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1División de Ciencias e Ingenierı́as, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre,
37150 León, Guanajuato, Mexico

2Center for Neutron Science, Chemical Engineering Department, University of Delaware, 150 Academy Street, Newark, Delaware 19716, USA
(Received 3 November 2010; revised manuscript received 10 February 2011; published 4 April 2011)

In this work the renormalized jellium model of colloidal suspensions, originally proposed by Trizac and Levin
[Phys. Rev. E 69, 031403 (2004)], is extended to study mechanisms of charge renormalization in binary mixtures
of charged colloids. We here apply our recent reformulation that introduces the requirement of self-consistency
directly into the Poisson-Boltzmann equation, i.e., the background charge is explicitly replaced by the effective
one, thus facilitating the whole charge renormalization scheme. We briefly discuss the reformulated model
for monodisperse charged suspensions composed of either spheres or rods. In particular, we put emphasis on
the effects of the surface charge variation, mixture composition, and particle size on the charge regulation of
charge-stabilized colloidal suspensions.
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I. INTRODUCTION

During the past few decades charged colloidal suspensions
have been the subject of intense research. The origin of
such interest resides in the fact that charged colloids are
important for either industrial or medical applications and,
from a statistical mechanics point of view, represent a unique
model system to understand both the phase behavior and the
effective interaction potentials in many-body systems [1,2].

Effective interactions appear naturally in the description
of colloidal systems because, on the one hand, most of
the experimental techniques [3,4] are not able to probe all
the components in the system, i.e., solvent molecules and
microions, and, on the other hand, the incorporation of all
the degrees of freedom in any theoretical framework is an
impossible task. Hence, one has to deal with different levels
of description that permit us to explain and understand, for
instance, the suspension thermodynamics or both static and
dynamic correlations between charged colloids, see, e.g.,
Refs. [1,2] and references therein.

In the simplest level of description, one usually considers
the solvent as a dielectric continuum of permittivity ε. This
description is known as the primitive model and cannot be
applied directly to study a real colloidal suspension due to
the large difference in size and charge between the colloids
and microions. However, it is common to map a charged
colloidal suspension onto an asymmetric electrolyte [1,5–12].
This mapping is restricted to moderate charge asymmetries due
to the treatment of long-range interactions becoming a time-
consuming problem. One way to overcome this situation is to
implement many-colloid mean-field computations [13,14]. At
this level, the microions are integrated out of the description
and the force on any colloid depends on the positions of
all other colloids in the system. Technically, this is done
by solving the nonlinear Poisson-Boltzmann (PB) equation
for each colloidal configuration; the so-called multicentered
PB solver is described in detail in Ref. [14]. Unfortunately,
this procedure also becomes very demanding, in particular,
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at moderate and high particle concentrations. Then, one has
to resort to arguments of isotropy and homogeneity of the
whole suspension to assume that the microion distribution is
symmetric around each charged colloid. Thus, the resulting PB
equation is now tractable and provides a good estimation of the
system osmotic pressure within the weak coupling regime [15].

Poisson-Boltzmann–based approximations are useful not
only to evaluate thermodynamic properties of charged col-
loidal suspensions but also to account for condensation of
counterions onto charged polyelectrolytes [1,2,16–21] or to
explain complex transport phenomena in biological systems,
such as the nonmonotonic density dependence of the diffusion
of DNA fragments [22]. However, alternative frameworks that
also describe the condensation effect or charge renormalization
have been proposed in recent years. For example, approxi-
mations based on integral equations theory that incorporate
explicitly solvent details allow us to understand the charge
renormalization in nanoparticle dispersions [23–26]. Nev-
ertheless, such approximations cannot be straightforwardly
applied to situations in which particles are highly charged
or in concentrated suspensions. Therefore, one has to deal
with mean-field approaches that are able to explain some of
the physical properties in such cases. However, mean-field
models also need further approximations at different levels,
for instance, in the Hamiltonian [19–21] or directly into the
PB equation [27,28], for their solution. Interestingly, even
the simplest degree of approximation leads to results that
usually agree nicely with either primitive model simulations
or experiments [21].

Within the PB mean-field description, the ion-ion cor-
relation is completely neglected and in some models (cell-
and jellium-like) the colloid-colloid correlation is introduced
a priori by assuming a given form for the radial distribution
function between colloids. Additionally, the PB description
allows us to compute the effective (charge and screening)
parameters when a Yukawa-like potential among colloids is
explicitly assumed. It is known that this particular potential
accurately reproduces the long-distance interaction of two
colloids immersed in a salt sea but it should be kept in mind
that it usually fails at short distances [29]. Moreover, it has
been demonstrated that the force that a colloid feels due to the
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interaction with its neighbors cannot be written as a sum of
pairs only [15].

Recently, the so-called PB-cell model [28,30] and renor-
malized jellium (RJ) approximation [27] have been tested
against many-body and primitive model calculations to prove
their accuracy for determining both the osmotic pressure
and the microstructure of colloids immersed in an aqueous
environment and in contact with a symmetric (1:1) salt
reservoir [15]. Dobnikar et al. [15] explicitly showed that both
approximations give good results, although the RJ provides
higher accuracy for those systems within the fluid phase
and far away the (possible) liquid-solid transition. The RJ
is an extension of the original jellium work proposed by
Beresford-Smith et al. [31]; the latter did not include a renor-
malization of the charge. Due to its simplicity, the RJ model
has successfully been incorporated or extended to different
situations. For example, to include colloid-colloid correlations
[32,33], to incorporate thermodynamic self-consistency to fit
experimental data [3], and for systems made up of nonspherical
particles [34]. In a recent work, Colla and Levin [35] have
extended the RJ model to account for charge renormalization
in colloidal suspensions containing trivalent counterions.

In a previous work, we have revisited the RJ model [36].
In such a work, we described its practical reformulation for
monodisperse systems; however, its full analysis and imple-
mentation to other cases of interest has not been discussed
in detail. The aim of this work, then, is to show that the
reformulated RJ approximation [36] can be easily extended
and adapted to different systems. Particularly, we here review
briefly the case of monodisperse suspensions composed of
charged spheres or rods. We mainly put emphasis in the case
of a binary mixture of charged colloids to account for polydis-
persity effects in the charge renormalization mechanisms of
charged colloids in suspension.

After the Introduction, Sec. II describes briefly the main
elements of the RJ approximation originally proposed by
Trizac and Levin [27] and its reformulation for the cases
of spheres and rods. We compare our results with both the
original RJ and the PB-cell models. Section III deals with the
extension of the renormalization procedure to the case of a
charged binary mixture. Finally, the paper ends with a section
of concluding remarks.

II. RENORMALIZED JELLIUM MODEL

A. Main idea

When colloidal particles are immersed in a polar aqueous
continuum medium, a dissociation of counterions occurs,
which, together with other microions (ions from the salt
reservoir) in the solution, creates an inhomogeneous charged
cloud around each colloid. Usually, in a simplified one-
component model (OCM) the macroion and its ions cloud are
considered as a spherical object with an effective charge Zeff,
whereas the effective interaction potential between macroions
is assumed to be of the Yukawa-like form with effective
parameters, namely effective charge and effective Debye
screening length, κ−1. Within the OCM the main task is
to develop a scheme that provides a simple recipe for the
calculation of such effective parameters. Recently, it has been

demonstrated that the so-called renormalized jellium model
[27] provides accurate values for the effective parameters and
the system thermodynamics of charged colloids in suspension
[15].

The system under consideration is composed of Nc colloidal
particles immersed in a sea of counterions and in contact
with a symmetric (1:1) salt reservoir of concentration 2cs , cs

being the density of positive or negative salt ions; the solvent
is included through the dielectric constant ε. The RJ model
assumes that the charge of Nc − 1 colloidal particles around
a tagged macroion is smeared out in the whole suspension
to form a homogeneous background with a charge Zbacke,
e being the elementary charge. This background charge is
enforced to coincide with Zeff of the tagged macroion [27],
which possesses a bare charge Zbaree.

The key point in the Trizac and Levin approach [27] is that
Zback �= Zbare. Within the original RJ approach, the effective
charge is a function of both background and bare charges, i.e.,
Zeff = Zeff(Zback,Zbare), and self-consistency is reached when
the relation

Zback = Zeff(Zback,Zbare) (1)

is fulfilled. This condition allows to compute numerically the
a priori unknown background charge [27].

B. Reformulation of the renormalized jellium approximation

1. Charged spherical colloids

As we discussed previously, the RJ model allows us to
obtain the effective charge of a monodisperse charged colloidal
suspension. This key quantity is directly associated to the
system osmotic pressure, the screening parameter, and the
effective pair interaction between colloids (when it is explicitly
considered at the level of the Yukawa approximation) [15].
Nevertheless, its calculation is not a straightforward task,
since it is an explicit function of the system state, i.e., Zeff =
Zeff(η,Zbare,cs), where η ≡ π

6 σ 3ρ is the volume fraction, with
σ and ρ being the particle diameter and number particle
density, respectively. This means that the whole iterative
protocol described in Ref. [27] must be performed for the
specific conditions of each system. This route, of course,
becomes tedious and time-demanding from the computational
point of view. However, we have shown that the RJ model
can be reformulated [36] in order to gain clarity in the way
in which the RJ can be straightforwardly applied and easily
extended to study the physical properties of more complex
charge-stabilized colloidal suspensions.

Within the reformulated model the requirement of self-
consistency is introduced from the beginning [36]. This means
that the condition

Zback = Zeff, (2)

must be explicitly incorporated into the Poisson-Boltzmann
equation [27]. Our main assumption is that there exists a
unique Zeff for a given Zbare; this avoids completely the
inclusion of Zback in the whole problem and, thus, facilitates
drastically the renormalization scheme [36]. Additionally, one
should rephrase the original boundary conditions properly
at one single point where the potential and its derivative
take a simple analytic form. To achieve this, we use the
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fact that the far-field solution of PB equation at a point
R∗ far away from the colloid surface, i.e., R∗ � 1, can
be expressed analytically [36]. Additionally, the following
change of variable φ → φ − φ∞ is suitable for simplifying
the numerical problem, where φ and φ∞ are the electrostatic
and well-known Donnan potentials [37], respectively, in units
of ekBT , where kB is the Boltzmann’s constant and T the
absolute temperature.

Thus, the PB equation and the corresponding boundary
conditions can now be written as follows [36],

d2φ

dr2
+ 2

r

dφ

dr
= −3η

ZeffλB

a
− ρ+(∞)e−φ + ρ−(∞)eφ, (3)

φ(R∗) = Zeff
λB

a

[
exp(κa)

1 + κa

] [
exp(−κaR∗)

R∗

]
, (4)

φ′(R∗) = −φ(R∗)

(
1

R∗ + κa

)
, (5)

where λB = e2/εkBT is the Bjerrum length (in Gaussian
units), a is the particle radius, κ is the Debye parameter {κ2 =
4πλB [ρ+(∞) + ρ−(∞)]} and the densities at bulk, which
from now on are conveniently written in a dimensionless form,
ρ±(∞) → ρ±(∞)a3, are given by the following relations [36],

ρ+(∞) =
−3ηZeffλB

a
+

√(
3ηZeffλB

a

)2 + (κresa)4

2
,

(6)

ρ−(∞) =
3ηZeffλB

a
+

√(
3ηZeffλB

a

)2 + (κresa)4

2
,

where κ2
res = 8πλBcs is the reservoir screening parameter.

Then, the previous set of equations define the reformulation
of the RJ approximation for spherical charged colloids.
Basically, we have inverted the original problem, since each
point in the new parameters space (η,Zeff,cs) together with the
solution of the previous PB equation provide the corresponding
Zbare by simply using the Gauss’ law at the colloidal surface,
i.e., φ′(a) = −ZbareλB/a.

In order to assess the accuracy of our reformulation, we have
calculated both the corresponding Debye screening parameter
[see Fig. 1(a)] and the effective charge [see Fig. 1(b)] as
a function of η for κresa = 1 in the saturation regime, i.e.,
Zbare → ∞. Our results are compared with those obtained by
Pianegonda et al. [34] and the PB-cell model. Regarding the
screening parameter, we observe a good agreement between
all renormalization schemes. In particular, it is shown that
in this case the salt dominates the screening for η < 0.01
and therefore κ does not change appreciably; it remains
constant. However, for larger volume fractions, i.e., η >

0.01, the counterions start to dominate and the screening
parameter increases notably; this feature has extensively been
discussed previously [15]. A similar behavior is observed
in the effective charge. Both RJ-like models give basically
the same values, although the PB-cell model predicts a
dominance of counterions at slighlty smaller volume fractions
and the effective charge values are always larger than those
of the RJ. Additionally, both the main body of Fig. 1(b)
and the inset show a particular characteristic predicted within
the RJ model which is absent in the PB cell model (the
appearance of a minimum whose position depends on the

(a)

(b)

FIG. 1. (Color online) (a) Ratio κ/κres and (b) effective charge,
ZeffλB/a, as a function of η for κresa = 1 in the saturation regime
(Zbare → ∞) predicted by the RJ model (solid circles), the reformu-
lated one (solid line), and the PB-cell model (open circles). (Inset)
The effective charges for different salt conditions, κresa = 0.5 and 2.

salt concentration); such a characteristic has been recently
corroborated by scattering experiments [3].

2. Charged rods

Recently, the RJ model has been successfully extended to
the case of cylindrical colloids (rods) [34]. In their original
work, Pianegonda et al. [34] assumed a nematic phase of
parallel cylinders with radius a and infinite length b, carrying a
bare line charge density ξbare. In analogy to the RJ for charged
spheres, a tagged cylindrical colloid and its cloud of microions
possess an effective charge density, ξeff, forced to coincide
with the background charge density, ξback. In this symmetry
the volume fraction is given by η = πa2ρ, where ρ is the
surface density of colloids in the perpendicular plane to the
cylinder axis.

By applying similar ideas, as the ones in the spherical case,
the RJ approximation can also be reformulated in the case
of charged cylinders demanding self-consistency from the
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FIG. 2. (Color online) Effective charge density, ξeff, for charged
rods as a function of the volume fraction for κresa = 1 in the saturation
regime (ξbare → ∞) predicted by the RJ reformulated (solid line) and
the PB-cell model (open symbols). The solid circles are the results
from the standard RJ taken from Ref. [27].

beginning, i.e., ξback = ξeff. Thus, the resulting PB equation
for charged rods can be rewritten as [36]

d2φ

dr2
+ 1

r

dφ

dr
= −4ηξeffλB − ρ+(∞)e−φ + ρ−(∞)eφ, (7)

φ(R∗) = 2ξeffλB

K0(κaR∗)

κaK1(κa)
, (8)

φ′(R∗) = 2ξeffλB

κaK1(κa)

∂K0(κaR∗)

∂R∗ , (9)

where K0 and K1 are the modified Bessel functions of zeroth
and first order, respectively, and the reduced densities at bulk
have the same functional form than those given by Eq. (6) but
considering the change 3ηZeffλB

a
→ 4ηξeffλB .

To illustrate the accuracy of the reformulation for charged
rods, in Fig. 2 we show the behavior of the effective charge
density as a function of the volume fraction in the saturation
regime (ξbare → ∞) for κresa = 1. Clearly, a similar behavior
as in Fig. 1(b) for spherical colloids is observed. Again, at low
densities RJ-like models and the cell model give the same
results although the PB-cell model predicts slightly larger
values when the density increases. The appearance of the
minimum is smoother in comparison with the spherical case.

III. POLYDISPERSITY EFFECTS: BINARY MIXTURE
CASE

Colloidal suspensions are naturally polydisperse in size and
therefore in charge. This intrinsic polydispersity generates
a lot of interest due to the large number of features that
are not present in a monodisperse suspension. For instance,
polydisperse charged colloidal dispersions exhibit a richer
structural and phase behavior [38–40].

On the other hand, the concept of charge renormalization
has been successfully used for describing the thermodynam-
ics and calculating the structure of monodisperse charged
colloidal suspensions, but much less is known about this

phenomenon in the polydisperse case. Recently, Torres et al.
[17] have extended the PB-cell model to incorporate polidis-
persity effects; however, within the context of the RJ model
they have not been currently studied. Then, for simplicity and
to illustrate the extension and applicability of the reformulated
RJ approximation, we here discuss results of the charge
renormalization in a binary mixture of charged colloids.
Therefore, following the previous ideas developed for the
monodisperse case, we a priori consider self-consistency, i.e.,
Z

ai

back = Z
ai

eff, to avoid the explicit inclusion of the background
charge into the PB equation; ai denotes the particle radius of
species i.

Let us consider a system composed of two species of
spherical colloids with radius a1 and a2 and particle number
densities ρ1 and ρ2, respectively. We first consider a system
with no added salt, cs = 0. Thus, the PB equation has to be
solved for each species separately but taking into account
the continuity of the electrostatic potential at the bulk, i.e.,
the boundary conditions evaluated at distances far away
from any particle surface should be the same, and satisfying
the electroneutrality condition simultaneously. Then, the PB
equation for species i takes the form,

∇2φai
= 4πλB

(
ρ1Z

a1
eff + ρ2Z

a2
eff

)
(eφai − 1), (10)

with Z
ai

eff as the effective charge of species i. We conveniently
express the screening parameter, κ0, as

κ2
0 = 3

(
ηa1

a2
1

Z
a1
effλB/a1 + ηa2

a2
2

Z
a2
effλB/a2

)
, (11)

where the subindex 0 stands for the no-salt case and ηai
is the

volume fraction of species i. Additionally, the binary system
is fully defined by the total packing fraction, η = ηa1 + ηa2 ,
and the molar fraction of species i, xi .

Equation (10) is then solved with the following boundary
conditions:

φai
(R∗) = Z

ai

eff

λB

ai

[
exp(κ0ai)

1 + κ0ai

] [
exp(−κ0R

∗)

R∗

]
, (12)

φ′
ai

(R∗) = −φai
(R∗)

(
1

R∗ + κ0

)
. (13)

To numerically solve the above set of equations the effective
charge of the other species should remain fixed. Additionally,
it is useful to rescale all length quantities with the radius of
either particle 1 or 2. Similarly to the monodisperse case,
the corresponding bare charge, Z

ai

bare, can be easily evaluated
via the derivative of the electrostatic potential at the particle
surface, φ′(ai). This procedure allows us to construct the
function Z

ai

eff = Z
ai

eff(Z
ai

bare).
Figure 3 shows Z

a1
effλB/a1 as a function of Z

a1
bareλB/a1

in a salt-free binary system with a1 = a2, x1 = 0.5, and
η = 0.1. Each curve corresponds to a specific value for
Z

a2
effλB/a2, i.e., we here consider only polydispersity effects

in the surface charge of particles of species 2. In general, the
behavior is the same as in the monodisperse case [27,36]:
The effective charge varies linearly at small bare charges
until it reaches a saturation value for large values of the
bare one. However, one clearly observes that the value at
saturation increases with Z

a2
effλB/a2. This mechanism occurs

since the electrostatic screening [see Eq. (11)] now makes
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FIG. 3. (Color online) Z
a1
effλB/a1 as a function of Z

a1
bareλB/a1 for

a salt-free binary mixture with x1 = 0.5, a1 = a2, and η = 0.1. Each
curve represents a specific value of Z

a2
effλB/a2. Solid and open symbols

describe the monodisperse limits η = 0.05 and η = 0.1, respectively.
(Inset) Z

a1
effλB/a1 at saturation (Za1

bareλB/a1 → ∞) as a function of
Z

a2
effλB/a2.

more difficult the condensation of counterions on the particle
surface of species 1 and therefore leads to a higher effective
charge. Nonetheless, the condensation mechanism becomes
more important at lower volume fractions giving rise to
a decrease in the effective charge at saturation (data not
shown). Additionally, the following limits are observed. For
Z

a2
effλB/a2 → 0, which corresponds to the case of having only

charged particles of species 1, Za1
effλB/a1 → ZeffλB/a ≈ 8.14;

this indicates that we recover the monodisperse case for
η = 0.05. On the other hand, for Z

a2
effλB/a2 = 9, we obtain

the same curve as the one of the monodisperse case when
η = 0.1. As a note, we have considered higher values for
Z

a2
effλB/a2 and find that the saturation value continues to

increase. Interestingly, the inset in Fig. 3 shows that Z
a1
effλB/a1

at saturation varies linearly with Z
a2
effλB/a2.

The generalization of the above scheme to the case of added
salt is straightforward. The PB equation then can be written as

∇2φai
= −κ2 − ρ+(∞)e−φai + ρ−(∞)eφai , (14)

where the dimensionless screening parameter reads now as

κ4 = κ4
res + κ4

0 , (15)

and the local microionic densities at bulk can be simply
expressed as a function of both screening parameters,

ρ+(∞) = κ2 − κ2
0

2
,

(16)

ρ−(∞) = κ2
0 + κ2

2
.

Equation (14) then is solved with the boundary conditions
given by Eqs. (12) and (13) but replacing κ0 with κ [Eq. (15)].

We now study the renormalization mechanism in a binary
mixture of charged colloids in contact with a salt reservoir.
We particularly focus on the effect of the suspension compo-
sition by studying simultaneously two different systems with

FIG. 4. (Color online) Z
a1
effλB/a1 as a function of the volume

fraction η for a binary mixture with Z
a2
effλB/a2 = 2, Za1

bareλB/a1 = 10,
a1 = a2, x1 = 0.05 (dashed line) [x1 = 0.95 (solid line)]. Each
curve represents a specific value of salt concentration, κresa1. (Inset)
Z

a1
effλB/a1 as a function of η for the same binary mixture with

Z
a2
effλB/a2 = 6.

molar fractions x1 = 0.05 and x1 = 0.95, respectively, and
Z

a1
bareλB/a1 = 10. Figure 4 shows Z

a1
effλB/a1 for Z

a2
effλB/a2 =

2 (main body of caption) and Z
a2
effλB/a2 = 6 (inset) as a

function of η. In both cases Z
a1
effλB/a1 increases with κres.

This is due to the fact that the strong salt contribution to
the electrostatic screening makes counterion condensation
unfavorable. In addition, similarly to the monodisperse case,
the appearance of a minimun whose position depends on the
salt concentration is remarkable. This minimum is absent in
the polydisperse PB-cell model [17] and, importantly, gives
us a qualitatively estimation of the boundary at which the
counterions start to dominate the electrostatic screening [15].
This can be easily visualized since for η < ηm, with ηm

being the volume fraction where the minimum in Z
a1
effλB/a1 is

found, the effective charge is almost constant (for κresa1 > 0.1)
and the magnitude depends only on the value of κres, whereas
for η > ηm the effective charge is independent of κres and
the curves collapse onto a single curve, i.e, the monodisperse
salt-free curve. Moreover, for Z

a2
effλB/a2 = 2 and x1 = 0.05

the effective charge of species 1 is slightly higher than
in the case with x1 = 0.95. This means that in the former case,
the condensation mechanism of counterions is weaker due to
the small amount of colloids of species 1 and the low number
of counterions of species 2. However, the inset in Fig. 4 shows
that by increasing Z

a2
effλB/a2 up to 6, Za1

effλB/a1 is independent
of the composition, but a further increase leads to a higher
Z

a1
effλB/a1 even in the case where x1 = 0.05 (data not shown).

Figure 5 displays the behavior of Z
a1
effλB/a1 as a function of

η for two suspensions with molar fractions x1 = 0.05 (dashed
line) and x1 = 0.95 (solid line) in the saturation limit of species
1, i.e., Z

a1
bareλB/a1 → ∞, with Z

a2
effλB/a2 = 9. Clearly, the

trend is basically the same as the one depicted in Fig. 4.
Moreover, Z

a1
effλB/a1 increases with κres and the values are

higher than those shown previously. It is also noteworthy that
the effective charge at saturation for volume fractions below
ηm is independent of the composition; however, the counterion
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FIG. 5. (Color online) Z
a1
effλB/a1 as a function of the volume

fraction η for a binary mixture with Z
a2
effλB/a2 = 9, Za1

bareλB/a1 → ∞,
a1 = a2, x1 = 0.05 (dashed line) [x1 = 0.95 (solid line)]. Each curve
represents a specific value of salt concentration, κresa1.

screening dominance becomes now composition dependent.
Both curves clearly collapse in different curves at high volume
fractions, i.e., they do not depend on the amount of added salt,
but the counterions dominate at smaller volume fractions for
the suspension with the higher molar fraction.

We now turn to the case of a salt-free binary mixture made
up of large and small particles. Figure 6 depicts Z

a1
effλB/a1 as

a function of the bare charge in a system with the same molar
fraction for each species x1 = x2 = 0.5, a total volume fraction
of η = 0.01, size ratio a1/a2 = 5 [Fig. 6(a)] and a1/a2 = 10
[Fig. 6(b)]. In each figure several values of Z

a2
effλB/a2 are

considered. We observe in both figures that for small bare
charges the linear dependence Z

a1
eff ≈ Z

a1
bare is satisfied and at

saturation the height of the plateau depends on the effective
charge of species 2 and the size ratio. In particular, we note
that for small values of Z

a2
effλB/a2 the behavior of Z

a1
effλB/a1

is almost independent of the size ratio; however, for larger
values such dependence becomes clear. In fact, it is evident
that the larger size asymmetry, the larger effective charge
at saturation. Such an interesting effect can be explained in
terms of the screening, which becomes more efficient for
a system with an implicit size asymmetry. This is observed
directly from Eq. (11), which in units of a1 takes the following

form: κ2
0 = 3(ηa1Z

a1
effλB/a1 + ηa2

a2
1

a2
2
Z

a2
effλB/a2). Therefore, the

second term on the right-hand side of the previous relation,
which is proportional to the square of the size ratio, allows us
to confirm that a higher size ratio favors the increase of the
screening. Thus, the strong screening makes more difficult the
counterion condensation on the particle surface of species 1,
thus leading to an increase of the effective charge. This
interesting mechanism of screening enhancement, obviously
not present in the monodisperse case, could be easily used to
control the effective charge in mixtures of charged colloids.

So far we have investigated the renormalization mecha-
nisms in a binary mixture of charged colloids through the
reformulated RJ model. Particularly, we have shown the
importance on the variation of the surface charge, the mixture
composition, and the particle size. However, a systematic study

(a)

(b)

FIG. 6. (Color online) Z
a1
effλB/a1 as a function of Z

a1
bareλB/a1 for

a salt-free binary mixture with x1 = x2 = 0.5, η = 0.01; size ratio
(a) a1/a2 = 5 and (b) a1/a2 = 10. Each curve represents a specific
value of Z

a2
effλB/a2.

on the polidispersity effects in the colloid charge renormaliza-
tion is still needed to clarify the role of the polydispersity
in charged fluids. Furthermore, a full comparison between
different mean-field approximations, primitive model calcula-
tions, and experiments will allow to determine the accuracy
of mean-field models in accounting for both structural and
thermodynamic properties of polydisperse charge-stabilized
colloidal suspensions [41,42].

IV. CONCLUDING REMARKS

The complete understanding of the (many-body) forces
between charged colloids in suspension is far from being
clearly understood. However, to reach a better comprehension
of the electrostatic interactions among charged objects one
has to develop theoretical approaches that allow us to take
into account explicitly the main features of the system under
study. In particular, during the past few decades, it has been
shown that mean-field approximations provide routes for de-
scribing both the thermodynamics and effective interactions in
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charge-stabilized colloidal suspensions in contact with sym-
metric salt reservoirs. Moreover, from an experimental point
of view, such mean-field models are useful for estimating
qualitatively the bare charge of a colloidal particle in an
aqueous environment and to calculate the effective potential
parameters to be used in the fits of the measured static structure
factor.

In this work the RJ mean-field approximation for charged
colloids has been employed to understand the mechanisms of
charge renormalization in charged colloids in suspension. We
found that such an approach, which is known to be useful in
describing the thermodynamics of monodisperse suspensions
within the fluid phase, can successfully be reformulated by
replacing Zback by Zeff directly into the PB equation and
rephrasing properly the set of differential equations. Our
results were in excellent agreement with the original RJ
model. One of the main advantages of the reformulation is
that it avoids the use of an iterative protocol to evaluate the
effective parameters and it is easy to implement numerically.
We also showed that this reformulation can be extended to
the cases of nonspherical charged particles (charged rods)
and polydisperse charge-stabilized suspensions; the latter case

had not been considered previously. Furthermore, we here
obtain interesting results that point toward precise control
of the charge renormalization mechanisms by only changing
the polydispersity parameters, i.e., surface charge, suspension
composition, and particle size distribution. However, the
accuracy of our mean-field predictions has to be corroborated
using more sophisticated techniques, such as primitive model
calculations or experiments. Work along this direction is in
progress [42].

Finally, we should remark that we have shown that our
reformulation can be easily extended in a large variety of
situations and it provides a useful tool to be used for a quick
and accurate evaluation of the thermodynamic properties and
the effective parameters of charged colloidal suspensions.
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