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A variety of soft and hard condensed matter systems are known to form stripe patterns. Here we use numerical
simulations to analyze how such stripe states depin and slide when interacting with a random substrate and
with driving in different directions with respect to the orientation of the stripes. Depending on the strength and
density of the substrate disorder, we find that there can be pronounced anisotropy in the transport produced
by different dynamical flow phases. We also find a disorder-induced “peak effect” similar to that observed for
superconducting vortex systems, which is marked by a transition from elastic depinning to a state where the
stripe structure fragments or partially disorders at depinning. Under the sudden application of a driving force,
we observe pronounced metastability effects similar to those found near the order-disorder transition associated
with the peak effect regime for three-dimensional superconducting vortices. The characteristic transient time
required for the system to reach a steady state diverges in the region where the flow changes from elastic to
disordered. We also find that anisotropy of the flow persists in the presence of thermal disorder when thermally
induced particle hopping along the stripes dominates. The thermal effects can wash out the effects of the quenched
disorder, leading to a thermally induced stripe state. We map out the dynamical phase diagram for this system,
and discuss how our results could be explored in electron liquid crystal systems, type-1.5 superconductors, and
pattern-forming colloidal assemblies.
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I. INTRODUCTION

Stripe formation occurs in a wide variety of soft [1–10] and
hard [11–17] condensed matter systems. These stripe patterns
are often a consequence of some form of effective competing
or multiple length scales in the pairwise interactions between
the particles [1,3–6,9,10,14–16,18]. For soft condensed matter,
pattern formation can occur when the particles experience
intermediate-range repulsion and short-range attraction, such
as in certain types of colloidal systems [6,9]. In addition
to stripe phases, numerous other patterns can appear as
a function of density, temperature, or particle interaction
strength, including bubble, clump, and uniform crystalline
phases [1,3–5,10,14,17,19]. The competing interactions re-
sponsible for the stripe formation may be produced by particles
that have both a short-range attraction and a long-range
repulsion [10,14,18,19]; however, systems with only repulsive
interactions can also exhibit stripe phases [4,5,7,8] provided
that there are at least two length scales in the interaction poten-
tial. Typically, as the density increases, the system progresses
from a low density clump phase to an intermediate density
stripe phase, and then to a higher density bubble phase where
organized voids appear in the system; finally, at the highest
densities, the particles form a uniform crystal state [4,8,9,19].
In two-dimensional (2D) systems of finite size, a stripe phase
containing oriented stripes is often observed [4,5,19]; however,
for larger systems, the strong degeneracy in the stripe ground
state orientation can produce a labyrinth pattern composed of
many different stripe orientations [3,4,8,20]. The presence of
any type of bias produced by the boundaries, a substrate, or
an external drive such as a shear breaks the symmetry of the
stripe ground state and causes the stripes to align in a single
direction [9,20,21].

In addition to soft matter systems, there is growing evidence
that stripe and bubble phases occur in hard condensed
matter systems such as 2D electrons in the quantum Hall

regime [17,22,23] and charge ordering in high temperature
superconductors [11–16]. Evidence for stripe phases in two-
dimensional electron gas (2DEG) systems includes anisotropic
transport curves which have been interpreted as indicating
that the stripes have a single preferred orientation [22–25].
If the stripes take the form of a charge ordered state, the
transport anisotropy implies that the stripes can slide more
easily when the drive is applied parallel to the stripes than
when it is applied perpendicular to them. The alignment of the
stripes in the 2DEG systems may be due to small intrinsic
biases that form during sample growth [26]. There have
also been recent 2DEG experiments that show that dc drives
or other external driving can dynamically orient the stripes
under certain conditions [27,28]. Other recent experiments
have shown that the stripe direction can be controlled with a
strain, making it possible to alter the anisotropy with a strain
field [29]. Transport experiments in 2DEGs have revealed
sharp conduction thresholds, a series of intricate jumps in the
current versus resistance curves, pronounced hysteresis, and
changes in the conduction noise, suggesting that these systems
are undergoing depinning transitions and dynamic changes
in the sliding dynamics [27,30,31]. Additional evidence for
charge ordered states in 2DEGs has come from resonance
measurements [32,33].

Another recently described system where stripe patterns
occur is in “type-1.5” superconductors, predicted to appear
in two-band superconductors such as MgB2 [34]. In a type-II
superconductor under a magnetic field, the flux in the sample
takes the form of quantized vortices which organize into
a uniform triangular lattice as a result of their repulsive
interactions. In contrast, in type-1.5 superconductors, the
vortices have both an attractive and a repulsive component
to their interactions [34,35], which in principle will lead to the
formation of clumps and stripes. Experiments in the two-band
superconductor systems have revealed evidence for disordered
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clumplike vortex structures; however, strong pinning in the
samples probably prevents the detection of ordered patterned
structures [34].

In the 2D electron systems and the type-1.5 superconduc-
tors, the interplay between the disorder in the sample and
an external drive should produce very rich dynamics with
different types of depinning transitions and sliding states. It
should also be possible to subject stripe-forming soft matter
systems to both an external drive and quenched disorder.
Experiments have already been conducted on the depinning of
purely repulsive colloids interacting with quenched disorder
[36]. Similar experiments could be performed with colloidal
systems that have interactions which lead to stripe formation.
The work we describe here is also relevant to systems
exhibiting anisotropic sliding friction due to the formation of
stripelike surface ordering [37]. To address how stripe-forming
systems behave in the presence of both driving and quenched
disorder, we simulate a collection of particles driven over
randomly placed attractive pinning sites and interacting with a
long-range repulsion and a short-range attraction [14,19,21].
We show that when the stripes have a specific orientation,
a number of distinct sliding states can occur which have
distinct anisotropic transport signatures, including a peak in
the anisotropy produced when the dynamics is plastic for
driving transverse to the stripes but elastic for driving along the
stripes.

In our previous work, we have examined the depinning
and sliding of disordered bubble, clump, and stripe phases,
and found that for a fixed pinning density, the stripe phase
has the highest depinning threshold [14,21]. In this case, the
stripes did not have a single orientation but instead formed a
disordered labyrinth pattern. When plastic depinning occurred,
it was possible to induce a dynamical reordering transition
into a stripe state aligned with the driving direction [21]. We
also found that the dynamically induced reorientation strongly
depends on the strength of the quenched disorder. Only for
sufficiently strong quenched disorder are there enough plastic
distortions to permit the formation of the oriented stripes [14].
When the pinning is weak, the labyrinth structures depin
elastically without any distortions and the aligned stripes never
form.

Here we analyze the transition from elastic to plastic
depinning and show that for some parameters, the stripe system
exhibits a peak effect phenomenon similar to that observed at
the transition from elastic to plastic depinning in vortex matter.
The vortex peak effect is associated with a sharp increase
in the depinning force as well as changes in the transport
curves [38–41]. We show that the peak effect in the stripe
system can occur for driving in either direction and that it is
possible to have a peak effect for one direction of drive but
not the other. In previous work, we showed that there is a
broad maximum in the depinning force for the stripe phase
as a function of the strength of the attractive term. In this
work, we study the peak effect in the stripe phase as a function
of disorder and find that it occurs as a sharp, first-order-like
transition which is similar to the peak effect observed in
superconductors.

In this work we explicitly focus on the case where the stripes
are already in an aligned state rather than in a disordered
labyrinth phase. This permits us to apply a drive in two

well-defined directions, along and perpendicular to the stripes,
and to compare the anisotropic response for different strengths
of quenched disorder. As noted previously, many of the 2DEG
stripe systems appear to contain oriented stripes. To our
knowledge the depinning and sliding dynamics of an oriented
stripe system has not previously been numerically studied. We
find several new types of sliding phases that do not appear for
sliding dynamics in isotropic systems such as vortices [42–48],
colloids [40], sliding charge density waves [49], or sliding
Wigner crystals [50]. For example, we find several different
types of plastic stripe flow. In one state, individual structures
slide past stationary stripes; in another state, the stripe structure
remains intact but a portion of the particles within the stripes
are pinned while other particles flow past in one-dimensional
(1D) channels. For strong disorder the stripe structure breaks
apart and the flow is similar to the plastic flow observed in
isotropic vortex systems [44,45,48]. We also find that the extent
to which the stripes reorient is strongly sweep rate dependent.
This affects measurements of the depinning thresholds and
features in the transport curves.

The paper is organized as follows. In Sec. II we describe
our simulation method. In Sec. III we employ pulse drive
measurements to study metastable and transient behavior of
the system. Section III A demonstrates the use of a pulse drive
technique to measure transient times as a function of driving
force in a system with strong pinning, while in Sec. III B
we show observations of elastic depinning using the pulsed
drive. Our careful characterization of the transient behavior
permits us to turn to continuously swept drives in Sec. IV,
where we make all measurements at each drive increment
in the steady state regime and exclude all transient behavior.
Section IV A shows that applying a swept drive to a sample
with strong pinning produces plastic flow that is able to erase
some memory of the initial state. Section IV B details the
peak effect that appears at the transition from ordered to
disordered stripe flow. We provide dynamical phase diagrams
for swept drives applied along and transverse to the stripes
in Sec. IV C, and consider the effects of changing disorder
density and radius on these phases in Sec. IV D. Section V
describes the velocity noise that occurs near the depinning
transition. In Sec. VI we study the effects of temperature,
including a thermally induced ordering transition which is
illustrated in Sec. VI A. We conclude with a summary in
Sec. VII.

II. SIMULATION

In Fig. 1 we show a snapshot of our system containing
stripes oriented in the y direction. The easy driving direction
is along y, parallel to the stripes, while the hard driving
direction is along x, perpendicular to the stripe pattern. Our
simulation box has periodic boundary conditions with sides
Ly = L and Lx = 1.097L. We consider N = 380 particles
with a density given by ρ = N/(LxLy). Here we fix ρ = 0.36.
The particles interact with a long-range Coulomb repulsion and
a short-range exponential attraction. The resulting interaction
potential is repulsive at very short ranges due to the Coulomb
term, attractive at intermediate range, and repulsive at long
range. The dynamics of the particles are determined by
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FIG. 1. The particle positions (black dots) for a system with
competing long-range repulsion and short-range attraction. For this
density of ρ = 0.36 we obtain a stripe state with the stripes aligned
along the y direction. The external drives are applied either along the
stripe direction, F

y

D , or perpendicular to the stripes, F x
D .

integrating the following equation of motion:

η
dRi

dt
= −

Ni∑

j �=i

∇V (Rij ) + FP
i + FDC

i + FT
i . (1)

Here Ri is the position of particle i and we take η = 1.
The first term on the right hand side of Eq. (1) is the particle-

particle interaction potential

V (Rij ) = 1

Rij

− B exp(−κRij ), (2)

with Rij = |Ri − Rj |, B = 2.0, and κ = 1.0. To avoid the
divergence from the Coulomb term at small Rij we place a
constant-force cutoff at Rij < 0.1. The Coulomb term does
not permit a long-range interaction cutoff so for computational
efficiency we employ a Lekner summation method to calculate
the long-range Coulomb force [51]. The second term of
the interaction potential is a phenomenological short-range
attractive interaction.

The second term on the right in Eq. (1) is the force from the
quenched disorder, modeled as Np nonoverlapping randomly
placed parabolic pinning sites with density ρp = Np/(LxLy)
and with

FP
i =

Np∑

k=1

(Fp/Rp)R(p)
ik �

(
Rp − R

(p)
ik

)
R̂(p)

ik . (3)

Here, R(p)
k is the location of pinning site k, Rp is the pinning

radius which is set to Rp = 0.2 unless otherwise noted, Fp is
the maximum force from a pinning site, R

(p)
ik = |Ri − R(p)

k |,
R̂(p)

ik = (Ri − R(p)
k )/R(p)

ik , and � is the Heaviside step function.

We average our results over several realizations of the
quenched disorder when we construct the phase diagrams.

The force FDC
i in Eq. (1) arises from an external dc drive

applied unidirectionally to all the particles in either the y

or x direction, FDC
i = F

y

D ŷ or FDC
i = Fx

D x̂. We measure the
depinning threshold and transport curves for each driving
direction by summing over the velocities of the particles,
〈Vα〉 = ∑N

i vi · α̂ with α = x,y.
The final term on the right hand side of Eq. (1) represents

the forces from randomly distributed thermal kicks with
the following properties: 〈FT

i (t)〉 = 0 and 〈FT
i (t)FT

j (t ′)〉 =
2ηkBT δij δ(t − t ′), where kB is the Boltzmann constant. In
previous equilibrium studies of this system, we identified the
densities at which different clump, stripe, and bubble phases
occur [52]. Here we work at ρ = 0.36 corresponding to the
case of stripes containing approximately three particles per
row as shown in Fig. 1. The initial particle positions were
obtained from a very slow simulated annealing from a high
T to T = 0.0. The stripes align in the y direction during the
anneal, and the pinning potential is not applied until after the
annealing process is completed.

III. PULSE MEASUREMENTS AND METASTABILITY FOR
STRONG DISORDER

We first examine the dynamical response when different
strengths of external drive are suddenly applied to the system.
Pulse measurements have been used extensively to character-
ize the plastic depinning dynamics of vortex systems [53] but
have not to our knowledge been applied previously to study
the depinning dynamics of stripe-forming systems. When the
external drive is slowly increased from zero, the system passes
through several different dynamical phases. In contrast, for
the sudden pulse drive, the system can pass directly from a
pinned state to a sliding state, and an ordered moving state
may appear that cannot be reached by slowly increasing the
driving force. For strong pinning, the stripe structure breaks
up or fragments near depinning, and the anisotropy of the two
driving directions is reduced for a slow ramp of the driving
force; however, for the pulse measurements, a pronounced
anisotropy can be preserved.

We conduct a series of pulse drive simulations at Fp = 0.9
and ρp = 0.38. For these parameters, slow driving ramps
would produce a breakup of the stripe structure for driving
in either the x or y direction. After we apply the pulse drive,
the system typically passes through a transient state and the
velocity relaxes to a steady state value after a characteristic
time τ . We construct a pulsed-drive velocity-force curve by
plotting the average steady state velocity 〈V 〉 versus the
magnitude of the pulse drive FD . This is shown in Fig. 2(a) and
Fig. 2(c) for driving along y and x, respectively. For driving in
the easy or y direction, the critical force F

y
c is lower than for

driving in the hard or x direction.
There is a sharp jump to a higher value of 〈Vy〉 just

above F
y

D = 0.165 in Fig. 2(a). For F
y

D < 0.165, the pinned
stripe state undergoes plastic distortion when it moves, but for
F

y

D � 0.165, the pinned stripe is able to depin directly into an
ordered moving stripe state, resulting in the jump in mobility.
An example of the ordered motion is shown in Fig. 3(e) and
Fig. 3(f) for F

y

D = 0.2. For F
y

D < 0.165, the stripe structures
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FIG. 2. (a) The average steady state velocity 〈Vy〉 vs F
y

D for pulse
driving in the y direction. We use the same parameters as in Fig. 1
with Fp = 0.9 and ρp = 0.38. Here the drive is suddenly increased
from zero to FD and the system settles into a steady state after a
transient time τ . (b) The corresponding d〈Vy〉/dF

y

D , with a sharp peak
indicating the transition to a moving stripe phase for F

y

D � 0.165.
(c) 〈Vx〉 vs F x

D for the same system. (d) The corresponding d〈Vx〉/dF x
D

vs F x
D showing a sharp peak at the transition to a perpendicularly

translating stripe state.

are partially destroyed when plastic flow occurs at depinning.
For weakly plastic flow, the moving stripes persist transiently
for a period of time before breaking apart and repinning, as in
Fig. 3(a) and Fig. 3(b) at Fy

D = 0.05. In contrast, the stripes are
disordered in the strongly fluctuating plastic flow phase when
a portion of the particles are pinned while other particles are
mobile, as illustrated in Fig. 3(c) and Fig. 3(d) for F

y

D = 0.125.
The transition from the disordered plastic flow regime to the
ordered moving stripe regime appears as a pronounced peak
in d〈Vy〉/dF

y

D at F
y

D = 0.165, as shown in Fig. 2(b).
For the strongly fluctuating plastic flow regime found for

0.1 < F
y

D < 0.165, the initial transient motion consists of an
elastically moving stripe state in which all the particles are
moving. To characterize the time τ required before the system
reaches a steady state after application of a pulse drive, we
analyze the time series of Vy such as those plotted in Fig. 4
for F

y

D = 0.11, 0.125, 0.15, and 0.17, where each point is
averaged over 200 simulation time steps. The system starts
with a higher value of Vy which persists for a time that
increases with increasing F

y

D before dropping to the lower
steady state value of Vy . The initial motion associated with the
higher value of Vy is a metastable moving ordered stripe. After
the transient time τ , the stripe breaks apart and a portion of the
particles become pinned, producing the drop to the lower value
of Vy . The particle positions shown in Fig. 3(d) at F

y

D = 0.125
are illustrated at a point in time after the transient ordered
stripe state broke apart. In the strongly fluctuating plastic flow
regime, transverse diffusion of the particles can occur in which
the particles can wander from one stripe to another along the
x direction. The nature of this nonthermal diffusion, such as
whether it is normal or anomalous, will be the subject of a
future study.

For F
y

D � 0.165, the system remains in the ordered moving
stripe state within the entire simulation time window, which
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FIG. 3. The particle positions (black dots) and particle trajectories
(black lines) for the system in Figs. 2(a) and 2(b) for pulse driving in
the y direction. The particle trajectories are traced over equal times
in panels (a), (c), and (e). (a) At F

y

D = 0.05 there is a filamentary
flow pattern along the stripes. (b) A snapshot of only the particle
positions from (a) shows that the stripe structure is partially preserved.
(c) At F

y

D = 0.125, fluctuating plastic flow occurs in which channels
of moving particles intertwine and mix while other particles remain
pinned. (d) The particle positions only for the system in (c) indicate
that the stripe structures are completely disordered. (e) At F

y

D = 0.2,
above the peak in d〈Vy〉/dF

y

D shown in Fig. 2(b), all the particles
are moving in an ordered stripe phase. (f) A plot of only the particle
positions from (e) shows the ordered stripes.

includes simulations ten times longer than shown in Fig. 4. For
F

y

D < 0.165, the transient time τ during which the metastable
ordered moving stripe exists increases with increasing F

y

D . It is
possible that after extremely long times, even for F

y

D � 0.165
the stripe state could break apart, resulting in a shift of the
peak in d〈Vy〉/dF

y

D to higher F
y

D . Figure 2(b) shows that there
is a linear increase in d〈Vy〉/dF

y

D for 0.1 < F
y

D < 0.16, below
the large peak. Within this range of F

y

D , the steady state flow
is strongly fluctuating as shown in Fig. 3(c) and Fig. 3(d). For
0.04 < F

y

D < 0.1, the 〈Vy〉 versus F
y

D curve increases very
slowly above the depinning transition, as also indicated by the
small value of d〈Vy〉/dF

y

D in Fig. 2(b). In this range of F
y

D ,
the flow is still plastic and a portion of the particles remain
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FIG. 4. (Color online) The velocity Vy in the y direction averaged
over every 200 simulation time steps vs time in simulation time steps
for pulse drives of F

y

D = 0.11, 0.125, 0.15, and 0.17, from bottom to
top. In the lower three curves, which fall in the strongly fluctuating
plastic flow regime, the transition from a higher to a lower velocity
occurs when the ordered stripe structure breaks apart, such as when
the structure seen in Fig. 3(f) turns into a fragmented structure of
the type shown in Fig. 3(d). The upper curve is at a drive above the
transition to the moving ordered stripe regime.

immobile while others flow past; however, the character of the
plastic flow differs from the strongly fluctuating flow found for
0.1 < F

y

D < 0.16. The low drive plastic flow takes the form
of filamentary flow along the stripes, as illustrated in Fig. 3(a)
for F

y

D = 0.05 where one river of particles flows along the
stripe. Figure 3(b) shows that the particles still retain much of
the stripe structure, in contrast to the strongly fluctuating flow
illustrated in Fig. 3(d) where the stripe structure is nearly lost.
Another difference is that the plastic flow in Fig. 3(c) involves
a significant transverse diffusion of particles in the x direction,
so that over time the particles can mix throughout the system.
For the low drive plastic flow in Fig. 3(a), there are some early
time particle jumps transverse to the drive from one stripe to
another; however, these events vanish in the long time limit
and there is no steady state diffusion in the x direction, even
though the shape of the filamentary flow within one stripe may
change slightly over time.

In Fig. 2(c) we plot 〈Vx〉 versus Fx
D for the same system

in Fig. 2(a), while the corresponding d〈Vx〉/dF x
D appears

in Fig. 2(d). For the x-direction pulse drive, we do not
find any regime where the stripes can dynamically reorient
and align themselves in the x direction. Instead, the system
passes directly into a moving stripe phase in which the stripe
orientation remains perpendicular to the direction of stripe
motion, as shown in Figs. 5(c) and 5(d). The transition into the
sliding stripe phase occurs at the peak in d〈Vx〉/dF x

D shown
in Fig. 2(d) at Fx

D = 0.224. This peak falls at a higher value
of Fx

D than the value of F
y

D of the peak in Fig. 2(b). This
is because stripes moving perpendicular to their orientation
are much more susceptible to breaking apart than stripes
moving parallel to their orientation. A higher pulse driving
force reduces the effectiveness of the pinning and reduces the
tendency for plastic flow, so a stripe moving perpendicular to
its orientation is stabilized at a higher drive than a stripe moving
parallel to its orientation for the same pinning strength.
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FIG. 5. The particle positions (black dots) and particle trajectories
(black lines) for the system in Figs. 2(c) and 2(d) for pulse driving in
the x direction. The particle trajectories are traced over equal times in
panels (a) and (c). (a) At F x

D = 0.125, fluctuating plastic flow occurs
in which channels of moving particles intertwine and mix while other
particles remain pinned. (b) The particle positions only for the system
in (a) indicate that the stripe structures are completely disordered.
(c) At F x

D = 0.23, above the peak in d〈Vx〉/dF x
D shown in Fig. 2(d),

all the particles are moving in an ordered transverse moving stripe
phase. (d) A plot of only the particle positions from (c) shows the
ordered stripes.

Figure 2(d) also shows a smaller maximum in d〈Vx〉/dF x
D

near Fx
D = 0.135, corresponding to a change in the character of

the plastic flow. For 0.135 � Fx
D < 0.224, the steady state flow

is dominated by strong plastic rearrangements where the stripe
structure completely breaks apart, as illustrated in Figs. 5(a)
and 5(b). In contrast, for 0.06 < Fx

D < 0.135, the flow is more
filamentary and is composed of a small number of slowly
changing channels. For 0.17 < Fx

D < 0.22, we also find a
metastable effect similar to that shown in Fig. 4 for driving
in the y direction. An ordered stripe can slide perpendicular
to the direction of the stripe orientation for a period of time
which increases with increasing Fx

D before the stripe breaks
apart.

In Figs. 2(a) and 2(c), for 0.15 < F
x,y

D < 0.224, the
velocity is higher for driving along the easy y direction.
In contrast, for 0.08 < F

x,y

D < 0.15, 〈Vy〉 falls below 〈Vx〉.
This occurs because the pulse drive measurements preserve
some of the initial structure of the oriented stripes. In the
low drive regime 0.08 < F

x,y

D < 0.15, much of the flow is
filamentary. For driving along the stripe, F

y

D , the filamentary
flow settles quickly into a few nonfluctuating channels,
while for driving against the stripe, Fx

D , the filamentary flow
forms fluctuating plastic channels which generally have large
velocity pulses, producing a larger average velocity 〈Vx〉. For
0.025 < F

x,y

D < 0.04, anisotropy appears due to the differing

041501-5



OLSON REICHHARDT, REICHHARDT, AND BISHOP PHYSICAL REVIEW E 83, 041501 (2011)

critical depinning forces in the two directions; here, flow only
occurs in the y direction but is absent in the x direction.

A. Transient times

We next analyze in detail the time required for the system
to achieve steady state flow under a pulse drive. This time
grows rapidly near the transition between the disordered and
ordered flow states, as shown in Fig. 4. Recent experiments and
simulations of periodically sheared particle assemblies under
suddenly applied shear have shown evidence for a diverging
time to reach a steady state upon approaching a dynamic phase
transition [54]. Recent simulations of the plastic depinning of
repulsively interacting particles also revealed that the transient
time to reach a steady state under a pulsed drive diverges
as a power law as the depinning transition is approached from
either side [55]. This suggests that analyzing the transient time
required to reach a steady state can be a useful diagnostic for
probing changes in dynamical states.

In Fig. 6(a) we plot the transient time τ taken by the system
in Fig. 2(a) to reach a steady state after the application of
a pulse drive in the y direction. For F

y

D < 0.04, below the
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FIG. 6. The time τ in simulation time steps required for the
system to reach a steady state velocity after an applied pulse drive
for the system in Fig. 2. (a) τ vs F

y

D for driving in the y direction.
The first peak at F

y

D = 0.04 corresponds to the depinning transition,
the second peak centered at F

y

D = 0.1 appears at the transition
from the filamentary flow illustrated in Figs. 3(a) and 3(b) to the
fluctuating flow state shown in Figs. 3(c) and 3(d), and the third peak
at F

y

D = 0.165 is associated with the transition to a moving ordered
stripe state. (b) τ vs F x

D for driving in the x direction.

critical depinning force F
y
c , there is still a finite transient

time during which the system organizes into a pinned state.
The time required to reach the pinned state increases as F

y
c

is approached from below, while the time required to reach
a steady moving state increases as F

y
c is approached from

above. For F
y

D � 0.165, when the system passes directly into a
moving ordered stripe state, the steady state velocity is reached
very quickly and τ is very small. In the region 0.1 < F

y

D <

0.165, the system depins into a metastable moving ordered
stripe state that breaks apart after a time τ as shown in Fig. 4.
As F

y

D approaches F
y

D = 0.165 from below, τ increases since
it takes increasingly longer times to trigger the instability that
results in the fragmentation of the stripes. The rapid increase of
τ suggests that τ may diverge at the transition to the moving
stripe phase; however, our results are not accurate enough
to establish whether this divergence has a power law form.
We find that the peak in τ at F

y

D = 0.165 is asymmetric.
In comparison, the dynamic phase transitions studied in the
shearing systems produced symmetric diverging time scales
on both sides of the transition [54,55]. Fig. 6(a) also shows a
peak in τ centered near F

y

D = 0.09, which corresponds to the
location of the change in slope of 〈Vy〉 versus F

y

D in Fig. 2(a).
At this drive, there is a change from the filamentary plastic flow
channels shown in Figs. 3(a) and 3(b) to the rapidly fluctuating
disordered plastic flow channels shown in Figs. 3(c) and 3(d).
The fact that τ also increases in this region is further evidence
that there can be dynamical phase changes even within the
plastic flow regime. Finally, there is another peak in τ near
F

y

D = 0.04 at the depinning transition. These results show that
peaks in the transient time can be used to detect changes in the
flow characteristics of these systems.

In Fig. 6(b) we plot τ for pulse driving in the x direction.
Near Fx

D = 0.225 there is a peak in τ associated with the
transition to the moving perpendicular stripe phase. Within
the range 0.21 < Fx

D � 0.225, where the value of τ is locally
enhanced, the system forms a metastable state of stripes
moving perpendicular to their length. Eventually, the stripes
break apart, and the time required for this to occur increases
with increasing Fx

D until for high enough Fx
D the moving

perpendicular stripe structure becomes stable rather than
metastable and τ drops back to a small value. The peak in
τ at Fx

D = 0.225 in Fig. 6(b) is similar to the peak found
for driving in the y direction in Fig. 6(a) near F

y

D = 0.165.
Figure 6(b) shows that there is another peak in τ centered at
Fx

D = 0.06 corresponding to the transition from filamentary
plastic flow to strongly disordered plastic flow. Overall, the
transient times for driving in the x direction are smaller than
for driving in the y direction. For driving along the y direction,
plastic flow channels can form which do not distort the aligned
stripe pattern, permitting the system to remain in a metastable
state for longer times before falling into the disordered
steady state stripe structure. For driving along the x direction,
the stripe structure is more strongly disordered even at lower
drives, so the system is closer to the disordered steady state
stripe structure from the beginning and spends a shorter
amount of time in the metastable state.

The filamentary plastic flow regime that appears for 0.04 <

F
y

D < 0.1 is associated with large values of τ as shown in
Fig. 6(a). In this regime, the time decay of Vy to its steady state
value differs from the decay in the strongly fluctuating plastic
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FIG. 7. (Color online) Solid line: Vy vs time for F
y

D = 0.085
for the system from Fig. 2, showing the decay of the system into
the filamentary plastic flow state. Dashed line: A power law fit to
Vy(t) ∝ t−α with α = 0.35 ± 0.05.

flow regime shown in Fig. 4, where Vy remained roughly
constant before dropping relatively rapidly to a lower value.
Instead, in the filamentary regime Vy follows a continuous
stretched exponential form or power law, as illustrated in Fig. 7
for F

y

D = 0.085. The dashed line is a power law fit performed
for t < τ to Vy ∝ t−α with α = 0.35 ± 0.05. For t > τ , Vy

ceases to decay and reaches a steady state. We find an equally
good fit of the decaying portion of the curve to a stretched
exponential form. The exponents from the fits do not appear
to be universal and change when we take measurements from
the other plastic flow regimes. We note that in other dynamical
regions, the velocity decays exponentially to a steady state.
Our results indicate that within the filamentary plastic flow
phases, very long transient times can occur.

The order-disorder transition at F
y

D = 0.165 between the
lower drive strongly fluctuating plastic flow phase shown in
Fig. 3(d) and the higher drive moving ordered stripe phase
shown in Fig. 3(f) exhibits metastability and has a diverging
time scale only on the low drive side of the transition, as
indicated in Fig. 6(a). These features strongly suggest that
this transition is first order in nature and that the details of
the transition are strongly affected by the initial conditions
of the moving state. For example, it is possible to obtain a
reversed metastability by starting the system in a disordered
configuration and applying a pulse drive F

y

D > 0.165. In
this case, the moving system remains disordered and travels
at a lower velocity until an instability causes the stripe
structure to form with a corresponding increase in the velocity.
This reversed metastability shows diverging transient times
as the transition is approached from above, but has no
diverging time scales when the transition is approached from
below. The metastability of the ordered and disordered states
resembles the superheating or supercooling recently observed
for systems with first order phase transitions. Very similar
dynamical superheating and supercooling effects were found
in superconducting vortex systems in experiments [56] and
three-dimensional (3D) simulations [57]. The vortex system
undergoes a disorder-induced first order phase transition, and
the effective disorder changes when the system is prepared in

different states. Computational studies of 2D vortex systems
interacting with disorder have shown that there is either a
continuous order to disorder transition or a crossover, so
hysteresis, superheating and supercooling do not appear. For
many stripe-forming systems in two dimensions, transitions
from ordered to disordered states in equilibrium and in
the absence of quenched disorder are first order in nature
[4,5]. Our results suggest that the first order nature of the
equilibrium transitions persists for some of the transitions
between nonequilibrium states.

At the transition between the low drive filamentary plastic
flow phase and the higher drive strongly fluctuating plastic
flow phase, Fig. 6(a) indicates that there are diverging transient
times on both sides of the transition. This behavior is similar to
the diverging transient times found for 2D plastic depinning.
There is evidence that the plastic depinning is an absorbing
phase transition falling in the directed percolation class [55].
Determining whether the depinning of the stripe system or
the filamentary plastic flow to strongly fluctuating plastic flow
transition are also nonequilibrium phase transitions falling in
the directed percolation class is beyond the scope of this work;
however, our results suggest that the stripe system may be an
ideal system in which to examine the nature of nonequilibrium
transitions since it exhibits several different types of flow
phases.

B. Pulse measurements for weak disorder

We next consider pulse drive measurements for a system
with the same pinning density ρp = 0.38 but with a weaker
disorder strength of Fp = 0.125. In Fig. 8(c) we plot 〈Vx〉
versus Fx

D and in Fig. 8(d) we show the corresponding
d〈Vx〉/dF x

D . For this value of Fp, the stripe structure remains
ordered. The single step depinning for x-direction driving is
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FIG. 8. (Color online) (a) 〈Vy〉 vs F
y

D for a pulse drive system
with ρp = 0.38 and a lower pinning force of Fp = 0.125. A two
step depinning occurs, with uncoupled stripes depinning initially
followed by the depinning of coupled stripes. (b) The corresponding
d〈Vy〉/dF

y

D has a double peak indicating the two step depinning
process. (c) 〈Vx〉 vs F x

D for the same system. Inset: Plot of 〈Vx〉
vs F x

D − F x
c for the data in the main panel with F x

c = 0.003 45. The
dashed line indicates a power law fit with an exponent of β = 0.35. (d)
The corresponding d〈Vx〉/dF x

D shows a single step elastic depinning
of the stripes.
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FIG. 9. (Color online) A combined plot of 〈Vx〉 vs F x
D (dark line)

and 〈Vy〉 vs F
y

D (light line) for the system in Fig. 8 with Fp = 0.125
highlighting the transport anisotropy. Inset: The particle positions
(dots) and trajectories (lines) for the system in Fig. 8(a) in the
decoupled stripe regime at F y

D = 0.0025 where a portion of the stripes
are moving while others are pinned.

elastic and has 〈Vx〉 ∝ (Fx
D − Fx

c )β , with β = 0.35, as shown
in the inset of Fig. 8(c). This is followed by a crossover to
〈Vx〉 ∝ Fx

D at higher drives. The behavior agrees well with the
depinning of a harmonic elastic string driven over a random
substrate, where an exponent β = 0.33 is observed [58]. For
driving in the y direction, as shown in Fig. 8(a), 〈Vy〉 versus
F

y

D indicates that a two step depinning process occurs. The
initial depinning involves the flow of individual stripes, while
other stripes remain pinned or move at different velocities, as
illustrated in the inset of Fig. 9 for F

y

D = 0.0025. At higher
drives, the remaining stripes depin and become coupled to
the other moving stripes, resulting in an elastic flow. The two
peaks in d〈Vy〉/dF

y

D shown in Fig. 8(b) fall at the locations
of the two depinning transitions. A similar type of two step,
layered depinning transition was predicted for anisotropic
charge density wave (CDW) systems, where CDWs first depin
separately and flow independently from one layer to the next,
and then recouple at higher drives [59]. Mean field models
also predict that layered systems should show a coupling-
decoupling transition [60,61], while two-layer models predict
that coexistence of moving and pinned phases should occur
in 2D systems [62]. In the main panel of Fig. 9, we plot 〈Vx〉
versus Fx

D and 〈Vy〉 versus F
y

D together in order to highlight
the transport anisotropy which disappears for F

x,y

D > 0.04
when fully elastic flow is established. The transient times τ

for the Fp = 0.125 system are much shorter than those in
the Fp = 0.9 system, where plastic depinning occurred. We
find an increase in τ just below each depinning transition in
the Fp = 0.125 system for both x and y direction driving.
For x-direction driving, there is a single peak in τ below
the depinning threshold which is associated with a small
amount of roughening of the stripe structure that occurs just
before depinning. Above each depinning transition in the
weak pinning system, τ is extremely small. For y-direction
driving, the peak in τ is broader within the sliding plastic
flow phase found below the second depinning transition. In
systems with even weaker pinning, Fp < 0.05, the depinning is

elastic for both driving directions and the transport anisotropy
is significantly reduced.

IV. CONTINUOUS FORCE SWEEP MEASUREMENTS

A. Strong disorder

We now examine the case where the applied drive is slowly
incrementally increased in a single sweep as opposed to the
sudden application of the drive discussed in the previous
section. We use a driving force increment of 
FD = 0.000 25
applied every 25 000 simulation time steps in a system with
Fp = 0.9 and ρp = 0.38. In Fig. 10 we plot the resulting
〈Vx〉 versus Fx

D and 〈Vy〉 versus F
y

D together. Many of the
transport features are the same as those shown for the pulse
drive in Fig. 2, such as the lower depinning threshold for
driving in the y direction and the anisotropic flow centered near
F

x,y

D = 0.2. The transition to the flowing stripe state remains
sharp for the continuous sweep drive in the y direction, but
for the x-direction driving the state in which the stripes flow
perpendicular to their orientation is lost. Instead, the system
reorders into a stripe state oriented along the x direction, as
shown in Fig. 11(b) for Fx

D = 0.27. In the pulse drive system,
the perpendicular moving stripe state can be stabilized by
dynamical quenching, but for the swept drive, the system
passes through an extensive plastic flow phase which destroys
any memory of the initial perpendicular stripe orientation.

The inset of Fig. 10 highlights that under the swept drive,
a crossing of 〈Vy〉 and 〈Vx〉 occurs near F

x,y

D = 0.24. There
is no such crossing for the pulse drive, as shown in Fig. 2.
The crossing of the curves indicates that although the system
is in the moving stripe state for both drive directions, the
slope of 〈Vy〉 is smaller than that of 〈Vx〉 in this regime. This
is because a fraction of the particles remain pinned for the
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FIG. 10. (Color online) A combined plot of 〈Vx〉 vs F x
D (dark line)

and 〈Vy〉 vs F
y

D (lighter line) for a system with Fp = 0.9 and the same
parameters as in Fig. 2 but with a continuously swept drive. There are
several steps in 〈Vy〉 that appear below the drive F

x,y

D = 0.32 at which
the two curves meet. Inset: A blowup of the region near F

x,y

D = 0.24
shows a crossing of the 〈Vx〉 and 〈Vy〉 curves, indicating that 〈Vy〉 has a
smaller slope and that therefore fewer particles are moving for driving
in the y direction than for driving in the x direction. The crossing of
〈Vx〉 and 〈Vy〉 does not occur for the pulse drive measurements shown
in Fig. 2.
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FIG. 11. (a) Image of particle positions in the reordered phase at
F

y

D = 0.27 in the swept drive system from Fig. 10. In addition to the
stripe structure, there are some scattered particles pinned between
the stripes. (b) Image of particle positions in the reordered phase at
F x

D = 0.27 in the same system. The stripes have reoriented in the
x direction and there are no pinned particles between the stripes.

y-direction drive, while all of the particles are moving for the
x-direction drive. When fewer particles are moving, the slope
of the velocity-force curve is reduced. Particles are able to
remain pinned for the y-direction drive because they can be
captured in pinning sites that are sufficiently far away from
the neighboring stripes that they experience only repulsion
from the particles in the stripes, and are out of the range of the
attractive part of the particle-particle interaction potential. This
does not happen for the x-direction drive because during the
stripe reorientation process, all pinned particles are eventually
swept up into a moving stripe. In Fig. 11(a), the reordered
stripe phase for F

y

D = 0.27 contains pinned particles that sit
between the stripes rather than flowing with the stripes. In
contrast, in the moving stripe phase for a y-direction pulse
drive shown in Fig. 3(f), there are no pinned particles between
the moving stripes. In the x-direction swept drive moving stripe
phase, all of the particles are moving and there are no pinned
particles between the moving stripes, as shown in Fig. 11(b)
for Fx

D = 0.27. The transition into the moving stripe phase for
swept y-direction driving is rapid, as indicated by the jump
in 〈Vy〉 at F

y

D = 0.185 in Fig. 10. For x-direction driving,
the reordering transition is more continuous, permitting more
meandering of the stripe pattern during the stripe formation
process. This allows all of the pinned particles to be attracted
gradually into the moving stripe structure.

Once the driving force becomes strong enough, the pinned
particles surrounding the moving stripes for the y-direction
swept drive depin and join the moving stripe structures. The
depinning of the individual particles produces the step features
in 〈Vy〉 near F

y

D = 0.28 in Fig. 10. For drives above the
depinning threshold of all of the pinned particles, the velocity
response is isotropic, as shown in Fig. 10 for F

x,y

D > 0.32. Our
results indicate that even for pinning strengths strong enough
to induce plastic flow and a subsequent reordering of the stripe
structure, some memory of the initial ordering of the stripe
phase is retained up to relatively large values of the driving
force. We note that based on the extended transient behavior
found in the plastic flow regimes for the pulse drives, it is
possible that if the swept drives were applied with even slower
drive increments, the anisotropic response could be lost at

lower drives if the system is given more time to slowly mix in
the plastic flow state.

B. Pinning strength dependence and peak effect

When we perform swept drive measurements on a system
with the weaker pinning strength of Fp = 0.125, we obtain
velocity-force curves that are nearly identical to those shown
in Fig. 8 for a pulse drive measurement. We attribute this to
the lack of plastic flow in the weakly pinned system. Without
plastic flow, the stripe structure never breaks apart and memory
of the initial stripe orientation is never lost, so the same stripe
orientation appears, regardless of whether the drive is slowly
swept or suddenly applied. By increasing Fp slightly, we
reach a state where the x-direction depinning is plastic and
accompanied by the breaking apart of the stripe structure,
while the y-direction depinning occurs by the sliding of some
of the stripes, with the stripe structure maintained intact. This
situation is illustrated in Fig. 12, where we plot 〈Vx〉 versus Fx

D

and 〈Vy〉 versus F
y

D for a swept drive system with Fp = 0.225.
By conducting a series of simulations for varied Fp, we

map the anisotropy in the depinning thresholds Fx
c and F

y
c ,

as shown in Fig. 13(a). For x-direction driving, Fx
c increases

monotonically with increasing Fp for 0 < Fp < 0.175. Within
this range of Fp, the depinning is elastic and the stripes move
perpendicularly to their orientation. Each particle maintains its
position in its original stripe. Just above Fp = 0.175, there is
a sudden increase in Fx

c corresponding to the onset of plastic
distortions of the stripe structure at depinning. For driving in
the y direction, F

y
c continuously increases with increasing Fp

for 0 < Fp < 0.25. Over this range of Fp, the stripes depin
elastically and either all depin simultaneously for Fp < 0.05,
or depin as individual sliding stripes for 0.05 � Fp < 0.25 via
the mechanism illustrated in the inset of Fig. 9. For Fp < 0.05,
where our system behaves elastically, we find that Fy

c increases
approximately quadratically with Fp which is the expected
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FIG. 12. (Color online) A combined plot of 〈Vx〉 vs F x
D (dark line)

and 〈Vy〉 vs F
y

D (lighter line) for a system with ρp = 0.38, a lower
Fp = 0.225, and a swept drive. The depinning in the x direction is
accompanied by plastic distortions and the partial breaking apart of
the stripe structure. Depinning in the y direction occurs by the sliding
of stripes past one another in a manner similar to that illustrated in
the inset of Fig. 9.
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FIG. 13. (Color online) (a) The critical depinning forces F x
c (filled

circles) and F y
c (open squares) for driving in the x and y directions,

respectively, plotted vs Fp . The sharp jumps in the depinning forces
are associated with changes from elastic flow to plastic flow and from
plastic flow to sliding ordered flow. (b) The corresponding dF x

c /dFp

vs Fp (dark line) and dF y
c /dFp vs Fp (light line) curves more clearly

show the onset of the different depinning phases. (c) The anisotropy
ratio R = F x

c /F y
c vs Fp shows that the change in anisotropy can be

associated with different depinning regimes.

behavior for elastic depinning [63]. Just above Fp = 0.25 there
is a sharp increase in Fc

y when the stripes begin to depin plasti-
cally along individual stripes in the manner shown in Fig. 3(a).

For Fp > 0.4, both F
y
c and Fx

c begin to saturate, as shown
by the anisotropy ratio R = Fc

x /F c
y plotted in Fig. 13(c). The

saturation arises due to the fact that the number of pinning
sites Np is only slightly higher than the number of particles N .
As a result, when Fp is large enough, the initial depinning is
dominated by interstitially pinned particles. These particles are
not trapped by one of the randomly located pins, but are instead
held in place by interactions with neighboring pinned particles.
The critical force for the depinning of particles trapped by pins
increases linearly with increasing Fp, but the critical force for
the depinning of interstitially pinned particles is determined
only by the particle-particle interaction potential and is not
altered by increasing Fp. In a system with a much higher
pinning density, every particle would be trapped by a pin
and the depinning threshold would show the expected linear
increase with increasing Fp.

The sharp increases in the depinning thresholds associated
with transitions from elastic to plastic flow or from weakly
plastic flow to a more strongly plastic flow resemble the
phenomenon observed for depinning of vortices in type-II
superconductors, where a peak in the depinning threshold

has been connected with the disordering of the vortex lattice
[38–41,56,57,64,65]. In the disordered or plastically flowing
systems, the particles can more readily adjust their positions
to take advantage of the energy of a randomly located pinning
site without paying the large energy cost required to distort
an elastic or ordered particle lattice. In studies of 2D vortex
systems, as the vortex lattice is softened the system becomes
more disordered and the depinning threshold increases con-
tinuously, producing a peak effect that is continuous rather
than sharp [66]. This may be related to the fact that 2D
systems of particles with repulsive long-range interactions lack
first order melting or disordering transitions. Many 3D vortex
systems have a first order transition from an ordered vortex
structure to a disordered one, and the peak effect phenomena
observed in these systems is very sharp. Even through the
stripe system described here is 2D, the pairwise particle
interactions are not strictly repulsive. Previous studies in the
absence of quenched disorder using the same model produced
results that suggest that the thermal melting of the stripe and
clump systems is a first order transition. Other 2D studies of
stripe-forming systems with competing interactions also find
first order melting transitions for many of the phases [4]. These
results suggest that the first order peak effect phenomenon
found for vortex systems may also generically occur for stripe
and pattern forming systems in the presence of quenched
disorder. We note that one of the features of the peak effect in
superconducting systems is that at fields or temperatures above
the sharp increase in the depinning force, the critical current or
critical depinning force decreases again. The decrease results
from the changes in the penetration depth and coherence length
that occur as the system approaches Tc or Hc2. The peak effect
itself is associated with a pinning-induced transition from
ordered or elastic flow to disordered or plastic flow, which
is exactly what we observe in our stripe system.

To further characterize the changes in Fc we plot dF x
c /dFp

and dF
y
c /dFp vs Fp in Fig. 13(b). There is a peak in dF x

c /dFp

near Fp = 0.185 corresponding to the transition from ordered
stripe flow to partially plastic flow. A second, much broader
peak appears near Fp = 0.35 at the point where the stripes
break apart completely. For 0.185 < Fp < 0.35, the stripes
driven in the x direction reorder into a perpendicularly moving
stripe state at high Fx

D in spite of the fact that weakly plastic
flow occurs above depinning. For Fp � 0.35, the plasticity
at depinning becomes much stronger and the stripes reorder
into a parallel moving state at high Fx

D . For driving in the
y direction we find a single sharp peak in dF

y
c /dFp near

Fp = 0.25 corresponding to the appearance of plastic flow
along the stripes. We note that the transition at Fp = 0.075
into the pinned-sliding phase illustrated in the inset of Fig. 9
is not associated with any sharp features in dF

y
c /dFp.

The appearance of different flow phases can also be detected
in the plot of the anisotropy ratio R in Fig. 13(c). For example,
the peak in R over the range 0.185 < Fp < 0.3 occurs when
the flow for x-direction driving is plastic, while the flow for
y-direction driving remains elastic in the stripe sliding state.
The increase in R at Fp = 0.06 corresponds to the transition
from elastic depinning in both directions to elastic depinning
for x-direction driving and individual stripe sliding for
y-direction driving. For Fp > 0.6, the anisotropy begins to
saturate.
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onset of depinning (lower heavy line) and the onset of the dynamic
stripe reordering (upper light line). (a) F x

D vs Fp . The dashed line
separates the moving perpendicular stripe phase from the dynamically
reordered parallel stripe phase. In order for the parallel stripe phase to
form, the system must first pass through a strongly fluctuating plastic
flow phase. (b) F

y

D vs Fp . The dashed line indicates the change from
sliding stripe plastic flow to plastic flow in which the stripe structure
breaks apart.

C. Dynamic phase diagram

By identifying features in the velocity force curves and
associating them with different moving states, we construct a
dynamic phase diagram for both x and y direction driving. In
Fig. 14(a) we plot the phase diagram for Fx

D vs Fp, indicating
the location of the depinning curve and the transition into
an ordered stripe state. For Fp < 0.185, the stripes depin
elastically into a perpendicular moving stripe state, while for
0.185 � Fp < 0.35, the stripes depin with a small amount of
plastic distortion into the same perpendicular moving stripe
state. The line in Fig. 14(a) marking the transition from plastic
flow to reoriented ordered parallel moving stripes increases
roughly linearly with Fp for Fp > 0.4.

In Fig. 14(b) we plot the phase diagram of F
y

D versus Fp

for driving in the y direction. In this case the stripes are always
oriented in the direction of the drive. The range of the plastic
flow regime grows with increasing Fp and in general the onset
of the moving stripe phase occurs at lower drives than those at
which the parallel moving stripes form for x-direction driving.
The small dashed line indicates the transition from the plastic
flow in which the stripe structure is destroyed for Fp � 0.275
to the state where moving stripes slide past pinned stripes for
0.075 < Fp < 0.275.

The dynamic phase diagram for the stripe system contains
a larger number of phases than dynamic phase diagrams
observed in systems with purely repulsive particle-particle

interactions moving over random disorder. For example, in 2D
vortex systems the dynamic phases consist only of a pinned
state, a plastic flow state, and a moving partially ordered state,
and the transitions between these states are continuous. In
the partially ordered moving state, the particles are not fully
crystallized but develop a smectic type of ordering and flow in
evenly spaced channels aligned with the direction of the drive.
The channels of flow may be coupled or partially coupled
[42–46]. This is similar to the state we observe in which the
stripes reorient in the direction of drive for sufficiently high
drive and sufficiently strong pinning. In the stripe system,
the stripe reordering transition is more consistent with a first
order phase transition rather than the continuous or crossover
behavior found for particles with purely repulsive interactions.
Studies of driven systems with quenched disorder, where the
particle-particle interactions are more complicated than the
purely repulsive case, have shown that it is possible to have
a coexistence of different moving phases, which is consistent
with having first order phase transitions between the moving
phases [67].

D. Changing disorder density and radius

In Fig. 15(a) we plot Fx
c and F

y
c versus ρp for a system

with Fp = 0.225 and Rp = 0.3, and in Fig. 15(b) we show
the resulting anisotropy ratio R = Fx

c /F
y
c versus ρp. Here Fx

c

and F
y
c both increase monotonically with increasing ρp. We

work with Rp = 0.3 rather than Rp = 0.2 in order to more
easily access the steady state for low values of ρp. Empty
pinning sites with smaller Rp are more easily screened by
occupied neighboring pinning sites when an unpinned particle
is unable to reach the empty pinning site due to the long-range
repulsion of the nearby pinned particle. The empty pins can
eventually be occupied after a lengthy transient time. We find
that the transient times for low ρp are reduced to manageable
levels when we take Rp = 0.3 instead of Rp = 0.2. Fig. 15(b)
shows that at low ρp the anisotropy R is strongly reduced and
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FIG. 15. (Color online) (a) F x
c (filled circles) and F y

c (open
squares) vs ρp for a system with Fp = 0.225 and Rp = 0.3. (b) The
corresponding R = F x

c /F y
c vs ρp shows that at large ρp the anisotropy

is reduced. (c) F x
c (filled circles) and F y

c (open squares) vs ρp for a
system with Fp = 0.7 and Rp = 0.3. (d) The corresponding R vs ρp .
Here the anisotropy drops nearly to R = 1 at high ρp .
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FIG. 16. (Color online) (a) F x
c (filled circles) and F y

c (open
squares) vs Rp for a system with Fp = 0.225 and ρp = 0.38.
(b) The ratio R = F x

c /F y
c vs Rp showing that the anisotropy increases

with increasing Rp and saturates at high Rp .

the two depinning curves come together when the depinning
becomes elastic for both x and y direction drives. A similar
effect appears in Fig. 13(c) for low Fp, where the onset
of elastic depinning for both driving directions results in
a reduced value of R. The anisotropy in Fig. 15(b) passes
through a maximum near ρp = 0.2 before gradually falling
back to 1.0 for increasing ρp. The pinning density plays a more
important role in determining the anisotropy of the depinning
for preformed stripe states than the pinning strength. When
the average distance between pinning sites is greater than
the interstripe distance, depinning for y-direction driving in
a system with strong pinning occurs via a combination of
plastic flow of particles along some stripes while other stripes
remain completely pinned. As a result, F

y
c is generally lower

than Fx
c for the low density, strong pinning limit. This is shown

in Fig. 15(c) where we plot Fy
c and Fx

c versus ρp for Fp = 0.7.
For higher values of ρp, the plastic depinning along the stripes
for y-direction driving is suppressed and the behavior becomes
more isotropic. For systems with small ρp and Fp > 0.35, the
anisotropy persists down to much lower values of ρp than
shown in Fig. 15(a); however, for ρp > 1.0 the anisotropy
vanishes completely.

We next consider a system with Fp = 0.225 and ρp = 0.38
with varied pinning radius Rp. We plot Fx

c and F
y
c versus Rp in

Fig. 16(a), and the anisotropy ratio R = Fx
c /F

y
c in Fig. 16(b).

Both Fx
c and F

y
c increase with increasing Rp. For low Rp, Fx

c

increases faster with increasing Rp than F
y
c does, and for high

Rp, the anisotropy R saturates.

V. VELOCITY FLUCTUATIONS

The dynamic phases can also be characterized by measur-
ing the velocity fluctuations. Experiments on stripe-forming
systems previously demonstrated that narrow band noise,
characterized by a periodic noise signal, and broad band
noise, which lacks any characteristic frequencies, can occur
and showed evidence for transitions between the different
types of noise [31,68]. Previous simulations of clump and
stripe forming systems showed the presence of a 1/f noise
characteristic in the nonlinear portion of the velocity-force
curve associated with the fluctuating plastic flow phase. At
high drives where the stripes or clumps reorder, the noise
becomes white with a weak narrow band or washboard
frequency similar to that observed for a driven vortex lattice
in the dynamically reordered regime [45].
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FIG. 17. (Color online) (a) The time series of Vy for a system
with Fp = 0.9, ρp = 0.36, Rp = 0.2, and F

y

D = 0.04. For these pa-
rameters, the particles move in stationary plastic filaments, producing
a periodic time-of-flight signal. (b) The power spectrum S(f ) of
the time series in (a) showing the characteristic peaks from the
periodic signal. Here, f is in units of inverse simulation time steps.
(c) Time series of Vy for the same system at F y

D = 0.12 in the strongly
fluctuating plastic flow regime. (d) The corresponding S(f ) has a 1/f

feature at low frequencies as indicated by the dashed line.

Here we show that the stripe system exhibits many addi-
tional noise features near depinning. For y-direction driving
near depinning, there can be filamentary plastic flow channels
along the stripe with no particle diffusion from stripe to stripe,
as shown in Fig. 3(a). Within this filamentary plastic flow
regime, it is possible for the particle flow to be limited to one
or a small number of individual winding channels which do not
change over time and which have a characteristic time-of-flight
for crossing the sample. This results in a periodic velocity
signal such as that shown in Fig. 17(a) for a system with
Fp = 0.9 and F

y

D = 0.04. Similar periodic filamentary plastic
motion has been observed in vortex simulations performed
just at depinning. Here one or two stable channels of moving
particles form while the rest of the particles are immobile
[69]. Evidence for filamentary flow has also been found in
vortex experiments, where a series of jumps and dips in
the current-voltage curve were interpreted as indicating the
opening of individual channels of vortex flow [70]. There are
also several simulations of vortex systems showing transitions
from narrow band filamentary flow to chaotic flow as the
drive is increased [71]. The power spectrum S(f ) of the
velocity time series in Fig. 17(a) is shown in Fig. 17(b), and
has characteristic narrow band noise peaks produced by the
time-of-flight signature. As we increase F

y

D and permit the
system to settle into a steady state, we observe a series of
transitions from ordered flows to fluctuating flows with broad
band noise signatures. This behavior is very similar to that
found in 2DEG transport measurements [31]. We observe
filamentary plastic flow from the depinning transition up to
F

y

D = 0.1. Above this drive, the system transitions into the
strongly fluctuating plastic flow regime shown in Fig. 3(c) in
which the stripe structure is destroyed. In Fig. 17(c) we plot
the time series of Vy for the same system in Fig. 17(a) at a drive
of F

y

D = 0.12 in the strongly fluctuating plastic flow regime.
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FIG. 18. (Color online) (a) The time series Vy for a system
with Fp = 0.125 and F

y

D = 0.0025, in the sliding phase. (b) The
corresponding power spectrum S(f ). A strong narrow band noise
signal appears. (c) Time series Vx for the same system under driving
in the x direction at F x

D = 0.0375, just above depinning. (d) The
corresponding S(f ). The velocity signal is not periodic; however, the
power spectrum in (d) has a Lorentzian shape with a flat spectrum at
lower frequencies and a 1/f 2 spectra at higher frequencies, indicated
by the dashed line. For high values of F x

D , the power spectrum
develops a narrow band noise characteristic.

The corresponding S(f ) appears in Fig. 17(d). Here, Vy(t) is
strongly fluctuating since the number of pinned particles in
the system is continuously changing, and the power spectrum
shows a 1/f noise characteristic at low frequencies. As the
drive is further increased, the system reorders into a moving
stripe state and the low frequency 1/f spectral signal is lost. It
is replaced by a weak narrow band noise signal similar to that
observed in previous simulations for stripe reordering [45].

For driving in the x direction at Fp = 0.9, the filamentary
motion along the stripes of the type seen for driving along
the y direction is strongly suppressed. Instead, the strongly
fluctuating plastic flow states with 1/f noise signatures are
more prevalent. When the stripes reorder by reorienting into
the x direction, we find the same weak narrow band noise
feature observed above the stripe reordering transition for
driving in the y direction.

Near depinning in a system with weaker pinning of Fp =
0.125, the sliding stripe phase produces a periodic signal as
shown in Fig. 18(a) for F

y

D = 0.0025. The periodic signal also
appears in the corresponding power spectrum S(f ) shown
in Fig. 18(b). In this regime, the stripes are decoupled, so
individual stripes are moving at slightly different velocities.
This results in a more complex velocity signal composed
of several similar frequencies. For higher drives, the moving
stripes couple and the noise is more characteristic of a single
periodic signal. In larger systems, near depinning there could
be larger numbers of frequencies present since there are a larger
number of stripes which can each move at different velocities.
This would broaden the power spectrum; however, at larger
drives, where the stripes couple, a strong narrow band noise
signature should appear.

In the weak pinning system of Fp = 0.125, x-direction
driving produces elastic depinning. Just above the depinning
transition, the noise signal is not periodic as shown by the

plot of Vx in Fig. 18(c) for Fx
D = 0.0375. There is, however,

a characteristic noise frequency, as shown by the Lorentzian
shape of S(f ) in Fig. 18(d). At higher drives, the spectrum
broadens and the Lorentzian peak frequency shifts to higher
frequency with increasing drive.

VI. THERMAL EFFECTS

We next consider the effects of thermal fluctuations. In
previous work for a stripe-forming system at the same density
considered here but with no quenched disorder, we used diffu-
sion and specific heat measurements to identify a well-defined
disordering temperature Tm above which the stripe structures
were completely destroyed [52]. Below Tm, there was liquid-
like particle motion along the length of the stripes, but the
system behaved like a solid in the direction perpendicular to
the stripes. This suggests that in the presence of quenched
disorder, the stripe system might show considerable creep in
the easy flow direction but no creep in the hard direction for a
finite temperature at applied drives below the zero temperature
depinning thresholds. To examine this, we consider a system
with ρp = 0.36 and Fp = 0.7. At drives of Fx

D = 0.09 or
F

y

D = 0.09, the system is pinned in both directions at T = 0.0.
In Fig. 19(a) we plot 〈Vy〉/V0 and 〈Vx〉/V0 versus T/Tm.
Here V0 is the velocity at which the particles would move
in the absence of pinning. For T/Tm < 0.25, there is almost
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FIG. 19. (Color online) (a) 〈Vx〉/V0 (filled circles) and 〈Vy〉/V0

(open squares) vs T/Tm for a system with ρp = 0.36, Rp = 0.2, and
Fp = 0.7 at applied drives of F x

D = 0.09 and F
y

D = 0.09, respectively.
Here Tm is the temperature at which the stripes melt in the absence of
pinning and V0 is the velocity at which the particles would move in
the absence of pinning. Anisotropic transport occurs for T/Tm < 1.0.
(b) Velocity anisotropy ratio 〈Vy〉/〈Vx〉 vs T/Tm for the same system
shows a diverging anisotropy at low temperatures.
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FIG. 20. The particle positions (dots) and trajectories (lines) at
different temperatures for the system in Fig. 19 with F

y

D = 0.09.
(a) At T/Tm = 0.25, there is creep only along the y direction and no
creep in the x direction. (b) At T/Tm = 0.76, the stripe structure is
still present. There is considerable diffusion along the stripes and a
smaller amount of diffusion across the stripes. (c) At T/Tm = 1.266,
the motion is no longer anisotropic, as indicated in Fig. 19, and
the diffusion is isotropic. (d) The particle positions only from panel
(c) show that the stripe structure is destroyed.

no creep for x-direction driving but there is considerable creep
for y-direction driving. As a result, at low temperatures the
anisotropy of the velocity response diverges, as indicated by
the plot of 〈Vy〉/〈Vx〉 in Fig. 19(b).

In Fig. 20(a) we plot the particle positions and trajectories
for this system with F

y

D = 0.09 at T/Tm = 0.25. Here there
is liquid-like motion of the particles along the stripes but
there is no diffusion perpendicular to the stripes. The stripe
structure remains ordered although plastic creep is occurring.
In the creep process, some particles along the stripe remain
pinned while other particles move around them along the
length of the stripe. For 0.25 < T/Tm < 1.0, creep occurs
for both directions of drive but there is a larger amount of
creep for driving in the y direction. The anisotropy of the
creep gradually diminishes as T approaches Tm. In Fig. 20(b)
we plot the particle positions and trajectories for F

y

D = 0.09
and T/Tm = 0.76. The stripe structure is still present but
some hopping of particles from stripe to stripe occurs in the
x direction. For T/Tm > 1.0, the creep anisotropy vanishes.
Here the stripe structure is completely disordered and there is
diffusion through the entire sample as shown in Fig. 20(c) and
Fig. 20(d) for T/Tm = 1.266. There is still some temporary
trapping of particles by the pinning sites, indicated by the
fact that 〈Vx,y〉/V0 < 1.0. For higher temperatures, 〈Vx,y〉/V0

gradually approaches 1.0 as the effectiveness of the pinning
is diminished. In general we find that the creep anisotropy
persists longer at lower pinning densities and that at higher
pinning densities the creep anisotropy disappears.

A. Thermally induced ordering

We find an interesting effect in which thermal noise
induces the formation of stripe order. At low temperature
and for sufficiently strong disorder, the stripe structures are
fragmented and destroyed. As the temperature is increased,
it is possible for the thermal fluctuations to wash out the
effectiveness of the pinning before the melting temperature of
the stripe structure is reached. The result is a floating ordered
stripe. A similar effect has been observed for two-dimensional
vortex [72] and colloid [73] systems interacting with periodic
and random substrates. In the floating solid transition found
in these studies, the vortices or colloids are pinned to the
substrate at low temperatures, while at higher temperatures
they float free of the substrate and form a triangular lattice. At
still higher temperatures, the lattice disorders thermally. When
the substrate pinning is strong enough, the floating solid phase
disappears and the system passes directly from a pinned solid
to a liquid state.

To illustrate the formation of a floating stripe phase in
our system in the presence of random disorder, in Fig. 21
we plot a phase diagram of T/Tm versus Fp for a system
with ρp = 0.38, Rp = 0.2, and F

y

D = 0.22. Here Tm is the
melting temperature of the stripes in the absence of quenched
disorder. For low temperature and weak disorder of Fp � 0.3,
the system is in a moving stripe phase. For 0.3 < Fp < 1.75,
at low temperatures the system is in the strongly disordered
plastic flow state illustrated in Fig. 22(a) for Fp = 0.9 and
T/Tm = 0.1. As the temperature is increased, the effectiveness
of the quenched disorder is thermally destroyed and the system
organizes into a moving stripe state aligned with the direction
of drive, such as that shown in Fig. 22(b) for T/Tm = 0.75.
The system melts into a liquid for T/Tm > 1.0 as shown in
Fig. 22(c) for T/Tm = 1.3. The phase diagram in Fig. 21
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FIG. 21. (Color online) Phase diagram of T/Tm vs Fp for a system
with ρp = 0.38, Rp = 0.2, and a y-direction drive of F

y

D = 0.22.
Here Tm is the melting temperature for the system without quenched
disorder. The lower solid line separates the plastic flow phase from
the moving stripe phase and the upper solid line separates the moving
stripe phase from the moving liquid phase. The dashed line separates
the plastic flow phase from the moving liquid phase. The phase
diagram shows that for intermediate pinning strength, increasing the
temperature can produce a transition from a disordered plastic flow
phase into an ordered moving stripe phase.
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FIG. 22. The particle positions (dots) for the system in Fig. 21 at Fp = 0.9 for different temperatures. (a) At T/Tm = 0.1, the system is
undergoing plastic flow and the particles are disordered. (b) At T/Tm = 0.75, the temperature has reduced the effectiveness of the pinning,
permitting the formation of a moving stripe phase. (c) At T/Tm = 1.3, the temperature is large enough to melt the stripe structure.

indicates where these three phases occur. For Fp > 1.6 the
system goes directly from a partially pinned plastic flow phase
to an unpinned disordered liquid phase, as indicated by the
dashed line. This result suggests that in systems with strong
disorder, it is possible that the anisotropy may be weak at low
temperatures but could increase for intermediate temperatures
when the floating moving stripe structure forms.

The ability of the system to form a floating stripe depends on
the length scale of the quenched disorder as well as the disorder
strength. If the disorder is composed of small well localized
pins, as in our model, a floating solid phase is possible. In
contrast, for long-range quenched disorder the thermal noise
will not be effective in washing out the pinning and a floating
solid phase will not occur. The presence of a floating solid
phase makes it impossible to observe a thermally induced
peak effect phenomenon of the type found in superconducting
vortex systems. In this peak effect, a thermally melted vortex
lattice is softer and is able to better couple to the quenched
disorder, increasing the depinning force [40]. If the thermal
fluctuations destroy the effectiveness of the quenched disorder
below the temperature at which the disorder-free equilibrium
particle structure melts, a thermally induced peak effect can
not occur. It is possible that adding long-range correlations
to the pinning would permit the appearance of a thermally
induced peak effect in the stripe-forming system.

VII. SUMMARY

We have examined the anisotropic dynamics of oriented
stripes in a system with competing interactions. We focus
on the regime where stripe structures form in equilibrium
and in the absence of quenched disorder. After adding a
random substrate, we drive the system parallel or perpen-
dicular to the original orientation of the stripes. We find
anisotropic depinning thresholds and nonlinear velocity force
curves.

Under the sudden application of an external drive, the
system settles into a steady state flow after a transient time that
is determined by the structure of the steady state flow, such
as a plastically flowing state or a moving ordered state. The
transient time passes through peaks at the transitions between
different dynamical states, such as from pinned to filamentary

flow or from strongly fluctuating plastic flow to ordered
flow. In addition to the stripe system, this type of transient
measurement after a sudden application of a drive could also be
used in other driven systems such as superconducting vortices
with quenched disorder, friction, and sliding charge density
waves.

We observe different types of plastic flow which are
determined by the direction of the drive relative to the stripe
orientation. For driving parallel to the stripes, there is a phase
in which the stripes remain ordered but are decoupled and can
slide past one another. For stronger quenched disorder, plastic
flow can occur within individual stripes while the overall stripe
structure remains intact. In this case, the flow is filamentary and
involves only a portion of the particles within the stripe. For
stronger or denser quenched disorder, the stripes break apart
and we find a strongly fluctuating plastic flow phase in which
the transport properties are isotropic. For driving perpendicular
to the stripe orientation, in addition to plastic flow phases there
can be elastic depinning of the stripes perpendicular to the drive
for sufficiently weak disorder.

As a function of disorder strength we find a sharp order
to disorder transition in which the state above depinning
changes from an ordered moving stripe structure to a plastic
flow regime which tears apart the stripes. This order-disorder
transition is accompanied by a sharp increase in the depinning
threshold which is similar to the peak effect phenomenon
observed near order-disorder transitions for vortex matter in
type-II superconductors. In the stripe system the order-disorder
transition occurs at different disorder strengths for the two
different driving directions, producing regimes of enhanced
anisotropy in which the system depins plastically in one
direction but elastically in the other.

In the plastic flow regime near depinning, we observe a
series of velocity jumps and transitions which correspond to
transitions between filamentary flow states associated with
narrow band time-of-flight velocity noise signatures and
strongly fluctuating plastic flow states exhibiting broad band
noise signatures. These transitions are very similar to recent
experimental observations in this class of system.

The anisotropic transport can be enhanced by thermal
fluctuations. Thermal disorder induces an anisotropic melting
of the stripes, with a lower temperature stripe liquid in
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which particles can move easily along the length of the
stripe but remain confined perpendicular to the stripe, and
a higher temperature isotropic liquid in which the stripe
structure is destroyed. For intermediate quenched disorder
strength, the stripe structure is disordered at low temperatures
but can undergo a thermally induced stripe ordering into a
floating stripe phase when the thermal fluctuations reduce the
effectiveness of the quenched disorder.

We expect that these results should be generic to any
type of stripe-forming system driven over quenched disorder.
Particular systems where the pulse measurements and transient
times could be analyzed include two-dimensional electron

gasses or the recently studied type-1.5 superconductors in
which the vortices interact via competing repulsive and
attractive interactions. Other relevant systems include stripe or
labyrinth patterns in soft matter systems driven with electric
or magnetic fields over a rough surface or through obstacle
arrays.
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Lett. 77, 2778 (1996); S. Ryu, M. Hellerqvist, S. Doniach,
A. Kapitulnik, and D. Stroud, ibid. 77, 5114 (1996); A. B.
Kolton, D. Domı́nguez, and N. Grønbech-Jensen, ibid. 83, 3061
(1999).

[45] C. J. Olson, C. Reichhardt, and F. Nori, Phys. Rev. Lett. 81, 3757
(1998).

[46] M. C. Faleski, M. C. Marchetti, and A. A. Middleton, Phys. Rev.
B 54, 12427 (1996).

[47] F. Pardo, F. de la Cruz, P. L. Gammel, E. Bucher, and D. J.
Bishop, Nature (London) 396, 348 (1998).

[48] H. J. Jensen, A. Brass, Y. Brechet, and A. J. Berlinsky, Phys.
Rev. B 38, 9235 (1988); P. Moretti and M.-C. Miguel, ibid. 79,
104505 (2009).

[49] R. Danneau, A. Ayari, D. Rideau, H. Requardt, J. E. Lorenzo,
L. Ortega, P. Monceau, R. Currat, and G. Grübel, Phys. Rev.
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