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Commissariat à l’Energie Atomique et aux Energies Alternatives, Direction de l’Energie Nucléaire, Département de Modélisation des
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In this paper we analyze some aspects of exponential flights, a stochastic process that governs the evolution of
many random transport phenomena, such as neutron propagation, chemical or biological species migration, and
electron motion. We introduce a general framework for d-dimensional setups and emphasize that exponential
flights represent a deceivingly simple system, where in most cases closed-form formulas can hardly be obtained.
We derive a number of exact (where possible) or asymptotic results, among which are the stationary probability
density for two-dimensional systems, a long-standing issue in physics, and the mean residence time in a given
volume. Bounded or unbounded domains as well as scattering or absorbing domains are examined, and Monte
Carlo simulations are performed so as to support our findings.
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I. INTRODUCTION

Random walks are widely used in physics to model the
features of transport processes where a migrating (possibly
massless) particle undergoes a series of random displacements
as the result of repeated collisions with the surrounding envi-
ronment [1–4]. While much attention has been given to random
walks on regular Euclidean lattices and to the corresponding
scaling limits, less has been comparatively devoted to the case
where the direction of propagation can change continuously at
each collision: for a historical review, see, e.g., Ref. [5]. Such
processes, which are intimately connected to the Boltzmann
equation, have been named random flights, and they play
a prominent role in the description of neutron or photon
propagation through matter [6–8], chemical and biological
species migration [9], or electron motion in semiconductors
[10], and so forth.

Within the simplest formulation of this model, which was
originally proposed by Pearson [11] and later extended by
Kluyver [12] and Rayleigh [13], it is assumed that particles
perform random displacements (“flights”) along straight lines
and that, at the end of each flight (a “collision” with the
surrounding medium), the direction of propagation changes
at random.

When the number of transported particles is much smaller
than the number of the particles of the interacting medium,
so that interparticle collisions can be safely neglected, it is
reasonable to assume that the probability of interacting with
the medium is Poissonian. For the case of neutrons in a nuclear
reactor, for example, the ratio of the number of transported
particles to the number of interacting nuclei in a typical fuel-
moderator configuration is of the order of 10−11, even for
high-flux reactors [8]. It follows that flight lengths between
subsequent collisions are exponentially distributed (hence, we
call this process exponential flights in the following1). We
assume that collisions can be of either scattering or absorption
type. At each scattering collision, the flight direction changes
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1Exponential flights are preferentially called free flights in the

semiconductor community [10].

at random, whereas at absorption events the particle disappears
and the flight terminates. Each flight can be seen as a random
walk in the phase space of position r and direction ω in a
d-dimensional setup.

The particle density �(r,ω,t) represents the probability
density of finding a transported particle at position r having
direction ω at time t , up to an appropriate normalization factor.
In many applications, the actual physical observable is the
average of the density �(r,ω,t) over the directions ω, namely,

�(r,t) = 1

�d

∫
�(r,ω,t) dω, (1)

where �d = ∫
dω = 2πd/2/�(d/2) is a normalization factor

corresponding to the surface of the unit d-dimensional sphere
and �( ) is the gamma function [14].

Along with the development of Monte Carlo methods, nu-
merical solutions �(r,t) to complex three-dimensional linear
and nonlinear transport problems from applied sciences are
becoming accessible to a high degree of accuracy: criticality
calculations in reactor cores [15], scattering and absorption
in heated plasmas [16], propagation through anisotropic
scattering centers in atmosphere or fluids [17], and charge
transport in semiconductors under external fields [18–20], to
name only a few. Nonetheless, even for the simplest systems,
many theoretical questions remain without an answer, so the
study of exponential flights has attracted a renovated interest
in recent years (see, e.g., [21–24]). In particular, it has been
emphasized that the dimension d deeply affects the nature of
�(r,t) and in most cases prevents results from being explicitly
obtained. The aim of our work is to investigate exponential
flights in a generic d-dimensional setup under simplifying
hypotheses. Here, we mostly focus on establishing insightful
relationships between space, time, and the statistics of particle
collisions within a given volume. A number of results are
derived concerning unbounded, bounded, scattering, as well
as absorbing domains.

This paper is structured as follows. In Sec. II we recall the
mathematical formalism, introduce the physical variables, and
derive their interdependence for any d. In Sec. III we detail
the structure of the spatial moments of the particle ensemble.
Section IV is devoted to the analysis of the collision statistics
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in a given domain. Then, in Sec. V we examine the distinct
cases d = 1,2,3,4. Both spatial and temporal evolutions of
the particle ensemble are considered, and results for bounded
domains are obtained by resorting to the method of images.
We provide a comparison between analytical (or asymptotic)
findings and Monte Carlo simulations. Conclusions are finally
drawn in Sec. VI.

II. GENERAL SETUP

Within the natural framework of statistical mechanics, the
evolution of the particle density �(r,ω,t) for exponential
flights is governed by the linear Boltzmann equation [8].
Linearity stems from neglecting interparticle collisions. In
the hypothesis that an average particle energy can be defined
(the so-called one-speed transport) and that the physical
properties of the medium do not depend on position or time,
the Boltzmann equation for the density �(r,ω,t) reads [8,21]

1

v

∂

∂t
�(r,ω,t) + ω · ∇r�(r,ω,t)

= −σt�(r,ω,t) + σ

∫
k(ω′,ω)�(r,ω′,t) dω′ + S

v
, (2)

where σt is the total cross section of the traversed medium
(carrying the units of an inverse length), σ is the scattering
cross section, v is the particle speed, and S is the source. The
total cross section σt is such that 1/σt represents the average
flight length between consecutive collisions (the so-called
mean free path) and is related to the scattering cross section
σ and to the absorption cross section σa by σt = σ + σa . The
quantity k(ω′,ω) is the scattering kernel, i.e., the probability
density that at each scattering collision the random direction
changes from ω′ to ω.

Denoting by �(r,ω,t) the solution of the Boltzmann
equation (2) for a medium without absorptions (σa = 0), the
complete solution with absorption �a(r,ω,t) can be easily
obtained by letting

�a(r,ω,t) = �(r,ω,t)e−vσat , (3)

thanks to linearity [21]. This allows us to primarily address a
purely scattering medium (σt = σ ) without loss of generality.

At long times, i.e., far from the source, the direction-
averaged particle density �(r,t) is known to converge to a
Gaussian shape, namely,

�(r,t) � e− |r|2
4Dt

(4πDt)d/2
, (4)

where the quantity D = v/(dσ ) plays the role of a diffusion
coefficient [8]. However, Eq. (4) is approximately valid for
rσ � 1 and cannot capture either the particle evolution at early
times or the finite-speed propagation effects. Indeed, diffusion
implicitly assumes a nonvanishing probability of finding the
particles at arbitrary distance from the source. Deviations from
the limit Gaussian behavior are well known, e.g., for neutron
[8] as well electron transport [19]. In the following, we outline
the relation between �(r,t) and the underlying exponential
flight process.

A. The free propagator without absorptions

Consider a d-dimensional setup. A particle, originally
located at position r0 in a given domain, travels along straight
lines at constant speed v until it collides with the medium.
The position of a particle at the nth collision can be expressed
as a random walk rn = r0 + ∑n

i=1 ri , i.e., a sum of random
variables ri . The flight lengths 	 = |ri − ri−1| are assumed
identically distributed and obey an exponential probability
density

ϕ(	) = σte
−	σt , (5)

with σt > 0. The exponential law in Eq. (5) stems from
assuming a uniform distribution of the scattering centers in the
traversed medium. Heterogeneous materials, such as complex
fluids, would generally lead to clustered scattering centers,
obeying, e.g., negative binomial distributions, and in turn
nonexponential flight lengths [17]. However, we focus our
attention on homogeneous media.

At each collision, the particle randomly changes its direc-
tion according to the scattering kernel k(ω′,ω). For the sake
of simplicity, we assume here that the scattering is isotropic
so that k(ω′,ω) has a uniform distribution, independent of the
incident direction ω′.

Once a flight length has been sampled from ϕ(	), the new
direction ω is therefore uniformly distributed on the d sphere of
surface 	d−1�d . Therefore, by virtue of the apparent spherical
symmetry, the transition kernel, i.e., the probability density of
performing a displacement from ri−1 to ri , depends only on
	 = |ri − ri−1| and reads

πd (	) = ϕ(	)

	d−1�d

. (6)

We initially neglect absorptions, so σt = σ : in one-speed
transport, this condition can be seen as either particle scat-
tering or equivalently as particles being absorbed and then
reemitted (with the same speed) at each collision. This latter
interpretation would correspond, e.g., to a criticality condition
in multiplicative systems for neutron transport.

We then define the free propagator �(r|n) as the probability
density of finding a particle at position r at the nth collision for
an infinite medium, i.e., in the absence of boundaries. Here we
adopt the convention that the particle position and direction
refer to the particle’s physical properties before entering the
collision; for instance, the index n = 1 refers to uncollided
particles, i.e., particles coming from the source and entering
their first collision.

Assuming that all the particles are isotropically emitted at
r0 = 0, the particle density �(r|n) must depend only on the
variable r = |r|, because of the spherical symmetry. On the
basis of the properties exposed above, the particle propagation
as a function of the number of collisions is a Markovian process
in the variable rn, where for each collision i = 1, . . . ,n the new
propagator is given by the convolution integral

�(r|i) =
∫

πd (|r − r′|)�(r ′|i − 1) dr′, (7)

with initial condition �(r|0) = δ(r). In particular, by direct
integration we immediately get the uncollided propagator

�(r|1) = πd (r). (8)
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It is convenient to introduce the d-dimensional Fourier
transform of spherical-symmetrical functions, because in the
subsequent analysis this allows easier derivation of the proper-
ties of the exponential flights. Denoting by z the transformed
variable with respect to r , for any spherical-symmetrical func-
tion f (r) we have the following transform and antitransform
pair f (z) = Fd{f (r)} and f (r) = F−1

d {f (z)} [5]:

f (z) = z1−d/2(2π )d/2
∫ +∞

0
rd/2Jd/2−1(zr)f (r) dr,

(9)

f (r) = r1−d/2(2π )−d/2
∫ +∞

0
zd/2Jd/2−1(rz)f (z) dz,

where Jν( ) is the modified Bessel function of the first kind,
with index ν [14]. It is apparent from Eqs. (9) that the
dimension d of the system plays a fundamental role in that
it affects both the transition kernel and the Fourier transform
kernel itself.

The convolution integral in Eq. (7) in Fourier space gives
the algebraic relation

�(z|i) = πd (z)�(z|i − 1), (10)

where i � 1, with initial condition �(z|0) = 1. By recursion,
it follows that in the transformed space

�(z|n) = πd (z)n. (11)

It turns out that the Fourier transform of the transition kernel
πd (z) can be explicitly performed in arbitrary dimension and
gives

πd (z) = 2F1

(
1

2
,1,

d

2
; − z2

σ 2

)
, (12)

where 2F1 is the Gauss hypergeometric function [14]. Hence,
we finally obtain

�(z|n) =
[

2F1

(
1

2
,1,

d

2
; − z2

σ 2

)]n

. (13)

The quantity πd (z) is positive for d � 1; moreover, πd (z =
0) = 1, which ensures normalization and positivity of the
propagator. In Fig. 1 we visually represent the effects of
dimension and number of collisions on the shape of �(z|n).
In particular, the spread of �(z|n) increases with d for a given
n. On the contrary, �(z|n) becomes more peaked around the
origin with growing n for a given d.

Formally, performing the inverse Fourier transform of
Eq. (13) gives the propagator �(r|n) = F−1

d {�(z|n)} for an
arbitrary d-dimensional setup. Actually, in some cases this task
turns out to be nontrivial. Nonetheless, even in the absence of
an explicit functional form for the propagator, information
can be extracted by resorting to the Tauberian theorems. In
particular, the expansion of �(z|n) for z/σ � 1 gives the
behavior of �(r|n) for rσ � 1, i.e., far from the source, in
the diffusion limit [3,4]; conversely, the expansion of �(z|n)
for z/σ � 1 gives the behavior of �(r|n) for rσ � 1, i.e.,
close to the source. We recall that 2F1 is defined through the
series [14]

2F1

(
1

2
,1,

d

2
; − z2

σ 2

)
=

∞∑
k=0

�
(

d
2

)
�

(
1
2 + k

)
√

π�
(

d
2 + k

) (
i
z

σ

)2k

. (14)
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FIG. 1. (Color online) The free propagator �(z|n) in the trans-
formed space. Left: �(z|1) for increasing values of the dimension,
d = 1 (blue), 2 (red), 3 (green), and 4 (black). Right: �(z|n) for d = 3
and increasing number of collisions, n = 1 (blue), 2 (red), 3 (green),
and 10 (black). The direction of increasing d or n, respectively, is
marked by an arrow.

At the leading order for z/σ → 0, we therefore have

πd (z) � 1 − 1

d

( z

σ

)2
+ · · · . (15)

We observe that Eq. (15) can be viewed as the expansion of
an exponential function. Then, the inverse Fourier transform
gives the Gaussian shape

�(r|n) � e− r2

4nD

(4πDn)d/2
, (16)

which is valid for rσ � 1, and D = 1/(dσ 2) plays the role
of a diffusion coefficient. This stems from the exponential
flights having finite-variance increments, 〈	2〉 < +∞, so their
probability density �(r|n) falls in the basin of attraction of the
central limit theorem [3]. We mention that clustered scattering
centers, with nonexponential flight lengths, may lead to non-
Gaussian limiting statistics [17]. We note the close analogy
between Eqs. (4) and (16): in particular, D and D differ by a
factor of σv, which, roughly speaking, represents the average
number of collisions per unit time.

Moreover, at the leading order for z/σ → ∞ we have the
expansion

πd (z) �
√

π�
(

d
2

)
�

(
d−1

2

) (
σ

z

)
+ (2 − d)

(
σ

z

)2

+ · · · , (17)

where the first term vanishes for d = 1. By inverse Fourier
transform, we have for rσ � 1

�(r|n) � c
n,d
1 + c

n,d
2 (rσ )n−d (18)

when d > 1, and �(r|n) � c
n,1
1 + c

n,1
2 (rσ )2n−1 when d = 1.

Here c
n,d
1 and c

n,d
2 are constants depending on n and d. It can

be shown that the divergence at the origin in �(r|n) due to
the Dirac δ source disappears after n > d collisions for d > 1,
and after n � 1 for d = 1.
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B. Relation between collision number and time

Assume again that σt = σ , i.e., that there are no absorptions.
The free propagator �(r|n) gives information on the position
of a transported particle at the moment of entering the nth
scattering collision. The link between the traveled distance,
the flight time, and the number of collisions is provided by
the speed v. Indeed, once a flight of length 	 between any two
collisions has been sampled from ϕ(	), the flight time must
satisfy t	 = ti − ti−1 = 	/v. Hence, the transition kernel, i.e.,
the probability density of performing a displacement from ri−1

at ti−1 to ri at ti , is given by

πd (	,t	) = πd (	)δ

(
t	 − 	

v

)
. (19)

It follows that intercollision times are exponentially dis-
tributed:

w(t	) =
∫

πd (	,t	)�d	
d−1 d	 = e−t	/τ

τ
, (20)

where τ = 1/(σv) represents the average time between colli-
sions.

We define the propagator �(r,t |n) as the probability density
of finding a particle at position r at time t at the nth collision.
From the Markov property of the process, at each collision
i = 1, . . . ,n, we have

�(r,t |i) =
∫

dr′
∫

dt ′πd (|r − r′|,t − t ′)�(r ′,t ′|i − 1), (21)

with initial condition �(r,t |0) = δ(r)δ(t/τ ) = τS(r,t). In par-
ticular, by direct integration we immediately get the uncollided
propagator

�(r,t |1) = πd (r,t) = τ�(r|1)δ
(
t − r

v

)
. (22)

We denote the Laplace transform of a function g(t) by its
argument; i.e.,

g(s) = L{g(t)} =
∫ +∞

0
e−st g(t) dt. (23)

Then from the double convolution integral in Eq. (21) we have
the algebraic product in the Fourier and Laplace space

�(z,s|i) = πd (z,s)�(z,s|i − 1), (24)

where i � 1, with �(z,s|0) = τ . By recursion, it follows that
in the transformed space we have

�(z,s|n) = τπd (z,s)n. (25)

It turns out that the Fourier and Laplace transform of the
transition kernel πd (z,s) can be explicitly performed in
arbitrary dimension and gives

πd (z,s) = 2F1
(

1
2 ,1, d

2 ; − z2

ζ 2

)
1 + sτ

, (26)

where ζ (s) = σ (1 + sτ ). Hence, we finally obtain

�(z,s|n) = τ

[
2F1

(
1
2 ,1, d

2 ; − z2

ζ 2

)
1 + sτ

]n

. (27)

Moreover, the following relation follows: �(z,s = 0|n) =
τ�(z|n), so

�(r|n) = 1

τ

∫ +∞

0
�(r,t |n)dt, (28)

i.e., �(r|n) can be interpreted as the time average of �(r,t |n).
Finally, the propagator �(r,t) is given by the sum of the
contributions �(r,t |n) at each collision, namely

�(r,t) =
∞∑

n=1

�(r,t |n). (29)

Taking the Fourier and Laplace transforms of Eq. (29), we then
have

�(z,s) =
∞∑

n=1

�(z,s|n) = τ
πd (z,s)

1 − πd (z,s)
, (30)

with �(r,t) = L−1F−1
d {�(z,s)}.

C. Absorptions

In the presence of absorptions (σa > 0), the propagator
�a(r,t) can be obtained from Eq. (3) by integrating over
directions. This relation holds true at each collision, so we
have

�a(r,t |n) = �(r,t |n)e−t/τa , (31)

where τa = 1/(σav). Hence, from Eq. (28), by replacing σ

with σt we get for the propagator �a(z|n)

�a(z|n) = 1

τt

∫ +∞

0
�a(z,t |n) dt = 1

τt

�

(
z,s = 1

τa

|n
)

,

(32)

where τt = 1/(σtv) represents the average flight time between
any two collisions. Now, from Eq. (27) we have

�

(
z,s = 1

τa

|n
)

= τ�

(
z
σ

σt

|n
) (

σ

σt

)n

, (33)

where the quantity p = σ/σt , 0 < p < 1, can be interpreted
as the probability of being scattered, i.e., not being absorbed,
at any given collision. Then, by noting that τ/τt = 1/p, it
follows that

�a(z|n) = �(pz|n)pn−1. (34)

The propagator in Eq. (34) is then given by the product
of the free propagator, with the total cross section σt replacing
the scattering cross section σ , times the probability of having
survived up to entering the nth collision. The total cross section
and the nonabsorption probability are related by σ = pσt .
When the absorption length is infinite, σa → 0, p → 1, and
we recover the free propagator for pure scattering with σt = σ .

D. Boundary conditions

So far, we have assumed that the medium where particles
are transported has an infinite extension, hence the name
free propagator. More realistically, we might consider finite-
extension media with volume V enclosing the source, so that
boundary conditions come into play and affect the nature of
the propagator. Several boundary conditions can be conceived
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according to the specific physical system, among which the
most common are reflecting and leakage. This issue has been
extensively examined, e.g., for radiation shielding in reactor
physics [6–8] and for electron motion in semiconductors
[25,26]. Here we focus on leakage boundary conditions, where
particles are considered lost as soon as their trajectory has
traversed the outer boundary ∂V of the domain. While the
volume V is in principle totally arbitrary, in the subsequent
calculations for the sake of convenience we assume that
V = V(R) is a sphere of radius R centered in r0 = 0.

From the point of view of the propagator, leakages can be
taken into account by assuming that the population density
�(r|n) at any n vanishes at the so-called extrapolation length
re, i.e., �(r = re|n) = 0 [6–8]. Because trajectory does not
terminate at the boundary but rather at the first collision
occurring outside the volume, the extrapolation length is
expected to be larger than the physical boundary of V(R)
and can be determined from solving the so-called Milne
problem associated with the volume [27,28]. In general, re

is of the kind re = R[1 + ud/(Rσ )], where the dimensionless
constant ud > 0 depends on the dimension of the system [28].
When the scattering length is much smaller than the typical
size of the volume, i.e., σR � 1, the extrapolation length
coincides with the physical boundary, re → R. This means
that the intercollision length is so small compared to the total
traveled distance that the first collision outside the domain
is actually very close to the last collision inside the domain,
which corresponds to �(r|n) vanishing at R [3,8].

III. SPATIAL MOMENTS OF THE PROPAGATOR

The moments of the propagator provide an estimate of the
spatial evolution of the particle ensemble, as a function of the
number of collisions or time. Due to the supposed spherical
symmetry, we expect all the odd moments to vanish. We define
the mth moment of f (r) over the spherical shell rd−1�d dr as

〈rm〉 = �d

∫ +∞

0
rm+d−1f (r) dr. (35)

Performing the integral in Eq. (35) would require explicitly
knowing f (r). However, as shown in Appendix A, the mth
spatial moment f (r) can be expressed as a function of the mth
derivative of f (z) with respect to z:

〈rm〉 =
√

π�
(

d+m
2

)
�

(
d
2

)
�

(
1+m

2

) ∂m

∂(iz)m
[f (z)]z=0 (36)

when m is even, and 〈rm〉 = 0 otherwise. By setting f (z) =
�(pz|n)pn−1 in Eq. (36), we then have 〈rm〉(n) as a function
of the number of collisions. Analogously, by setting f (z) =
�a(z,s) = �(z,s + 1/τa) we get 〈rm〉(s), which gives the evo-
lution as a function of time, upon inverse Laplace transforming.
In particular, for the spread m = 2 of the propagator with
absorptions we get

〈r2〉(n) = 2

σ 2
t

pn−1n (37)

and

〈r2〉(t) = 2

σ 2

[
e−t/τ − 1 + t

τ

]
e−t/τa . (38)

In the absence of absorption, τa → ∞ and p → 1, the particle
spread 〈r2〉(n) is linear with respect to n. On the contrary,
〈r2〉(t) has a ballistic behavior (∝t2) at earlier times (where
transport is dominated by velocity), and a diffusive behavior
(∝t) at later times (where transport is dominated by scattering).
The transition between the two regimes is imposed by the time
scale τ . A remarkable feature is that in either case the spread
does not explicitly depend on the dimension d. Intuitively, this
can be understood by considering that (independently of the
dimension d of the embedding setup) the vectors ri and ri+1

define a plane with random orientation, so space is explored
by plane surfaces at each collision. This is in analogy, e.g., to
the behavior of d-dimensional Brownian motion [3].

IV. COLLISION DENSITY AND COLLISION STATISTICS

In many physical problems, one is interested in assessing
the statistics of the time tV or the collision number nV spent
inside a given domain V . A prominent role in characterizing a
physical system is played in particular by the mean residence
time 〈tV〉 and the mean collision number 〈nV〉 [29]. In reactor
physics, for instance, the average number of neutron collisions
within a region would be related to such issues as the nuclear
heating or nuclear damage in fissile as well as structural
materials [6,7]. We introduce the collision density �(r) [30],
which is defined as

�(r) = lim
N→∞

N∑
n=1

�(r|n). (39)

From Eq. (29), it follows that �(r) can be equivalently
obtained from the propagator �(r,t) as

�(r) = lim
T →∞

1

τ

∫ T

0
�(r,t) dt. (40)

For an infinite “observation time” T , the mean residence time
〈tV〉 within V can be expressed in terms of the collision density
�(r) in the same domain by slightly adapting an argument due
to Kac [31,32],

〈tV〉
τ

=
∫
V

dr1�(r1), (41)

where r1 = |r1 − r0|.
As for the collision number, the probability of performing

nV collisions in V is given by

P(nV ) =
∫
V

dr�(r|nV ) −
∫
V

dr�(r|nV + 1), (42)

hence the moments

〈
nm
V
〉 =

+∞∑
nV=1

nm
VP(nV ). (43)

From the definition of �(r), it follows immediately that

〈nV〉 = 〈tV〉
τ

, (44)

i.e., the integral of the collision density over a volume V gives
the mean number of collisions within that domain, hence the
name given to �(r).
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Both 〈tV〉 and 〈nV〉 depend on the boundary conditions
imposed on ∂V , which in turn affect the functional form of the
propagator and then �(r). Using a free propagator corresponds
to defining a fictitious volume V whose boundaries ∂V are
“transparent,” so that particles can indefinitely cross ∂V back
and forth. On the contrary, the use of leakage boundary
conditions leads to the formulation of first-passage problems,
i.e., determining the distribution of the time, or collision
number, required to first reach the boundary. Consequently,
〈tV〉 is preferentially called mean first-passage time [29].

It can be shown that higher-order moments of nV can be
obtained by recursion in terms of Kac integrals analogous to
those in Eq. (41). A detailed treatment is beyond the scope of
the present paper and is discussed in Ref. [33].

The previous discussion shows that �(r) is key in deter-
mining residence times and collisions statistics. After formally
carrying out the summation in Eq. (39), we have �(z) =
πd (z)/[1 − πd (z)], so �(r) for a free propagator in the absence
of absorption is defined in terms of the Fourier integral

�(r) = r1−d/2

(2π )d/2

∫ +∞

0
zd/2Jd/2−1(rz)

πd (z)

1 − πd (z)
dz, (45)

whose convergence depends on the dimension d of the system.
It turns out that convergence is ensured for d > 2, which
means that, for one and two dimensions, finite-size domains
with transparent boundaries 〈nV〉 and 〈tV〉 diverge as N → ∞.
This result is in analogy with Pólya’s theorem, which states
that random walks on Euclidean lattices are recurrent for
d � 2 [3]. As shown in the following, we can nonetheless
provide an estimate of such divergence as a function of N ;
i.e., we can single out a singular term from a functional
form. For finite domains with leakage boundary conditions
and/or absorptions (σa > 0), �(r) is defined also for one-
and two-dimensional systems. For d > 2, Tauberian theorems
show that the asymptotic behavior of Eq. (45) is given by

�(r) � �
(

d
2

)
2πd/2

(rσ )2−d (46)

for large r and by

�(r) � �
(

d
2

)
2πd/2

(rσ )1−d (47)

close to the source.

V. ANALYSIS OF d-DIMENSIONAL SETUPS

In the following, we detail the results pertaining to specific
values of d. We choose 1/σt as the length scale and we work
with dimensionless spatial variables r = rσt . In the absence
of absorption, the length scale is 1/σ , since p = 1.

A. One-dimensional setup: d = 1

The case d = 1 allows us to illustrate the general structure
of the calculations. One potential application of this framework
could be provided by nanowires or carbon nanotubes (almost
one-dimensional systems) in electron transport [10]. The
transition kernel is

π1(	) = e−	

2
, (48)
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FIG. 2. (Color online) The free propagator �(r|n) for d = 1.
Monte Carlo simulation results are displayed as blue crosses (n = 1),
red circles (n = 5), green pluses (n = 10), and black dots (n = 50).
For each n, the solid line is the theoretical result, Eq. (50). The dashed
line is the diffusion limit, Eq. (16).

whose Fourier transform is

π1(z) = 1

1 + z2
. (49)

Starting from �(z,0) = 1, the free propagator �(r|n) can
be explicitly obtained by performing the inverse Fourier
transform of �(z|n) = π1(z)n and reads

�(r|n) =
2

1
2 −nr− 1

2 +nK− 1
2 +n(r)

√
π�(n)

, (50)

where Kν( ) is the modified Bessel function of the second kind,
with index ν [14]. The same formula has been recently derived,
e.g., in Ref. [24], as a particular case of a broader class of
random flights. In Fig. 2 we provide a comparison between
Monte Carlo simulation results (symbols), the analytical
formula, Eq. (50) (solid lines), and the diffusion limit, Eq. (16)
(dashed lines), for different values of n. In particular, the
diffusion limit is not accurate for small n and becomes
progressively closer to the exact result for increasing n,
as expected. At intermediate n, the tails of the propagator
(50) are always fatter than those predicted by the diffusion
approximation.

In a one-dimensional setup, the collision density �(r) for
the free propagator diverges. Nonetheless, it is possible to
single out the divergence as follows:

�(z) = lim
N→∞

N∑
n=1

�(z|n) = lim
N→∞

1 − (1 + z2)−N

z2
. (51)

For fixed N , the inverse transform can be explicitly performed
in terms of hypergeometric functions. Retaining the nonvan-
ishing terms for large N , we have

�(r) � �
(

1
2 + N

)
�(N )

√
π

− r

2
�

√
N√
π

− r

2
, (52)
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which is composed of a term diverging with
√

N (not
depending on r) and a functional part which is linear in r

(not depending on N ).
For the propagator with absorptions, from Eq. (34) we have

�a(z) = lim
N→∞

N∑
n=1

�(z|n)pn−1 = 1

1 − p + z2
. (53)

Then, performing the inverse Fourier transform, we get

�a(r) = e−√
1−pr

2
√

1 − p
. (54)

We note that Eq. (54) has been derived, e.g., in Ref. [34], by
solving the stationary Boltzmann equation in one dimension.
When p → 0, the particles are almost surely absorbed at the
first collision, and we have the expansion

�a(r) � e−r

2

(
1 + p

2
+ pr

2

)
+ · · · , (55)

so at first order the collision density has the same functional
form as the uncollided propagator. However, when p → 1 the
particles are almost surely always scattered (σt → σ ), and we
have the expansion

�a(r) � 1

2
√

1 − p
− r

2
+ · · · , (56)

and �a(r) diverges as the collision density associated to the
free propagator, as expected.

The case of leakage boundary conditions can be dealt with
by imposing that the propagator �(r|n) must vanish for any
n at the extrapolated boundary re. For d = 1, the extrapolated
length is given by re = R[1 + ud/R] with u1 = 1 [28]; i.e.,
the propagator must vanish at one scattering length outside the
physical border R of the domain. By resorting to the method
of images [3], which allows solving for the propagator in
the presence of boundaries in terms of the propagator in the
absence of boundaries, we therefore have for the collision
density

�R(r) = re − r

2
(57)

for r � R, and �(r) = 0 elsewhere.
The moments of the residence time (or, equivalently, of

the number of collisions) within a sphere of radius R can
be explicitly computed based on Eq. (44). The moments
associated with the free propagator clearly diverge. Here
we separately analyze the propagator with absorptions (in
an infinite domain) and the propagator with leakages at the
boundary r = re � R (without absorption). For the case of
absorptions, the average residence time within a (fictitious)
sphere of radius R reads

〈tR〉 = 1 − e−√
1−pR

1 − p
τt , (58)

assuming that particles can cross the boundaries of the sphere
an infinite number of times. When the radius of the sphere is
large compared to the typical particle displacement, we have
〈tR〉 � 1/(1 − p)τt , which gives 〈tR〉 � τt when p → 0, and

it diverges for p → 1. For the case of leakages, the mean
first-passage time reads

〈tR〉 = R(2re − R)

2
τ. (59)

When the radius of the sphere is large compared to the typical
particle displacement, re → R and we have 〈tR〉 � R2τ/2.

B. Two-dimensional setup: d = 2

The case d = 2 has a key interest in assessing, e.g., the
dynamics of chemical and biological species on surfaces [9].
Moreover, it concerns also quantum wells and inversion layers
in electron transport [10]. The transition kernel reads

π2(	) = e−	

2π	
, (60)

whose Fourier transform is

π2(z) = 1√
1 + z2

. (61)

Starting from �(z,0) = 1, the free propagator �(r|n) can
be explicitly obtained by performing the inverse Fourier
transform of �(z|n) = π2(z)n and reads

�(r|n) = 2− n
2 r−1+ n

2 K−1+ n
2
(r)

π�
(

n
2

) . (62)

This result was previously established in Ref. [35] and later
appeared in, e.g., Refs. [24,36]. In Fig. 3 we compare the
Monte Carlo simulation results (symbols) with the theoretical
formula in Eq. (62) for different values of n. The diffusion
limit, Eq. (16), is also shown by dashed lines. We note that
the diffusion limit is not accurate for small n, and it becomes
progressively closer to the exact result for increasing n. At
intermediate n, the tails of the propagator (62) are always
fatter than those predicted by the diffusion approximation.
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FIG. 3. (Color online) The free propagator �(r|n) for d = 2.
Monte Carlo simulation results are displayed as blue crosses (n = 1),
red circles (n = 5), green pluses (n = 10), and black dots (n = 50).
For each n, the solid line is the theoretical result, Eq. (62). The dashed
line is the diffusion limit, Eq. (16).
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In a two-dimensional setup, the collision density �(r)
diverges. Nonetheless, analogously as was done for the one-
dimensional case, it is possible to single out the divergence as
follows:

�(z) = lim
N→∞

N∑
n=1

�(z|n) = lim
N→∞

1 − (1 + z2)−N/2

√
1 + z2 − 1

. (63)

For fixed N , the inverse transform can be explicitly performed.
Details of the rather cumbersome calculations are left to
Appendix B. Retaining the nonvanishing terms for large N ,
we have

�(r) � ln(N )

2π
+ e−r

2πr
+ Ei(−r) − 2 ln(r)

2π
, (64)

where Ei is the exponential integral function [14]. The formula
for the collision density �(r) might then provide a useful tool
for describing the migration of species in two-dimensional
environments. Similarly as in the one-dimensional case, �(r)
is composed of a term diverging with ln N (not depending
on r) and a functional part in r (not depending on N ). In
deriving Eq. (64) we have neglected a constant term which
is small compared to ln(N ), namely, [ln(2) − γ /2]/π , where
γ � 0.57721 is the Euler gamma constant [14].

The collision density with leakages at r = re can be
obtained again by the method of images:

�R(r) = e−r

2πr
− e−re

2πre

+
Ei(−r) − Ei(−re) − 2 ln

(
r
re

)
2π

,

(65)

where re = R[1 + u2/R] and the Milne constant is u2 � 1 −
2/π2 [28].

The moments associated with the free propagator clearly
diverge. For the propagator with leakages at the boundary
r = re � R, the mean first-passage time within a sphere of
radius R reads

〈tR〉 =
1 − e−R + Re−R + R2 − R2e−re

re

2
τ

+
R2Ei(−R) − R2Ei(−re) − 2R2 ln

(
R
re

)
2

τ. (66)

When R � 1, we have re � R, and we get 〈tR〉 � (1 + R2)τ/2
in the diffusion limit.

As for the collision density with absorptions, calculations
analogous to the one-dimensional case lead to

�a(r) = pK0
(
r
√

1 − p2
)

π
+ 1

2π

∫ +∞

0

zJ0(rz)√
1 + z2 + p

dz.

(67)

We could not find an explicit expression for the latter integral
in terms of elementary functions. However, the limits for small
and large scattering probability can be easily obtained and read

�a(r) � e−r

2πr
+ pK0(r)

π
, (68)

when p → 0, and

�a(r) �
ln

(
1

1−p

)
2π

+ e−r

2πr
+ Ei(−r) − 2 ln(r)

2π
, (69)

when p → 1, respectively. The former expression gives the
uncollided propagator at leading order, whereas the latter
diverges logarithmically as p → 1.

C. Three-dimensional setup: d = 3

The case d = 3 plays a prominent role in reactor physics,
among other fields, in that it concerns the transport of neutrons
and photons through matter [6–8] and is key in describing
electron transport in bulk semiconductors [10]. On the basis of
the strikingly similar form of Eqs. (50) and (62), it would
be tempting to postulate an analogous expression for the
propagator in three dimensions. For d = 1 we indeed have the
functional form �(r|n) ∝ r−1/2+nK−1/2+n(r), and for d = 2,
�(r|n) ∝ r−1+n/2K−1+n/2(r). Then we could conjecture an
exponent −d/2 + n/d, so that

�∗(r|n) = r−1/2+nK−1/2+n(r)

2
1
2 + n

3 π
3
2 �

(
n
3

) (70)

by imposing normalization. Unfortunately this is not the case,
and �∗(r|n) is not the true three-dimensional propagator.
Actually, few explicit results can be derived, and much of
the analysis is therefore devoted to the asymptotic behavior.
The transition kernel reads

π3(	) = e−	

4π	2
, (71)

whose Fourier transform is

π3(z) = arctan(z)

z
. (72)

The propagator �(r|n) with initial condition �(z,0) = 1 then
involves the following integral:

�(r|n) = 1

2π2r

∫ +∞

0
z sin(rz)

[
arctan(z)

z

]n

dz, (73)

which cannot be carried out explicitly for arbitrary n. In the
diffusion limit z � 1, we have [arctan(z)/z]n � 1 − nz2/3, so

�(r|n) � 3
√

3e− 3r2

4n

8n3/2π3/2
, (74)

as expected from Eq. (16). In Fig. 4 we compare the Monte
Carlo simulation results (symbols) with the diffusion limit,
Eq. (74) (dashed lines), and with the approximate propagator,
Eq. (70) (solid lines). We note that Eq. (70) provides a fairly
accurate approximation of the simulation results, except when
close to the source.

After carrying out the sum over n, the collision density �(r)
is given by the following integral:

�(r) = 1

2π2r

∫ +∞

0
z sin(rz)

arctan(z)

z − arctan(z)
dz, (75)

which again cannot be performed explicitly [30]. As before,
we then consider the asymptotic behavior. Denoting h(z) =
arctan(z)/[z − arctan(z)], we have

h(z) � 3

z2
+ 4

5
− 36

175
z2 + · · · (76)
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FIG. 4. (Color online) The free propagator �(r|n) for d = 3.
Monte Carlo simulation results are displayed as blue crosses (n = 1),
red circles (n = 5), green pluses (n = 10), and black dots (n = 50).
For each n, the solid line is the approximate propagator, Eq. (70). The
dashed line is the diffusion limit, Eq. (74).

in the diffusion limit z � 1, and

h(z) � π

2z
+

(
π2 − 4

4z2

)
+

(
π3 − 8π

8z3

)
+ · · · (77)

close to the source. Similar expansions appear, e.g., in
Ref. [30], as derived from the analysis of the Boltzmann
equation. Correspondingly, by performing the respective in-
tegrations we have

�(r) � 3

4πr
(78)

for r � 1, i.e., far from the source, and

�(r) � 1

4πr2
+

(
π2 − 4

16πr

)
+

(
8 − π2

16π

)
× [ln(r) + γ − 1] + · · · (79)

for r � 1, i.e., close to the source. We note that for d = 3, �(r)
does not diverge even for infinite domains without absorptions.
In Fig. 5 we compare the Monte Carlo simulation results
(symbols) with the asymptotic limits close to and far from
the source, Eqs. (79) and (78), respectively (dashed lines).
The simulation results progressively approach the asymptotic
limits as the number N of summed collisions increases.

Equations (79) and (78) can provide asymptotic estimates
for the collision density with leakages at the boundary r = R.
By the method of images, we have that the collision density
with boundaries is �R(r) = �(r) − �(re), with re = R[1 +
u3/R] and u3 � 0.7104 [27].

The moments of the residence time within a sphere of radius
R can be explicitly computed based on Eq. (44) for the free
propagator �(r|n), i.e., when particles can freely cross the
surface of the sphere. We have

〈tR〉 � 3

2
R2τ (80)
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FIG. 5. (Color online) The collision density �(r) for d = 3, with
increasing number of summed collisions, N = 102 (blue crosses),
103 (red circles), 104 (green pluses), and 105 (black dots). The dashed
lines are the asymptotic limits close (Eq. (79)) and far (Eq. (78)) from
the source.

when R � 1, and

〈tR〉 �
(

R + π2 − 4

8
R2

)
τ (81)

for R � 1. Moreover, for leakage boundary conditions at the
surface, from �R(r|n) we have

〈tR〉 � R2

re

(
3

2
re − R

)
τ (82)

when R � 1, and

〈tR〉 �
(

R + R2 π2 − 4

8
+ R2

r2
e

re(4 − π2) − 4

12

)
τ (83)

for R � 1.

D. Four-dimensional setup: d = 4

The case d = 4 is briefly presented here for the sake of
completeness. The transition kernel reads

π4(	) = e−	

2π2	3
, (84)

whose Fourier transform is

π4(z) = 2

1 + √
1 + z2

. (85)

We could not find an explicit representation for the inverse
Fourier transform of �(z|n) = π4(z)n. Nonetheless, the prop-
agator �(r,t |n) is known and reads

�(r,t |n) = n

�(n − 1)

e−vt

π2(vt)1+n
[(vt)2 − r2]n−2 (86)

for vt � r [21]. Hence, it follows that the propagator �(r|n) =∫
�(r,t |n) dt/τ can be obtained from solving the integral

�(r|n) = n

π2�(n − 1)

∫ +∞

r

e−zz−1−n(z2 − r2)n−2 dz. (87)
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This integral can be performed, and it gives

�(r|n) = 1

24π3/2
[A + B + C], (88)

where

A = −n2n �(2 − n)

�
(

5−n
2

)
�

(
6−n

2

) 1F2

(
2 − n,

5 − n

2
,
6 − n

2
;
r2

4

)
,

B = −24rn−4 �
(

2−n
2

)
�

(
1
2

)
�

(−2+n
2

) 1F2

(
−n

2
,
1

2
,
−2 + n

2
;
r2

4

)
,

C = 22nrn−3 �
(

1−n
2

)
�

(
3
2

)
�

(
n−1

2

) 1F2

(
1 − n

2
,
3

2
,
−1 + n

2
;
r2

4

)
,

(89)

where 1F2( ) is a hypergeometric function [14].
As for the collision density �(r), we have

�(r) = 1

2π2r

∫ +∞

0
J1(rz)(1 +

√
1 + z2)dz, (90)

which can be computed explicitly and gives

�(r) = e−r

2π2r3
+ 1

π2r2
. (91)

Finally, the collision density in the presence of leakages
at the boundary r = R can be obtained by resorting to the
method of images, where �R(r) = �(r) − �(re), with re =
R[1 + u4/R]. The constant u4 has been estimated by running
a Monte Carlo simulation and determining the extrapolation
length and reads u4 � 0.5.

The moments of the residence time within a sphere of
radius R can be explicitly computed based on Eq. (44) for
the free propagator �(r|n), namely,

〈tR〉 = (1 + R2 − e−R)τ. (92)

Moreover, for leakage boundary conditions at the surface, from
�R(r|n) we have

〈tR〉 =
(

1 + R2 − e−R − R4e−re

4r3
e

− R4

2r2
e

)
τ. (93)

VI. CONCLUSIONS

In this paper, we have examined the dynamics of exponen-
tial flights and their relation to the linear Boltzmann equation,
a subject that arises in many areas of physics or biology. In
particular, we have focused on (i) the propagator �(r|n), which
describes the ensemble evolution of the transported particles
as a function of the number of collisions, and (ii) the collision
density �(r), which is related to the particle equilibrium
distribution. Moreover, the connection between the number
of collisions and time has been examined. We have provided
the framework for a generic d-dimensional setup, which allows
emphasis of the key role of d in determining the properties of
�(r|n) and �(r).

In this context, we have shown that knowledge of �(r)
formally allows derivation of the moments of the residence
time (or equivalently of the collision number) within a given
volume, which is key in assessing many physical properties of
the system under study. The role of boundary conditions has

been explored by considering leakages from a given domain
via the method of images. The behavior of the spatial moments
of the particle ensemble has been examined as well.

We have then provided specific results for one-speed
isotropic transport in infinite as well as bounded domains, and
for absorbing or purely scattering media. The case d = 1 has
been considered as a prototype model of exponential flights
along a straight line, where only two directions (forward
or backward) are possible. Due to this simplification, most
quantities can be explicitly derived. The case d = 2 has been
analyzed in detail: despite the calculations being nontrivial, in
some cases closed-form results can be obtained. In particular,
we have provided an expression for the collision density,
which, coupled with the method of images, might be useful for
a realistic description of migration on bounded surfaces. The
case d = 3 is key in most real-world applications, such as the
propagation of neutrons or photons in matter or of electrons
in bulk semiconductors. Unfortunately, this case turns out to
be hardly amenable to closed-form analytical formulas, and
most results concern the asymptotic behavior of the particles,
either close to or far from the source. Finally, the case d = 4
has been considered for the sake of completeness. Moreover,
Monte Carlo simulations have been performed to validate the
proposed results and support the analysis of the asymptotic
behavior. A good agreement is found between theoretical
predictions and numerical simulations.

By virtue of the increasing power of Monte Carlo methods
in solving realistic three-dimensional transport problems,
one might argue that finding closed-form results for simple
systems has a limited interest. However, we are persuaded that
analytical and asymptotic formulas may turn out to be useful
in that they can help in improving Monte Carlo algorithms by a
clever use of the relation existing between different variables.
Moreover, as exponential flights are a transversal field, the
crossover between distinct areas of science might hopefully
shed some light on achieving long-standing goals in transport
theory, such as full analytical solutions for three-dimensional
systems.
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APPENDIX A: SPATIAL MOMENTS

We begin by computing the mth coefficient of the Taylor
expansion of z1−d/2Jd/2−1(rz) with respect to z, which reads

1

m!

∂m

∂zm
[z1−d/2Jd/2−1(rz)]z=0 = im

(
r
2

) d
2 +m−1

�
(
1 + m

2

)
�

(
d+m

2

) (A1)

for even m, and zero otherwise. We now apply the mth
derivative to a function f (z) such that f (r) has a spherical
symmetry. Recalling then the definition of the moment 〈rm〉
from Eq. (35), we have

1

m!

∂m

∂zm
[f (z)]z=0 = im21− d

2 −m(2π )
d
2

�
(
1 + m

2

)
�

(
d+m

2

) 〈rm〉
�d

. (A2)
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Rearranging the coefficients, we can finally express the spatial
moments of f (r) in terms of the mth z derivative of f (z),
namely,

〈rm〉 =
√

π�
(

d+m
2

)
�

(
d
2

)
�

(
1+m

2

) ∂m

∂(iz)m
[f (z)]z=0. (A3)

APPENDIX B: COLLISION DENSITY FOR d = 2

In order to find the collision density associated with the
free propagator, we begin by decomposing the sum over the
collisions n into even and odd indices, i.e.,

�(r) = lim
N→∞

[ ∑
n even

�(r|n) +
∑
n odd

�(r|n)

]
. (B1)

Then, by remarking that for even n

�even(z) =
∑
n even

�(z|n) = 1 − (1 + z2)−N

z2
, (B2)

we get

�even(r) � ln(
√

N ) − ln(r)

2π
(B3)

for large N . We have neglected a constant term of the kind
[ln(2) − γ /2]/(2π ), which is small compared to ln(N ).

For odd n, we can use the series representation

�(r|nodd) =
∑
k even

2−2−k�
(
2 − n

2

)
�

( − 1 + n
2

)
π�

(
1 + k

2

)
�

(
2 + k

2 − n
2

)
�

(
n
2

) rk

+
∑

(n − k) even
k � n − 2

2−2−k�
(
2 − n

2

)
π�

(
1 + k

2

)
�

(
2 + k

2 − n
2

) rk.

(B4)

Now, carrying out the double sum over odd n and over k, from
Eq. (B4) we get

�odd(r) � ln(
√

N ) + e−r

r
+ Ei(−r) − ln(r)

2π
, (B5)

for large N . Again, to obtain this result we have neglected a
constant term of the kind [ln(2) − γ /2]/(2π ), which is small
compared to ln(N ).

Hence, by summing up we finally obtain

�(r) � ln(N ) + e−r

r
+ Ei(−r) − 2 ln(r)

2π
. (B6)
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