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Zwanzig-Mori equation for the time-dependent pair distribution function
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We develop a microscopic theoretical framework for the time-dependent pair distribution function starting
from the Liouville equation. An exact Zwanzig-Mori equation of motion for the time-dependent pair distribution
function is derived based on the projection-operator formalism. It is demonstrated that, under the Markovian
approximation, our equation reduces to the so-called telegraph equation that includes the potential of mean force
acting between the pair particles. With the additional approximation neglecting the inertia term, our equation
takes the form of Smoluchowski’s equation, which has been previously introduced with intuitive arguments and
shown to satisfactorily reproduce the simulation results of the particle-pair dynamics.
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I. INTRODUCTION

The time-dependent pair distribution function g(r,r ′,t),
describing the probability density of finding a pair of particles
separated by r at time t given that they were separated by r ′ at
time zero, is one of the fundamental quantities characterizing
liquid-state dynamics [1]. It is a central quantity determining
collision-induced absorption and depolarized Rayleigh and
Raman scattering spectra [2,3]. Its knowledge also enables
the calculation of the first encounter time distribution and
survival probability of reactive molecules [4,5], and it has
played an important role in the rigorous formulation of
the diffusion-influenced bimolecular reaction kinetics [6,7].
However, the theoretical development for g(r,r ′,t) is still in the
primitive stage compared to that for the van Hove correlation
functions [1].

The function g(r,r ′,t) was first introduced by Oppenheim
and Bloom [8] in their study of nuclear magnetic relaxation in
fluids. However, their theory is valid only in the limit of free
particles and leads to unsatisfactory results even for the short-
time regime in the presence of interparticle interactions [9].
The exact short-time dynamics of g(r,r ′,t) were subsequently
derived by Balucani and Vallauri [10], but calculating the
dynamics in the longer time regime was outside the scope
of their work. On the other hand, Haan [11] studied the
dynamic behavior of g(r,r ′,t) from a different approach and
demonstrated that Smoluchowski’s equation with a potential
of mean force satisfactorily reproduces the simulation results
of the particle-pair dynamics. However, his approach resorts to
intuitive arguments and is not based on a first-principle theory.
The pair distribution function has also been investigated based
on the kinetic theory [12], but its applicability is limited to the
low-density regime.

In this paper, we develop a basic theoretical framework
for the time-dependent pair distribution function, starting
from the Liouville equation and using the projection-operator
technique. Such a rigorous framework has served as a basis
for developing successful liquid-state theories for the van
Hove correlation functions [1]. It is demonstrated that the
exact short-time behavior derived before and Smoluchowski’s
equation, which satisfactorily reproduced the simulation
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results in the longer time regime, naturally follow from the
exact equation of motion for g(r,r ′,t) that we will derive
in the present work. Our result will therefore provide a
rigorous basis for developing improved theories dealing with
the time-dependent pair distribution function.

The paper is organized as follows. In the next section, we
derive an exact Zwanzig-Mori equation of motion for the
time-dependent pair distribution function, starting from the
Liouville equation for the whole system comprising a central
particle pair and surrounding solvent particles. Section III
discusses the implications of the derived equation, and the
Appendix is devoted to a derivation of the initial value of the
memory function.

II. EXACT EQUATION OF MOTION

A. Liouville equation

We consider a classical fluid of N spherical particles of
mass m at a temperature T confined in a volume V , in which
two tagged particles, A and B, are dissolved. For simplicity,
the tagged particles are assumed to be mechanically identical
to solvent particles. The Hamiltonian of the total system is
given by

H = K + U, (1)

with the kinetic energy part

K = p2
A

2m
+ p2

B

2m
+

N∑
i=1

p2
i

2m
, (2)

and the potential energy part

U = φ(rAB) +
N∑

i=1

[φ(rAi) + φ(rBi)] + 1

2

N∑
i,j (i �=j )

φ(rij ). (3)

Here, pi and r i denote the momentum and position vectors
of the particle i, respectively, and we have assumed that the
total potential is represented by a sum of radially symmetric
potential functions φ(rij ) that depend only on the particle
separation rij = |r i − rj |.
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According to classical mechanics, Newton’s equation of
motion of a dynamical variable—say, A(t)—can be written in
the form

d

dt
A(t) = {H,A(t)} ≡ iLA(t), (4)

which is called the Liouville equation [1]. Here the symbol
{ , } denotes a classical Poisson bracket, and the Liouville
operator iL of the total system is given by

iL =
∑

i=A,B, 1, ... , N

[
pi

m
· ∂

∂ r i

− ∂U

∂ r i

· ∂

∂ pi

]
. (5)

B. Time-dependent pair distribution function

Of primary interest in the present work is the joint
probability distribution function

G(r,r ′,t) ≡ V 〈δ(r − rAB(t))δ(r ′ − rAB(0))〉. (6)

Here, rAB(t) = rA(t) − rB(t) denotes the separation of the
particles A and B at time t , and 〈· · ·〉 represents the canonical
ensemble average

〈· · ·〉 = 1

Z

∫ ∏
i=A, B, 1, ..., N

[d pid r i] e−βH · · · . (7)

In this expression, β = 1/(kBT ), with kB being Boltzmann’s
constant and Z denoting the partition function

Z =
∫ ∏

i=A, B, 1, ..., N

[d pid r i] e−βH . (8)

The initial value of G(r,r ′,t) is given by

G(r,r ′,0) = V δ(r − r ′)〈δ(r − rAB)〉 = δ(r − r ′)g(r) (9)

in terms of the radial distribution function g(r) [1]. This result
accounts for the name time-dependent pair distribution func-
tion given to G(r,r ′,t). In the long-time limit, the average in
Eq. (6) can be factored, yielding

lim
t→∞ G(r,r ′,t) = 1

V
g(r)g(r ′). (10)

Let us also introduce the conditional distribution function

g(r,r ′,t) ≡ G(r,r ′,t)/g(r ′), (11)

which is proportional to the probability of finding a pair of
particles separated by r at time t , given that they were separated
by r ′ at time zero. The initial value and the long-time limit are
given by

g(r,r ′,0) = δ(r − r ′) and lim
t→∞ g(r,r ′,t) = 1

V
g(r). (12)

The time-dependent pair distribution function obeys the
Liouville equation

d

dt
G(r,r ′,t) = iLG(r,r ′,t), (13)

and so does the conditional distribution function g(r,r ′,t). In
the following, we shall rewrite this equation of motion using
the projection-operator formalism.

C. Projection-operator formalism

Here, we summarize the projection-operator formalism that
is to be used in deriving the exact equation of motion for
G(r,r ′,t). Let us consider time-correlation functions formed
with a set of dynamical variables {Ai(r)}:

Cij (r,r ′,t) ≡ (Ai(r,t),Aj (r ′,0)) ≡ V 〈Ai(r,t)Aj (r ′,0)〉.
(14)

Hereafter, the absence of the argument t implies that associated
quantities are evaluated at time t = 0. For example, we shall
denote the initial value of Cij (r,r ′,t) as

Cij (r,r ′) = (Ai(r),Aj (r ′)) = V 〈Ai(r)Aj (r ′)〉. (15)

Let us introduce the projection operator onto a set of dynamical
variables {Ai(r)} via

PX(r) ≡
∑
j,�

∫
d r ′

∫
d r ′′ (X(r),Aj (r ′)) C−1

j� (r ′,r ′′) A�(r ′′).

(16)

Here, C−1
ij denotes an element of the inverse matrix of Cij

defined through

∑
�

∫
d r ′′ Ci�(r,r ′′) C−1

�j (r ′′,r ′) = δij δ(r − r ′). (17)

The complementary operator is defined by Q ≡ I − P , with
I being the identity operator. One can easily show that the
operators P and Q are idempotent and Hermitian.

Once the projection operator satisfying the idempotency
and Hermitianity is introduced, it is straightforward to obtain
from the Liouville equation

d

dt
Cij (r,r ′,t) = iLCij (r,r ′,t) (18)

the following exact Zwanzig-Mori equation of motion [1]:

d

dt
Cij (r,r ′,t) =

∑
�

∫
d r ′′ i�i�(r,r ′′) C�j (r ′′,r ′,t)

−
∑

�

∫
d r ′′

∫ t

0
dτ Ki�(r,r ′′,t − τ )

×C�j (r ′′,r ′,τ ). (19)

Here, the frequency matrix is defined by

i�ij (r,r ′) =
∑

�

∫
d r ′′ (iLAi(r),A�(r ′′)) C−1

�j (r ′′,r ′), (20)

while the memory-function matrix reads

Kij (r,r ′,t) =
∑

�

∫
d r ′′ (Ri(r,t),R�(r ′′)) C−1

�j (r ′′,r ′), (21)

in terms of the fluctuating force given by

Ri(r,t) = eiQLQtRi(r), (22)
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with

Ri(r) = iLAi(r) −
∑

�

∫
d r ′ i�i�(r,r ′) A�(r ′). (23)

D. Exact equation of motion for the time-dependent pair
distribution function

Here we derive the exact equation of motion for G(r,r ′,t)
using the result from the previous subsection. To this end, we
introduce dynamical variables

ρ(r,t) = δ(r − rAB(t)), (24)

j (r,t) = vAB(t) δ(r − rAB(t)), (25)

so that A0(r) = ρ(r), A1(r) = jx(r), A2(r) = jy(r), and
A3(r) = jz(r). Here, vAB = pA/m − pB/m denotes the rel-
ative velocity. Notice that the function G(r,r ′,t) in which
we are interested is given by the (0,0) component of
Cij (r,r ′,t),

C00(r,r ′,t) = G(r,r ′,t). (26)

For later convenience, let us also introduce the following
notation:

Hx(r,r ′,t) ≡ C10(r,r ′,t), Hy(r,r ′,t) ≡ C20(r,r ′,t),
(27)

Hz(r,r ′,t) ≡ C30(r,r ′,t).

We first evaluate the elements Cij (r,r ′) and C−1
ij (r,r ′). For

static ensemble averages formed with the variables in Eqs. (24)
and (25), we obtain

〈ρ(r)ρ(r ′)〉 = 1

V
δ(r − r ′) g(r ′), (28)

〈ρ(r)jβ(r ′)〉 = 〈jα(r)ρ(r ′)〉 = 0, (29)

〈jα(r)jβ(r ′)〉 = 1

V
δαβ v2 δ(r − r ′) g(r ′). (30)

Here, α and β refer to x, y, or z, and v2 ≡ kBT/μ is the thermal
velocity with the reduced mass μ = m/2. We therefore obtain
from the definition (15)

C(r,r ′) = δ(r − r ′) g(r)

⎛
⎜⎜⎜⎝

1 0 0 0

0 v2 0 0

0 0 v2 0

0 0 0 v2

⎞
⎟⎟⎟⎠ , (31)

and from Eq. (17), the inverse is given by

C−1(r,r ′) = δ(r − r ′)
1

g(r)

⎛
⎜⎜⎜⎝

1 0 0 0

0 1/v2 0 0

0 0 1/v2 0

0 0 0 1/v2

⎞
⎟⎟⎟⎠ .

(32)

We next calculate static ensemble averages involving time
derivatives to obtain the expression for i�(r,r ′). Due to the
time-reversal symmetry, the following equations hold:

〈[iLρ(r)]ρ(r ′)〉 = 0, 〈[iLjα(r)]jβ(r ′)〉 = 0. (33)

For the rest, we use the continuity equation

iLρ(r) = −vAB · ∇δ(r − rAB) = −∇ · j (r), (34)

to obtain

〈[iLρ(r)]jα(r ′)〉 = − 1

V
v2 ∇α[δ(r − r ′)g(r)], (35)

〈[iLjα(r)]ρ(r ′)〉 = −〈jα(r)[iLρ(r ′)]〉
= 1

V
v2 ∇′

α[δ(r − r ′)g(r)], (36)

where we have used the Hermitian property of L, which can
easily be derived from the definition (5). Here and in the
following, ∇α and ∇′

α refer to the x, y, or z component of
∇ ≡ ∂/∂ r and ∇′ ≡ ∂/∂ r ′. Let us notice

1

g(r ′)
∇α[δ(r − r ′)g(r)] = ∇αδ(r − r ′), (37)

whereas
1

g(r ′)
∇′

α[δ(r − r ′)g(r)]

= ∇′
αδ(r − r ′) + δ(r − r ′)∇′

α log[g(r ′)]
= −∇αδ(r − r ′) − βδ(r − r ′)∇αw(r), (38)

where we have introduced the potential of mean force [1]

w(r) ≡ −kBT log g(r). (39)

Using the results so far, we obtain from Eq. (20)

i�(r,r ′) =

⎛
⎜⎜⎜⎝

0 −∇xδ(r − r ′) −∇yδ(r − r ′) −∇zδ(r − r ′)
−v2∇xδ(r − r ′) − βv2δ(r − r ′)∇xw(r) 0 0 0

−v2∇yδ(r − r ′) − βv2δ(r − r ′)∇yw(r) 0 0 0

−v2∇zδ(r − r ′) − βv2δ(r − r ′)∇zw(r) 0 0 0

⎞
⎟⎟⎟⎠. (40)
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Now we can calculate R(r) from Eq. (23). Using the
continuity equation (34), we have

t R(r) = (0 Rx(r) Ry(r) Rz(r)), (41)

where the superscript “t” denotes the transpose, and

Rα(r) = iLjα(r) + v2∇αρ(r) + βv2ρ(r)∇αw(r). (42)

One therefore obtains from Eqs. (21) and (32)

K (r,r ′,t)

=

⎛
⎜⎜⎜⎝

0 0 0 0

0 Kxx(r,r ′,t) Kxy(r,r ′,t) Kxz(r,r ′,t)
0 Kyx(r,r ′,t) Kyy(r,r ′,t) Kyz(r,r ′,t)
0 Kzx(r,r ′,t) Kzy(r,r ′,t) Kzz(r,r ′,t)

⎞
⎟⎟⎟⎠ ,

(43)

with

Kαβ(r,r ′,t) ≡ V

v2
〈Rα(r,t)Rβ(r ′)〉/g(r ′). (44)

The initial value of Kαβ(r,r ′,t) is evaluated in the Appendix,
and the result under Kirkwood’s superposition approximation
for a triple-density correlation function [see Eqs. (A36) and
(A37)] is given in Eq. (A38).

Summarizing the results so far, we obtain the following
set of exact equations of motion involving G(r,r ′,t) and
Hα(r,r ′,t):

d

dt
G(r,r ′,t) = −∇ · H(r,r ′,t), (45)

d

dt
Hα(r,r ′,t)

= −v2∇αG(r,r ′,t) − βv2G(r,r ′,t)∇αw(r)

−
∑

β

∫
d r ′′

∫ t

0
dτ Kαβ(r,r ′′,t − τ )Hβ(r ′′,r ′,τ ). (46)

Combining these two equations, one obtains

d2

dt2
G(r,r ′,t) = v2∇2G(r,r ′,t) + βv2∇ · {G(r,r ′,t)∇w(r)}

+
∑
α,β

∫
d r ′′

∫ t

0
dτ ∇αKαβ(r,r ′′,t − τ )

×Hβ(r ′′,r ′,τ ). (47)

The equation just derived is still not in a useful form, and
further manipulation shall therefore be performed in the
following subsection.

E. Further manipulation

The manipulation we will do here is to eliminate Hβ in
favor of G from the last term in Eq. (47). This is possible by
exploiting the isotropy of the system, according to which the
current density can be decomposed into the longitudinal and
transverse components

j (r,t) = jL(r,t) + jT (r,t), (48)

satisfying

∇ × jL(r,t) = 0, (49)

∇ · jT (r,t) = 0. (50)

The longitudinal component jL,α(r,t) can be written in terms
of a scalar function ψ(r,t) as

jL,α(r,t) = ∇αψ(r,t). (51)

Since the density fluctuation couples only with the longitudinal
current fluctuation in the isotropic system, there holds

Hα(r,r ′,t) = (jα(r,t),ρ(r ′,0)) = (jL,α(r,t),ρ(r ′,0))

= ∇α�(r,r ′,t), (52)

where in the final equality we have introduced the time-
correlation function

�(r,r ′,t) ≡ (ψ(r,t),ρ(r ′,0)). (53)

It then follows from Eq. (45) that

d

dt
G(r,r ′,t) = −∇2 �(r,r ′,t). (54)

Thus, Hα and G are connected via the function � through
Eqs. (52) and (54).

To see a more direct connection, it is more convenient
to work in the Fourier space. Let us introduce the Fourier
transform (FT) of G(r,r ′,t) via

F (k,k′,t) =
∫

d r eik·r
∫

d r ′ e−ik′ ·r ′
G(r,r ′,t), (55)

and its inverse relation by

G(r,r ′,t) = 1

(2π )6

∫
dk e−ik·r

∫
dk′ eik′ ·r ′

F (k,k′,t). (56)

The FTs of other functions shall be defined similarly. One then
obtains from Eqs. (52) and (54)

Hα(k,k′,t) = −ikα�(k,k′,t),
d

dt
F (k,k′,t) = k2 �(k,k′,t),

(57)

and hence

Hα(k,k′,t) = −i
kα

k2

d

dt
F (k,k′,t). (58)

Let us use this result to rewrite the last term in Eq. (47).
Using the product rule∫

d reik·r
∫

d r ′e−ik′ ·r ′
[∫

d r ′′ A(r,r ′′) B(r ′′,r ′)
]

= 1

(2π )3

∫
dk′′ A(k,k′′) B(k′′,k′), (59)

the FT of the last term in Eq. (47) is found to be given by

FT of

{∑
α,β

∫
d r ′′

∫ t

0
dτ ∇αKαβ(r,r ′′,t − τ )Hβ(r ′′,r ′,τ )

}

= −
∫

dk′′
∫ t

0
dτ KL(k,k′′,t − τ )

d

dτ
F (k′′,k′,τ ), (60)
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where we have introduced

KL(k,k′,t) ≡
∑
α,β

kαk′
β

(k′)2
Kαβ(k,k′,t). (61)

Equation (47) can then be written as

d2

dt2
G(r,r ′,t)

= v2∇2G(r,r ′,t) + βv2∇ · {G(r,r ′,t)∇w(r)}
−

∫
d r ′′

∫ t

0
dτ KL(r,r ′′,t − τ )

d

dτ
G(r ′′,r ′,τ ), (62)

with the memory kernel KL(r,r ′,t), which is an inverse FT of
KL(k,k′,t).

Finally, we notice that all of the differential operators in
Eq. (62) do not involve r ′, so this equation holds also for
the conditional distribution function g(r,r ′,t) introduced in
Eq. (11).

III. DISCUSSION

In this section, we discuss implications of the exact
Zwanzig-Mori equation (62) in connection with the previous
related work and with the corresponding equation for the van
Hove self-correlation function. We start from the short-time
expansion of G(r,r ′,t),

G(r,r ′,t) = G(r,r ′,0) + t2

2
G̈(r,r ′,0) + O(t4), (63)

in which only even powers of time appear, due to the time-
reversal symmetry. The initial value is given in Eq. (9). For the
initial second time derivative, one obtains by setting t = 0 in
Eq. (62) and using the definition (39) for the potential of mean
force

G̈(r,r ′,0) = v2∇2G(r,r ′,0) − v2∇ · {G(r,r ′,0)∇ log[g(r)]}
= v2∇2{δ(r − r ′)g(r)} − v2∇ · {δ(r − r ′)∇g(r)}.

(64)

This expression can be rewritten in a more symmetrical form
with respect to r and r ′ as

G̈(r,r ′,0) = −v2∇ · ∇′[δ(r − r ′) g(r ′)], (65)

showing that G̈(r,r ′,0) is negative definite when viewed as a
matrix with indices r and r ′. This result agrees with the one
derived in the previous work [1,10]. The short-time expansion
for g(r,r ′,t) can be obtained in a similar manner, with the
result

g(r,r ′,t) = g(r,r ′,0) + t2

2
g̈(r,r ′,0) + O(t4), (66)

in which g(r,r ′,0) = δ(r − r ′) and

g̈(r,r ′,0) = v2∇2δ(r − r ′) + βv2∇ · [δ(r − r ′)∇w(r)].

(67)

We next consider the long-time diffusive regime. Let us
introduce the following Markovian approximation for the
memory kernel

KL(r,r ′,t) ≈ v2

Dr

δ(r − r ′) δ(t), (68)

in terms of the relative diffusion constant Dr . One then obtains
from Eq. (62) for g(r,r ′,t) [see the comment below Eq. (62)]

d2

dt2
g(r,r ′,t) = v2∇2g(r,r ′,t) + βv2∇ · [g(r,r ′,t)∇w(r)]

− v2

Dr

d

dt
g(r,r ′,t). (69)

By introducing

Dr = kBT

ζr

and β̄ = ζr

μ
, (70)

Eq. (69) can be rewritten as

β̄−1 d2

dt2
g(r,r ′,t) + d

dt
g(r,r ′,t)

= kBT

ζr

∇ · [∇g(r,r ′,t) + βg(r,r ′,t)∇w(r)]. (71)

This equation is formally identical to the so-called telegraph
equation [13]. The telegraph equation is conventionally de-
rived starting from the Fokker-Planck equation [13], but it also
follows from the Liouville equation, as we have demonstrated
here.

If one further neglects the inertia term in Eq. (69), one
obtains the following equation, which takes the form of
Smoluchowski’s equation

d

dt
g(r,r ′,t) = Dr{∇2g(r,r ′,t) + β∇ · [g(r,r ′,t)∇w(r)]}.

(72)

This equation is the one proposed by Haan with intuitive
arguments, and has been shown to satisfactorily reproduce
the simulation result for g(r,r ′,t) [11].

Finally, let us compare the equations for the time-dependent
pair distribution function g(r,r ′,t) with the corresponding
equations for the more familiar van Hove self-correlation
function Gs(r,t) [1] to highlight the new feature in the former
equations. The van Hove self-correlation function, defined
by Gs(r,t) ≡ 〈δ(r − [rA(t) − rA(0)])〉, is associated with the
probability that a single tagged particle moves to a position
that is separated by r from its initial position during the
time t . The initial value and the long-time limit are given by
Gs(r,0) = δ(r) and limt→∞ Gs(r,t) = 1/V , which are to be
compared with those for g(r,r ′,t) given in Eq. (12). Using the
similar projection-operator technique presented in Sec. II, one
obtains the following Zwanzig-Mori equation for Gs(r,t) [1]:

d2

dt2
Gs(r,t) = v2

s ∇2Gs(r,t)

−
∫

d r ′′
∫ t

0
dτ Ks,L(r−r ′′,t−τ )

d

dτ
Gs(r ′′,τ ),

(73)

where v2
s = kBT/m and Ks,L(r,t) is the corresponding mem-

ory kernel, which is to be compared with Eq. (62). From this
equation, the short-time expansion is given by

Gs(r,t) = Gs(r,0) + t2

2
G̈s(r,0) + O(t4), (74)
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with Gs(r,0) = δ(r) and

G̈s(r,0) = v2
s ∇2δ(r), (75)

to be compared with Eq. (67). Under the Markovian approx-
imation Ks,L(r,t) = (v2

s /Ds)δ(r)δ(t), with Ds denoting the
diffusion constant, and neglecting the inertia term, one obtains
from Eq. (73) the ordinary diffusion equation

d

dt
Gs(r,t) = Ds∇2Gs(r,t), (76)

to be compared with Eq. (72). Thus, the essential difference
between the equations for g(r,r ′,t) and the corresponding
equations for Gs(r,t) is in the appearance of the term involving
the potential of mean force w(r) = −kBT log g(r) in the
former, and this holds in both the short-time and long-time
regimes. In fact, while Gs(r,t → ∞) = 1/V is a steady-state
solution to Eq. (76), the structural effects enter even into
the long-time limit g(r,r ′,t → ∞) = (1/V )g(r) that solves
Eq. (72) in the steady-state limit. It is thus expected that, unlike
the dynamics of Gs(r,t), whose relaxation from the initial delta
function toward the long-time limit 1/V is rather structureless,
the dynamics of g(r,r ′,t) are strongly affected by the structural
effects in the whole time regime. Indeed, molecular-dynamics
simulation results for g(r,r ′,t) in Refs. [11,14] have demon-
strated that its time evolution is characterized by a relaxation
toward certain favored separations associated with the peaks of
g(r): Particles initially separated by a distance corresponding
to a peak of g(r) tend to retain that separation for a long
time, whereas those initially not in a favored position quickly
lose their initial separation and attain separations associated
with the peaks of g(r). Our exact equation of motion provides
a microscopic basis for understanding such structural effects
that show up in the dynamics of g(r,r ′,t).

In this paper, we derived an exact Zwanzig-Mori equation of
motion for the time-dependent pair distribution function, start-
ing from the Liouville equation and based on the projection-
operator formalism. The derived Eq. (62) reproduces the exact
short-time behavior that has been derived before and reduces
to Smoluchowski’s equation, which has been demonstrated
to yield satisfactory results in the diffusion regime. For the
intermediate time regime, on the other hand, one needs to take

into account non-Markovian effects in the memory kernel. The
simplest approximation would be the so-called viscoelastic
model, in which the time dependence of the memory kernel is
assumed to be exponential [1]. This approximation becomes
even more tractable when it is combined with the method in
[15,16], which estimates the relaxation time in the viscoelastic
model solely based on the initial value of the memory kernel.
Such an approximation is feasible for g(r,r ′,t), since we have
derived the initial value of the memory kernel [see Eq. (A38)].
Another possibility is to develop a mode-coupling theory that
does not assume the decay form of the memory kernel [1],
which, however, requires further theoretical work. The basic
theoretical framework for the time-dependent pair distribution
function we presented here will serve as a basis for such
developments.
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APPENDIX: INITIAL VALUE OF THE MEMORY KERNEL

In this Appendix, we derive the expression for the initial
value of the memory kernel, Kαβ(r,r ′,0), which according to
Eqs. (42) and (44) is given by

Kαβ(r,r ′,0) = V

v2g(r ′)
〈Rα(r)Rβ(r ′)〉, (A1)

with

Rα(r) = j̇α(r) + v2∇αρ(r) + βv2ρ(r)∇αw(r). (A2)

Here and in the following discussion, the dot denotes the time
derivative, Ȧ = (d/dt)A = iLA. From the definition in (25),
the time derivative of jα(r) is given by

j̇α(r) = v̇α
ABδ(r − rAB) −

∑
γ

vα
ABv

γ

AB∇γ δ(r − rAB). (A3)

Substituting Eq. (A2) into Eq. (A1) yields

Kαβ(r,r ′,0) = V

v2g(r ′)
{〈j̇α(r)j̇β(r ′)〉 + v2∇′

β〈j̇α(r)ρ(r ′)〉 + βv2[∇′
βw(r ′)]〈j̇α(r)ρ(r ′)〉 + v2∇α〈ρ(r)j̇β(r ′)〉

+ v4∇α∇′
β〈ρ(r)ρ(r ′)〉 + βv4[∇′

βw(r ′)]∇α〈ρ(r)ρ(r ′)〉 + βv2[∇αw(r)]〈ρ(r)j̇β(r ′)〉
+βv4[∇αw(r)]∇′

β〈ρ(r)ρ(r ′)〉 + β2v4[∇αw(r)][∇′
βw(r ′)]〈ρ(r)ρ(r ′)〉}. (A4)

Using Eq. (28) for the terms involving 〈ρ(r)ρ(r ′)〉, one obtains

Kαβ(r,r ′,0) = V

v2g(r ′)
{〈j̇α(r)j̇β(r ′)〉 + v2∇′

β〈j̇α(r)ρ(r ′)〉 + βv2[∇′
βw(r ′)]〈j̇α(r)ρ(r ′)〉

+ v2∇α〈ρ(r)j̇β(r ′)〉 + βv2[∇αw(r)]〈ρ(r)j̇β(r ′)〉}
+ v2

g(r ′)
{∇α∇′

β[δ(r − r ′)g(r)] + β[∇′
βw(r ′)]∇α[δ(r − r ′)g(r)]

+β[∇αw(r)]∇′
β[δ(r − r ′)g(r)] + β2[∇αw(r)][∇′

βw(r ′)]δ(r − r ′)g(r)}. (A5)
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In the following, we shall calculate the terms involving the
averages 〈j̇α(r)j̇β(r ′)〉, 〈j̇α(r)ρ(r ′)〉, and 〈ρ(r)j̇β(r ′)〉.

1. Calculation of the terms involving 〈 j̇α(r)ρ(r ′)〉
and 〈ρ(r) j̇β (r ′)〉

Using Eq. (A3), one can derive

〈j̇α(r)ρ(r ′)〉 = δ(r − r ′)
〈
v̇α

ABδ(r − rAB)
〉

− v2

V
∇α[δ(r − r ′)g(r)]. (A6)

Similarly, there holds

〈ρ(r)j̇β(r ′)〉 = δ(r − r ′)
〈
v̇

β

ABδ(r − rAB)
〉

− v2

V
∇′

β[δ(r − r ′)g(r)]. (A7)

Now, we need to calculate 〈v̇α
ABδ(r − rAB)〉.

From Newton’s equation of motion, we have

v̇α
AB = − 1

m

∂U

∂rα
A

+ 1

m

∂U

∂rα
B

, (A8)

where U denotes the potential of the total system given in
Eq. (3). We therefore obtain

〈
v̇α

ABδ(r − rAB)
〉 = − 1

m

〈
∂U

∂rα
A

δ(r − rAB)

〉

+ 1

m

〈
∂U

∂rα
B

δ(r − rAB)

〉
. (A9)

Here, we use the following well-known relation [1],〈
∂U

∂rα
A

f

〉
= kBT

〈
∂f

∂rα
A

〉
, (A10)

to obtain 〈
v̇α

ABδ(r − rAB)
〉 = v2

V
∇α g(r). (A11)

Using this result, one gets from Eqs. (A6) and (A7)

〈j̇α(r)ρ(r ′)〉 = v2

V
δ(r − r ′)∇α g(r) − v2

V
∇α[δ(r − r ′)g(r)],

(A12)

〈ρ(r)j̇β(r ′)〉 = v2

V
δ(r − r ′)∇β g(r) − v2

V
∇′

β[δ(r − r ′)g(r)].

(A13)

Substituting these results into Eq. (A5) yields

Kαβ(r,r ′,0) = V

v2g(r ′)
〈j̇α(r)j̇β(r ′)〉 + v2

g(r ′)
{∇′

β[δ(r − r ′)∇α g(r)] − β2[∇αw(r)][∇′
βw(r ′)]δ(r − r ′)g(r)

+∇α[δ(r − r ′)∇β g(r)] − ∇α∇′
β[δ(r − r ′)g(r)]}. (A14)

2. Calculation of the term involving 〈 j̇α(r) j̇β (r ′)〉
We next consider the term involving 〈j̇α(r)j̇β(r ′)〉. From Eq. (A3), one obtains

〈j̇α(r)j̇β(r ′)〉 = δ(r − r ′)
〈
v̇α

ABv̇
β

ABδ(r − rAB)
〉 − v2∇′

β

[
δ(r − r ′)

〈
v̇α

ABδ(r − rAB)
〉] − v2∇α

[
δ(r − r ′)

〈
v̇

β

ABδ(r − rAB)
〉]

+
∑
γ,γ ′

〈
vα

ABv
γ

ABv
β

ABv
γ ′
AB∇γ δ(r − rAB)∇′

γ ′δ(r ′ − rAB)
〉
. (A15)

The last term survives only when (i) α = β = γ = γ ′, (ii) α = β and γ = γ ′ or α �= γ , (iii) γ = α and γ ′ = β, and (iv) γ = β

and γ ′ = α—that is, the following condition holds:

last term in Eq. (A15) = v4

V

(
∇α∇′

β + ∇′
α∇β + δαβ

∑
γ

∇γ ∇′
γ

)
[δ(r − r ′)g(r)], (A16)

in deriving which we have used 〈(vα
AB)4〉 = 3v4 and 〈(vα

AB)2〉 = v2. Using Eq. (A11) for the second and third terms on the
right-hand side of Eq. (A15), we obtain

〈j̇α(r)j̇β(r ′)〉 = δ(r − r ′)
〈
v̇α

ABv̇
β

ABδ(r − rAB)
〉 − v4

V
∇′

β[δ(r − r ′)∇α g(r)] − v4

V
∇α[δ(r − r ′)∇β g(r)]

+ v4

V

(
∇α∇′

β + ∇′
α∇β + δαβ

∑
γ

∇γ ∇′
γ

)
[δ(r − r ′)g(r)]. (A17)

Substituting this result into Eq. (A14) gives

Kαβ(r,r ′,0) = V

v2g(r ′)
δ(r − r ′)

〈
v̇α

ABv̇
β

ABδ(r − rAB)
〉 + v2

g(r ′)

{(
∇′

α∇β + δαβ

∑
γ

∇γ ∇′
γ

)
[δ(r − r ′)g(r)]

−β2[∇αw(r)][∇′
βw(r ′)]δ(r − r ′)g(r)

}
. (A18)
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Now we are left with the average 〈v̇α
ABv̇

β

ABδ(r − rAB)〉. From Eq. (A8), we have

〈
v̇α

ABv̇
β

ABδ(r − rAB)
〉 = 1

m2

〈
∂U

∂rα
A

∂U

∂r
β

A

δ(r − rAB)

〉
− 1

m2

〈
∂U

∂rα
A

∂U

∂r
β

B

δ(r − rAB)

〉

− 1

m2

〈
∂U

∂rα
B

∂U

∂r
β

A

δ(r − rAB)

〉
+ 1

m2

〈
∂U

∂rα
B

∂U

∂r
β

B

δ(r − rAB)

〉
. (A19)

Let us start from the first term. Using the relation (A10), we obtain the following result:

first term in Eq. (A19) = kBT

m2

〈(
∂2U

∂rα
A∂r

β

A

)
δ(r − rAB)

〉
+

(
kBT

m

)2 〈
∂2

∂rα
A∂r

β

A

δ(r − rAB)

〉
. (A20)

The second term in this expression can be written as〈
∂2

∂rα
A∂r

β

A

δ(r − rAB)

〉
=

〈
∂2

∂rα
AB∂r

β

AB

δ(r − rAB)

〉
= 1

V
∇α∇β g(r). (A21)

Using Eq. (3), the second derivative of the total potential reads

∂2U

∂rα
A∂r

β

A

= ∂2φ(rAB)

∂rα
A∂r

β

A

+
N∑

i=1

∂2φ(rAi)

∂rα
A∂r

β

A

= ∂2φ(rAB)

∂rα
AB∂r

β

AB

+
N∑

i=1

∂2φ(rAi)

∂rα
Ai∂r

β

Ai

, (A22)

and hence, the first term in Eq. (A20) is given by〈(
∂2U

∂rα
A∂r

β

A

)
δ(r − rAB)

〉
=

〈(
∂2φ(rAB)

∂rα
AB∂r

β

AB

)
δ(r − rAB)

〉
+

N∑
i=1

〈(
∂2φ(rAi)

∂rα
Ai∂r

β

Ai

)
δ(r − rAB)

〉

= [∇α∇β φ(r)]〈δ(r − rAB)〉 +
N∑

i=1

∫
d r ′′ [∇′′

α∇′′
β φ(r ′′)]〈δ(r − rAB)δ(r ′′ − rAi)〉

= 1

V
[∇α∇β φ(r)]g(r) + ρ

V

∫
d r ′′ [∇′′

α∇′′
β φ(r ′′)]g(3)

AB;A(r,r ′′), (A23)

where we have introduced the triple-density correlation function involving the particles A and B and a solvent particle:

ρ

V
g

(3)
AB;A(r,r ′′) ≡

N∑
i=1

〈δ(r − rAB)δ(r ′′ − rAi)〉, (A24)

with ρ = N/V being the average number density of the solvent. We therefore obtain

first term in Eq. (A19) = kBT

V m2

{
[∇α∇βφ(r)]g(r) + ρ

∫
d r ′′[∇′′

α∇′′
βφ(r ′′)]g(3)

AB;A(r,r ′′)
}

+ 1

V

(
kBT

m

)2

∇α∇β g(r). (A25)

The other terms in Eq. (A19) can be handled in a similar manner, with the results

second term in Eq. (A19) = 1

V

kBT

m2
[∇α∇β φ(r)]g(r) + 1

V

(
kBT

m

)2

∇α∇β g(r), (A26)

third term in Eq. (A19) = 1

V

kBT

m2
[∇α∇β φ(r)]g(r) + 1

V

(
kBT

m

)2

∇α∇β g(r), (A27)

fourth term in Eq. (A19) = 1

V

kBT

m2

{
[∇α∇β φ(r)]g(r) + ρ

∫
d r ′′ [∇′′

α∇′′
β φ(r ′′)]g(3)

AB;B(r,r ′′)
}

+ 1

V

(
kBT

m

)2

∇α∇β g(r).

(A28)

Summarizing Eqs. (A19), (A25), and (A26)–(A28), we obtain

〈
v̇α

ABv̇
β

ABδ(r − rAB)
〉 = βv4

V
[∇α∇β φ(r)]g(r) + v4

V
∇α∇β g(r) + ρkBT

V m2

∫
d r ′′ [∇′′

α∇′′
β φ(r ′′)]g(3)

AB;A(r,r ′′)

+ ρkBT

V m2

∫
d r ′′ [∇′′

α∇′′
β φ(r ′′)]g(3)

AB;B(r,r ′′). (A29)
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Substituting the result (A29) into Eq. (A18) yields

Kαβ(r,r ′,0) = v2

g(r ′)

(
∇′

α∇β + δαβ

∑
γ

∇γ ∇′
γ

)
[δ(r − r ′)g(r)] + v2

g(r ′)
δ(r − r ′){∇α∇β g(r) − β2[∇αw(r)][∇′

βw(r ′)]g(r)}

+ 1

g(r ′)
δ(r − r ′)

{
βv2[∇α∇β φ(r)]g(r) + ρkBT

v2m2

∫
d r ′′ [∇′′

α∇′′
β φ(r ′′)]g(3)

AB;A(r,r ′′)

+ ρkBT

v2m2

∫
d r ′′ [∇′′

α∇′′
β φ(r ′′)]g(3)

AB;B(r,r ′′)
}
. (A30)

Here, we notice that

∇α∇β log[g(r)] = ∇α

[ ∇β g(r)

g(r)

]
= [∇α∇β g(r)] g(r) − [∇β g(r)] [∇α g(r)]

g(r)2

= 1

g(r)
∇α∇β g(r) − {∇α log[g(r)]} {∇α log[g(r)]} = 1

g(r)
∇α∇β g(r) − β2[∇αw(r)] [∇βw(r)], (A31)

which leads to
1

g(r ′)
δ(r − r ′)∇α∇β g(r) = δ(r − r ′){−β∇α∇βw(r) + β2[∇αw(r)] [∇βw(r)]}. (A32)

Using this result, Eq. (A30) can be rewritten as

Kαβ(r,r ′,0) = v2

g(r ′)

(
∇′

α∇β + δαβ

∑
γ

∇γ ∇′
γ

)
[δ(r − r ′)g(r)] + δ(r − r ′) βv2∇α∇β [φ(r) − w(r)]

+ δ(r − r ′)
ρkBT

v2m2

∫
d r ′′ [∇′′

α∇′′
β φ(r ′′)]

[
g

(3)
AB;A(r,r ′′)/g(r)

]
+ δ(r − r ′)

ρkBT

v2m2

∫
d r ′′[∇′′

α∇′′
β φ(r ′′)]

[
g

(3)
AB;B(r,r ′′)/g(r)

]
. (A33)

3. Further manipulations

Equation (A33) shall further be manipulated to eliminate the radial distribution function appearing in the denominator. For the
first two terms in Eq. (A33), we proceed as follows:

1

g(r ′)
∇′

α∇β[δ(r − r ′)g(r ′)] = 1

g(r ′)
∇′

α[g(r ′)∇β δ(r − r ′)] = 1

g(r ′)
{[∇′

α g(r ′)][∇β δ(r − r ′)] + g(r ′)∇′
α∇β δ(r − r ′)}

= −β[∇′
αw(r ′)]∇β δ(r − r ′) + ∇′

α∇β δ(r − r ′), (A34)

1

g(r ′)
∇γ ∇′

γ [δ(r − r ′)g(r ′)] = −β[∇′
γ w(r ′)]∇γ δ(r − r ′) + ∇γ ∇′

γ δ(r − r ′). (A35)

For the triple-density correlations in Eq. (A33), we use Kirkwood’s superposition approximation [1]:

g
(3)
AB;A(r,r ′′) ≈ g(r)g(r ′′)g(|r − r ′′|), (A36)

g
(3)
AB;B(r,r ′′) ≈ g(r)g(|r + r ′′|)g(r ′′). (A37)

Thereby, we arrive at the following expression for Kαβ(r,r ′,0):

Kαβ(r,r ′,0) = −βv2
[∇′

αw(r ′)
]
[∇β δ(r − r ′)] + v2∇′

α∇β δ(r − r ′) + δαβv2
∑

γ

{−β[∇′
γ w(r ′)][∇γ δ(r − r ′)] + ∇γ ∇′

γ δ(r − r ′)}

+ δ(r − r ′) βv2∇α∇β [φ(r) − w(r)] + δ(r − r ′)
ρv2

2kBT

∫
d r ′′ [∇′′

α∇′′
β φ(r ′′)]g(r ′′)g(|r − r ′′|). (A38)
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