15] used a so-called
cell dynamical system (CDS) simulation method to investigate
phase separation of binary polymer blends contacted with
an external surface under two-step quench conditions. They
observed that a deeper second quench into the miscibility gap
favored the formation of lamellar structures.

In all, former works mainly focus on the effects of the
quench depth during the two-step quench, either the first or
the second one. Besides, in all of the simulation studies [2],
[12-16], the effect of hydrodynamic flow was ignored for
simplicity. However, polymer belongs to the categories of
“soft matter” or “complex fluids” [17,18], and hydrodynamic
flow has been shown to play an important role during phase
separation [19-21]. On the other hand, the kinetic process of
phase separation is also important for pattern formation and
pattern selection in polymer materials science. Therefore, it is
necessary to know the mechanisms and the formation kinetics
of unique morphologies during the two-step quench.

While there has been an enormous movement to study
experimentally [3,8,22-24] and theoretically [2,12,13,25-28]
the phase behavior of polymer blends in three-dimensional
(3D) systems, little work has focused on the understanding of
phase separation in a confined two-dimensional (2D) space.
However, the construction of nanoscopic devices [29-31] has
attracted great attention, and the use of polymer thin films in
technology is increasingly widespread [32], which demands a
better understanding of the phase behavior of fluids confined
in pores or slits. Thus, an understanding of the microstructure
evolution confined in 2D space is important for developing
materials.
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FIG. 1. Schematic diagram for two-step heat treatment. A system is first quenched from 7; to T (LCST) or T} (UCST) and isothermally
held for a given period of time. Then it is quenched again to 7; (LCST) or 7, (UCST) and isothermally held for another given period of time.

In this paper we systematically investigate pattern forma-
tion and pattern stability in binary polymer systems having
various types of miscibility gaps under two-step quench
conditions in 2D space via computer simulations using the
phase field method. The main objective is to develop a
fundamental understanding of how alloy composition, quench
history, and material parameters affect the kinetic pathway
of the two-step phase separation process. In particular, we
show that a rich variety of unique nanostructures could be
produced by simple two-step heat treatments. The model
simultaneously considered coupled phase separation and
hydrodynamic flow. The paper is organized as follows. The
thermodynamic model and kinetic equations are described
in the proceeding section. Major simulation results are pre-
sented in Sec. III, including various morphological patterns
such as multicore and multishell and unicore and unishell
structures. The breakup of interconnected microstructures in
a 2D system, the formation of core-shell structures, and the
growth and coarsening characteristics of bimodal two-step
quench microstructures in systems having different viscosities
are analyzed in Sec. IV. Major findings are summarized in
Sec. V.

II. MODEL AND SIMULATIONS

A. Thermodynamic model

The free-energy density is described by the Flory-Huggins
model [33],

1
Svol(@) = V—mf(</>), (D
with
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+xo(1 — @), 2

where N; and ¢ are the degree of polymerization of com-
ponent i and volume fraction of polymer B (equivalent to
mole fraction if polymers A and B have the same mo-
lar volume), respectively. V,, is the molar volume of the
mixture and x is the interaction parameter determining the
enthalpy contribution toward mixing. y is usually expressed
as a function of temperature T in the following empirical
form [34]:

x=A+BT +DTInT. 3)

A, B, and D are parameters which need to be evaluated.
On the basis of Egs. (1)—(3), a binary phase diagram can be
calculated.

B. Kinetic model

According to Cahn-Hilliard theory [35], the diffusion
equation describing phase separation kinetics can be written
as

d¢

8 VO.
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where M is the chemical mobility (assumed to be composition
independent), ¢(r,t) is the noise term, k(@) is the gradient
energy coefficient that can be derived by using a mean-field
treatment of correlations in polymer mixtures known as the
random phase approximation (RPA) [36],

2 2
X7, a“RT
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where ry is the range of interactions and a is the statistical
segment length. The first termin Eq. (5) is derived from a lattice
gas model, and the second term originates from the entropic
penalty arising from the restriction of chain configurations in
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steep concentration gradients. The mobility can be expressed
as

_ D) — initia) Pinitial Vi

RT
fwhere D(T) is the chemical diffusivity as a function of
temperature T and @;pia 1S the volume fraction of polymer B.
When fluid flow is considered, the kinetic equation with a
convection term (% - V)(p reads as follows [37,38]:

) (6)
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where D% indicates the material derivative and is defined as
Dy

= %—f + (ii - V), and i is the fluid velocity vector.

The Navier-Stokes equation coupled with the Cahn-
Hilliard equation is used to characterize the contributions
from fluid flow during phase separation. Here we consider
an incompressible viscous liquid having a constant mass
density. Then the continuity and momentum equations read as
follows:

Dt

V.i=0, ®)
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where po is the mass density, 7 is the viscosity coefficient, the
term —@V i, is the continuum surface tension force [39], and
S includes the pressure and other effects which enforce the
incompressibility.

Following Jacqmin [39], the first two terms on the right-
hand side of Eq. (9) can be expressed as

—VS — ¢V, =-VP+V-7, (10)

where V P is the pressure gradient, and V - Tisastress forcing
term. Therefore, the momentum equation in 2D can be given
as follows:
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along the y direction. In Egs. (11) and (12), 4 and v are the x
and y components of .
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C. Governing equations in dimensionless forms

Equations (7), (11), and (12) are reduced into dimensionless
forms using the following relationships:

lZ
T=— (13)
DOO
12
t=71-1"=—1", (14)
DOO
x=1-xF (15)
D, .
u = Tl/l s (16)
D/
V= Toov*, 17
p=Cp*, (18)

where 7 is defined as the characteristic diffusion time scale
of polymers, and D/ is the characteristic value of system
diffusivity. C is the dimensionless parameter of pressure,
and the scaling length / can be determined according to the
interface thickness.

Using Egs. (13)—(19), Egs. (7), (11), and (12) become
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III. SIMULATION RESULTS

A. Phase diagram calculation

Various types of binary phase diagrams of polymer systems
are calculated according to the Flory-Huggins model by
optimizing parameter x, as presented in Fig. 2, where the
dark solid curve represents the binodal (equilibrium curve)
and the light dashed curve represents the spinodal one. As we
can see, most polymer blends exhibit a lower critical solution
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FIG. 2. Different types of phase diagrams for various polymer blends and temperature dependences of the interaction parameter. A blend
with a LCST above a UCST: (a) symmetrical and (b) asymmetrical. A blend with a tendency toward greater solubility at intermediate
temperatures (hourglass-type phase diagram): (d) symmetrical and (e) asymmetrical. A blend with a UCST above a LCST (closed-phase
diagram): (g) symmetrical and (h) asymmetrical. In these figures, the solid lines represent binodal, and the dashed lines represent spinodal. The
temperature dependence of the interaction parameter and its effect on the liquid-liquid equilibrium for the three systems are presented in (c),
(f), and (i), respectively.

temperature (LCST), a UCST, a closed loop, or an hourglass And then the critical interaction parameter can be derived:
phase diagram.
According to the Flory-Huggins model, the critical condi- ;;; =1 /2( Nl_l "2 N2—1 /2)2. (24)

tion (33?—;‘;“’) = 0) yields

When both N; and N, are large (polymer mixtures), x.

RT (L _ L) _ 63_)( +3(1 — 2(/)2)82_)( is very small. If Ny = N,, ¢p. = 0.5, the miscibility gap is
Nigi  Nog3 17 dp3 symmetrical; otherwise the miscibility gap is asymmetrical.
33y The temperature dependence of the interaction parameter and
+oi2 207 =0. (22)  itseffect onliquid-liquid equilibrium are sketched in Fig. 2. As
2

presented in Figs. 2(c), 2(f), and 2(i), if x < x., the mixture
will be a single liquid phase in all composition. In Fig. 2(c), x
is equal to x. at Tycst and Ty cst. At temperatures T < Tycsr
and T > Ticst, x is larger than x., and then there exists the
e = VNi (23) miscibility gap of liquid phase, as in Fig. 2(b). However, in

2 VN + Ny Fig. 2(i), the miscibility gap exists at a temperature range

If x does not depend on concentration, Eq. (22) leads to the
following condition for the critical point:
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TABLE I. Summary of the Flory-Huggins model parameters used in calculating the phase diagram shown in Fig. 2.

Value

Symmetric system

Asymmetric system  Symmetric system Asymmetric system Symmetric system Asymmetric system
Parameter with LCST and UCST with LCST and UCST of “hourglass type” of “hourglass type”

of “circle type” of “circle type”

Tucst 400 400 — — 500 500

Ticst 500 500 — — 400 400

N, 100 90 100 90 100 90

N, 100 490 100 490 100 490

@erit 0.5 0.3 — — 0.5 0.3

X 400 — 6.2038T 400 — 6.2758T 0.05T2 — 45T 0.5T?% — 450T —400 + 6.5363T  —400 + 6.4643T
+0.8963T InT +0.8963T InT +10203 4103682 —0.8963T InT —0.8963T InT

from Ticst to Tycst. In Fig. 2(f), x is always larger than .,
therefore, there may be liquid-liquid phase separation at all
temperatures. The model parameters used in the calculation
are listed in Table I.

B. Microstructural evolution during double quench

Even though the thermodynamic model used in the current
study is for polymer systems, the obtained simulation results
should be general for any systems having a miscibility gap. All
phase field simulations are carried out in 2D and the system size
is 256Ax; x 256Ax, with Ax; = Ax; = 9 nm. Periodical
boundary conditions are applied along both dimensions.

According to Fig. 1, if an alloy is quenched from T to
T; (in the LCST of Fig. 1), then the secondary spinodal
decomposition only proceeds in one of the domains [B-rich
phase, which the volume fraction of polymer B is larger than
0.5, in red (light gray)] produced by the first quench (primary
spinodal decomposition) because the other primary domain
[A-rich phase, represented as the color blue (dark gray)] has an
initial composition between the miscibility and the spinodal
curves at the second-quench temperature, which defines the
metastable region [40]. However, if the second quench is from
T]C to 7}/ (in the UCST of Fig. 1), both primary domains become
unstable (in the spinodal region) during the second quench.
Simulation results obtained from each of these two cases will
be presented in the following section.

(1) Both types of primary domains undergo secondary
spinodal decomposition. The simulation of microstructure
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evolution during a two-step quench from the region outside
of the miscibility gap to 515 K until the system reaches the
equilibrium composition and then to 590 K in the system
with LCST [Fig. 3(a)] was carried out. During the simulation,
the viscosity of the system is assumed to be 1 Pa s. Typical
microstructure evolutions during the second quench from 515
to 590 K having an initial volume fraction of polymer B of
0.25 are presented in Fig. 4. The micrograph at reduced time
T = 0 is the final two-phase microstructure obtained during
isothermal holding (aging) at the first quenching temperature
(515 K), which is also the initial microstructure for the second
quench and aging at 590 K. At an early stage of the second
aging, spinodal decomposition independently proceeds in both
domains of the primary phases formed during the first aging
temperature. The morphology and scale of the preexisting
structure have a strong effect on the spinodal decomposition
process and leads to unique microstructures. For example,
interesting multicore and multishell and single-core and
multishell structures are readily found in Figs. 4(b) and 4(c),
which at a later stage coarsen to single-domain particles having
equilibrium compositions corresponding to the new aging
temperature. An interesting observation during the coarsening
process is the breakup of the shells into discrete particles,
which will be further analyzed later in Sec. IV A. Droplet
drifting, collision, and coagulation caused by hydrodynamic
effects take place among the small droplets formed during
the second quench, which make the coarsening kinetics sig-
nificantly deviate from the Lifshitz-Slyozov-Wagner (LSW)
theory [41] (see Sec. IV C for details).
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FIG. 3. Schematic phase diagram of two-step quench process of the simulation. (a) From 515 to 590 K; (b) from 530 to 590 K.
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FIG. 4. (Color online) Phase field simulation of pattern evolution and the corresponding concentration profile along the line indicated in
(a) caused by a double quench from 515 to 590 K at different quench times.

(2) One type of primary domain undergoes secondary spin-
odal decomposition. Figure 5 shows a typical microstructure
evolution when the secondary spinodal decomposition only
proceeds in the matrix phase (A-rich phase) that resulted
from the primary spinodal decomposition. The procedure of
two-step quench treatment is presented in Fig. 3(b). When
the two-phase microstructure (r = 0) obtained from the
first quench at 530 K is quenched again to a temperature
deeper inside the miscibility gap (590 K), the B-rich phase
becomes unstable while the A-rich phase becomes metastable.
Spinodal decomposition takes place only in the B-rich phase,
and nucleation proceeds in the A-rich phase. However, in our
simulation, we mainly considered the spinodal decomposition.
No thermal fluctuation is induced during the second quench.
Thus, no nucleation takes place in the A-rich phase. As shown
in Fig. 5, at the very early stage of the second quench, clear
“halo”-type annuluses form around the primary domains. Then

0.7

0.6
0.5
0.4
0.3
0.2

0.1
0.15

the annuluses break up into small domains, leading to a typical
bimodal microstructure. At a later stage, the small secondary
droplets in the B-rich phase disappear due to coarsening and
collision. A simulation of a two-step quench from 455 to 480 K
in an asymmetric “hourglass-type” system [Fig. 2(e)] produces
similar microstructures.

IV. DISCUSSIONS

A. Formation and breakup of annuluses

As presented in Figs. 4 and 5, annular shell structures
immediately form after the second deep quench. Halo-type
structures are observed, which agrees well with the simulations
of Huang et al. [15] on the effect of fillers and the simulations
of Shen et al. [42] on effect of dislocations on spinodal
decomposition. In these cases, the preexisting concentration

0.8
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FIG. 5. (Color online) Phase field simulation of pattern evolution and the corresponding concentration profile along the line indicated in
(a) caused by a double quench from 530 to 590 K at different quench times.
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FIG. 6. (Color online) Effect of initial condition on the stability of strips. (al) Sinusoidal-shaped perturbation of an infinite strip; (a2):
rod-shaped perturbation of a finite strip; (a3) dumbbell-shaped perturbation of an infinite strip. The corresponding chemical potential contours
at the initial stage are shown in (b1)—(b3) and the time evolution of the chemical potential along the central line across the thread are shown in

(c1)—(c3).

nonuniformity enhances the spinodal decomposition process
and leads to the observed microstructures. However, if the
second quench is not deep enough, the composition rings may
break up into droplets before the appearance of a clear shell
structure.

It is observed that the annular shell structures break up after
several time steps. The breakup of the annuluses is driven by

interfacial energy reduction, similar to the Rayleigh instability
[43,44], which is widely known in 3D systems. However,
it has been reported by Miguel that Rayleigh instability is
absent in 2D [45]. Almgren suggested that the formation of
singularity drove the breakup of the interconnect structure in
2D systems and described a 2D Hele-Shaw effect [46,47].
In our work, further simulation studies (Fig. 6) show that
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initial particle

interdiffusion

d>Aeritical

the annulus breakup observed in the simulations is due to
changes in boundary and initial conditions. As shown in
Fig. 6(al), if the thread is infinite, then it is stable against
the introduced sinusoidal perturbation. The chemical potential
(up — s = %) field corresponding to Fig. 6(al) is presented
in Fig. 6(bl). The diffusion should occur down along the
chemical potential gradient, which indicates that the diffusion
process will eliminate the initial perturbation. Figure 6(cl)
shows the time evolution of the chemical potential along the
central line across the thread. However, the thread will break
up into droplets if it is finite, as shown in Fig. 6(a2), or
if a different type of perturbation is imposed [Fig. 6(a3)].
In these cases, the curvature is zero at the midpoint of the
thin neck and becomes negative at the end of the neck.
Therefore, the chemical potential gradient [Figs. 6(b2) and
6(b3)] associated with these nonuniform curvature distribu-
tions along the surface of the thread will drive the flow from
the middle of the neck toward the end of the neck, causing the
breakup.

PHYSICAL REVIEW E 83, 041502 (2011)

FIG. 7. (Color online) (a) Patterns
formed at second-step quench starting
with different initial particle sizes from
the first quench. (b) Schematics of the
composition change of primary particles
(formed during the first quench) during
the second quench.

particle that SD proceed

d’<Acritical

B. Formation of ‘“core-shell” structures

As shown in Fig. 4, various “core-shell” structures may
form during the second quench. Several factors that may affect
the formation of the core-shell structures are investigated.
It is found that the formation of cores in the core-shell
structures strongly depends on the size of the primary domains.
Figure 7(a) shows the core-shell microstructures obtained
during the second quench of primary microstructures with
different domain sizes. It is clearly shown that no core
forms during the second quench if the initial particles are
too small, for example, when the radius of the particles r
equals 36 nm (r = 4 grids). According to Cahn’s theory on
spinodal decomposition [35], the critical wavelength of the
microstructure in the second quench is ~45 nm, which is
smaller than the diameter of the particle. The reason why no
core-shell structure forms is due to the interdiffusion. The
primary particles are in contact with the matrix phase and
both of them have nonequilibrium compositions at the second
quench temperature. Interdiffusion between the particles and
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FIG. 8. (Color online) Phase field simulation of pattern formation
during a double quench in systems of different viscosities: (a)
Viscosity = 0.1 Pa s and (b) viscosity = 1 Pa s.

the matrix will reduce the primary particle size, which
may be smaller than the critical wavelength of spinodal
decomposition, as schematically shown in Fig. 7(b). Besides,
the simulations show that as the size of the particles increases,
the time needed to form single core-shell structures increases.

The viscosity of the system also plays an important
role in the formation of the core-shell structures. Phase
separation patterns considering different viscosity coefficients
are presented in Fig. 8. In high viscosity systems, small
secondary particles disappear via an evaporation-condensation
coarsening mechanism before they coalesce to form the core
during the second quench. The volume ratio of core to shell
decreases as the viscosity increases. As shown in Fig. 8, the
ratio of the core (A-rich phase) to the shell (B-rich phase) is
~33% in Fig. 8(a) where the viscosity is 0.1 Pa s, while in
Fig. 8(a) where the viscosity is 1 Pa s, the ratio is ~18%.

C. Growth and coarsening of bimodal droplets

Simulations of a two-step quench from outside of the
miscibility gap to 515 K and then to 570 K in a symmetrical
system [Fig. 3(a)] considering with various viscosities is
carried out to investigate the coarsening behavior of bimodal
droplets. A typical particle size evolution with time in a case
with fluid flow is presented in Fig. 9(a). Some phase separation
patterns are shown in the inset in Fig. 9(a). The growth law
of the particle size can be expressed by an equation in the
form r" —ry = k(t —tp) + b, where r( is the initial mean
particle size at the beginning of the coarsening process [41].
In this simulation, the particle size at total time steps (=2),
when the system reached the equilibrium volume fraction, is
chosen as ry. The value of 7 is determined by R? (square of
regression coefficient) of the fitting line. In this system, when
nequals 2.5, R? reaches the maximal value. Figure 9(b) shows
the characteristic particle size of the droplets r>° — 2> after
a second quench to 570 K, with the equation of fitting line
and R2.

Further investigations of the growth mechanism of small
droplets caused by the second quench in systems having
various viscosities are carried out. According to the equation
r" —ry = k(t — to) + b, if rg is small compared with r for
the time interval of interest, then n can be obtained from
the reciprocal of the slope of In r vs In ¢ plot. In this
paper, data after 73 becomes greater than 6r3 are used in
the plots (Fig. 10) [48]. The equations and R? of the fitting

PHYSICAL REVIEW E 83, 041502 (2011)

(a) 24 [

Particle size

0 100 200 300 400 500 600
Time steps

(b) o
Fitting line:

y=12.81547+4.57138x
R?=0.99014

2000

1500

1000

25_. 2.5
I r"

500

0 100 200 300 400 500
Time steps

FIG. 9. (Color online) Coarsening kinetics of a bimodal mi-
crostructure. The particle size in an average over both populations
of large and small particles.

lines are presented in Table II. According to the calculated
results, we can find that the line rotates toward higher slopes

22

20 [

2.0

Inz

FIG. 10. Double-logarithmic plot of characteristic particle size r
of the small droplets vs time ¢ in systems of different viscosities: [
(M) viscosity coefficient n = co; Il (o) n = 1; 11 (A) n = 0.1.
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TABLE II. Equations and R? of the fitting lines with various
viscosities shown in Fig. 10.

Viscosity Equation of fitting line R square
n— 00 Inr =0.273611n¢ + 0.44579 0.97617
n=1Pas Inr = 0.280861In ¢ + 0.6065 0.98373
n=0.1Pas Inr =0.284791nt + 1.11466 0.95543

(counterclockwise) when the viscosity is reduced. This implies
that the hydrodynamic effect will accelerate the growth of the
small droplets.

V. SUMMARY

Unique nanostructures created by a two-step quench in
polymer blends in 2D systems are investigated systematically
via computer simulations. When both types of the primary
domains become unstable during the second quench, multicore
and multishell structures are observed at the early stages of the
second quench. The shells break up into discrete particles at
later stages. If the primary domains are relatively small or only
one type of the primary domains becomes unstable during the
second quench, single-core and single-shell structures can be
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formed. During the pattern evolution, bimodal microstructures
are observed.

The formation and stability of these microstructures are
analyzed. The breakup of the shells in 2D is found to be driven
by a chemical potential gradient. The formation of “core-
shell” structures is influenced by several factors, including
the size of the initial primary domains and the viscosity.
The growth mechanism of the secondary droplets in the late
stage of coarsening (13 > 6r3) obeys the power-law equation
r o t", and the exponent # increases with decreasing viscosity
coefficient.

The model developed and results obtained could shed light
on utilizing spinodal decomposition in immiscible polymer
systems to obtain unique nanostructures for advanced appli-
cations. The extension of the model into 3D is straightforward
and corresponding work is underway.
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