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We investigated the mixing and segregation of a system consisting of two different species of particles, having
different charges, interacting through a pure Coulomb potential, and confined in a three-dimensional parabolic
trap. The structure of the cluster and its normal mode spectrum are analyzed as a function of the relative charge
and the relative number of different types of particles. We found that (a) the system can be in a mixed or segregated
state depending on the relative charge ratio parameter and (b) the segregation process is mediated by a first or
second order structural phase transition which strongly influences the magic cluster properties of the system.

DOI: 10.1103/PhysRevE.83.041136

I. INTRODUCTION

In recent years, clusters of charged particles confined
in traps have attracted considerable attention due to their
successful applicability as a physical model to different
important systems. As examples of such systems, we can
site electrons in quantum dots [1] or on the surface of
liquid helium [2], vortices in superfluids [3], ion traps [4],
confined ferromagnetic particles [5], colloidal particles in
circular traps [6], and charged dust particles in plasma traps [7].
Such finite size charged clusters also resemble Thomsons
“plum-pudding” model for the atom [8].

Only recently, the first experimental realization of a spher-
ical three-dimensional cloud of monodisperse dust particles
was realized [9]. Such an experiment was able to overcome
the gravitational forces which usually lead the dust particles
to form a quasi-two-dimensional (2D) structure. To realize a
three-dimensional (3D) configuration a thermophoretic force
was applied to compensate for gravity in combination with the
plasma-induced electric field and a lateral external potential
which results in a parabolic confinement. Such systems were
named “Coulomb balls.” Theoretical investigation of structural
properties and melting behavior in 3D Coulomb balls are
reported in Refs. [10-15].

Experimental realization of 3D isotropically confined bi-
nary systems must be possible both in ion traps and dusty
plasma experiments. In the latter case, the most appropriated
interparticle interaction potential to be considered would be the
Yukawa potential. However, we would expect that in various
limits our results would be valid to the case of a 3D binary
Yukawa system.

Charged particles forming large 3D isotropic clusters
arrange themselves in two different forms [14]. The center
of the cloud is characterized by a body-centered cubic lattice,
while particles close to the border form concentric spherical
shells, and on the shell’s surface particles create a hexagonal
lattice with few dislocations and disclinations.
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On the other hand, small 3D systems are formed by
concentric and equally spaced shells carrying a specific
number of particles. The number of shells depends on the
total number of particles and in general, the number of shells
increases with the number of particles. The ground state
configuration of systems up to 12 particles consists of a single
shell. These configurations in fact form three-dimensional
regular polygons. From N = 13 up to 60 the arrangement
of particles in the ground state (GS) configuration form two
shells except for the clusters with N = 58 and 59 particles. For
systems larger than 60 particles, ground state configurations
start to appear with three shells [15].

Moreover, among the possible GS configurations there are
few “magic” clusters whose shells obey an icosahedral or
octahedral symmetry [15]. The latter alters the mechanical
stability of the clusters, which leads to an enhanced value
of the intrashell melting temperature. For a review about the
dynamical and structural properties of 3D small clusters see
Refs. [11,13,15,16].

The statical and dynamical properties of 2D systems
consisting of two species’ particles is well understood. For
example, it was found in Refs. [17,18] that the charge ratio
can function as an extra mechanism to adjust the value of
the inter-ring melting temperature [19]. This results from the
possibility of bringing together (apart) the internal and external
rings of a 2D cluster and consequently increase (decrease)
the commensurability between distinct rings. As a result,
they observed variations in the melting temperatures of the
binary clusters, with increased melting thresholds for intershell
rotation and intershell particles when the symmetry of the inner
cluster and the outer ring are commensurate. The latter was
also found in Ref. [17] from a normal mode analysis.

In the present paper, we expand previous investigations
[17,18] by considering small size systems consisting of
particles of two different species, having different charges
which are confined by an isotropic 3D potential. Because of
the higher dimensionality of the 3D system, different physics
are expected as compared to the 2D, 1D, and OD counterparts.
We considered N4 and Np number of particles of species
A and B which have a Q4 and Qp charge, respectively.
The physical properties of the system are determined by the
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parameters 8 = Qp/Q4and x = Ng/N with N = Ny + Np
the total number of particles. Out of a few studies devoted
to 3D systems of different-species particles, we would like to
make note of two works: (1) Ref. [20] which considered a
system with N = 190 particles and verified the existence of
phase segregation induced by the size particles differences and
(2) Ref. [21] which has shown for systems with unscreened
Coulomb interactions containing 20 288 and 100 000 particles
that the mixture of different components presents a stable
configuration only if the particles of different species have the
same mass-to-charge ratio. In contrast to the latter references,
we devoted, in this paper, special attention to the investigation
of structural phase transitions happening in small size systems,
i.e., systems up to 38 particles.

We found that the two particles’ species segregate into
distinct shells. Moreover, we show in detail how magic cluster
properties depend on the ratio of the number of distinct kinds
of particles and the total number of shells in the cluster. We try
to determine if a 3D binary system is able to exhibit intershell
commensurability such as its 2D counterpart.

This paper is organized as follows. In Sec. II, the phys-
ical model and the numerical approaches are presented. In
Secs. III A and IIIB we present our results for systems
with small and large values of x, respectively. This latter
investigation is generalized to any value of x in Sec. IV, while
Sec. V considers the properties of magic clusters for systems
with two shells. Finally, in Sec. VI we present our conclusions.

II. THEORETICAL MODEL

We study a 3D model system of N charged particles in an
isotropic confinement potential, interacting through a repulsive
Coulomb potential. We consider two species of particles A
and B having a charge Q 4 and Q p, respectively. The potential
energy of the system is given by
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where €p and m are, respectively, the dielectric constant and the
particle mass, r; = (x;,y;,z;) is the coordinate of the ith parti-
cle, and N4 and Np are the total number of particles, respec-
tively, for the systems of type A and B. N = N4 + N is the
total number of particles and wy is the confinement frequency.
We rewrite the potential energy (2) in dimensionless form
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where we defined the ratio of charges 8 = Q g/ Q 4 and express
the coordinate and energy, respectively, in the following units:
ro = (2Q§/meow())1/3 and Eg = (ma)g Qi/263)1/3. All our
numerical results will be given in these units.
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To obtain the stable configurations we used the Monte Carlo
simulation technique supplemented with the Newton method
in order to speed up the computation and to increase the
accuracy of the found energy value (see Ref. [19] for details).
By starting from a large number of different random initial
configurations we are confident that we found the ground state
configuration as long as the number of particles N is not too
large, i.e., roughly N < 60. Depending on the total number of
particles, between several hundred to several thousand random
initial configurations were generated. The linear dynamics of
the cluster was studied by investigating its normal modes.

The eigenfrequencies are the square root of the eigenvalues
of the dynamical matrix

H, v 3
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where {ro”,a =x,y,z;i = 1,...,N} are the positions of the

particles in a stable configuration.

III. ONE SHELL SYSTEM

Small isotropically confined systems of charged classical
particles are interesting toy models that exhibit a rich variety
of properties related to finite size effects. In this section we
investigate the effect of the charge ratio 8 = Qp/Q4 and the
ratio between the different number of particles x = Ng/N on
the GS and the eigenfrequencies of a few representative small
systems.

In order to avoid a complicated analysis but still acquire
satisfactory knowledge of mechanical processes induced by
the charge ratio parameter we first investigate relatively small
systems with only N = 12 particles. It has already been
known for some time [22] that the GS configuration of a
monodisperse (8 = 1) system with N = 12 particles forms a
magic cluster. Magic clusters with one shell have an enhanced
mechanical stability which is reflected in a large value of the
lowest nonzero eigenfrequency and large melting temperatures
[13,15,19].

A. Small value of x

We start by investigating the influence of the charge ratio
parameter 8 by considering systems with a relatively small
number of particles of the B specie. Figure 1(a) shows the
eigenfrequency spectrum for the system with N = 12 particles
and x = 0.167 (i.e., Ny = 10 and N = 2) as functions of
the charge ratio. Notice that for 8 = Qp/Q4 = 1 the normal
modes are highly degenerate which is typical for symmetric
configurations, i.e., magic clusters. We can see that of the
total of 36 normal modes present in any 3D system with N =
12 confined particles, there are only ten different values for
the eigenfrequencies. However, even a small decrease of the
charge ratio 8 disturbs the symmetry of the cluster and the
degeneracies in the frequencies are lifted [see Fig. 1(a)]. This
fact indicates that properties of magic clusters are strongly
sensitive to the charge ratio.

When further decreasing 8, one notices that at the critical
value B, = 0.879 there is an abrupt discontinuity of the
eigenfrequencies [see the black downward arrow in Fig. 1(a)],
which corresponds to a structural phase transition [23]. In
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FIG. 1. The eigenfrequency spectrum (a) and the radial position
(c) of the different particles as functions of the charge ratio 8 for
the system with N = 12 and x = 0.167 (i.e., Ny = 10 and Ny = 2).
(b) and (d) are the same but for the system with N = 12 and x =
0.833 (i.e., Ny = 2 and Nz = 10). The inset in (d) shows in detail
the eigenfrequencies’ dependence w for values of the charge ratio
parameter close to the critical value B, = 0.380. The numbers in
(c) indicate how many particles have the same radius. In (c) and
(d) the black and gray curves present, respectively, the radius of
particles of types A and B.

order to reveal the nature of this transition, we calculated the
first derivative of the energy E with respect to the charge
ratio 8. The latter is shown in Fig. 2(a). The first derivative
is discontinuous at the critical point 8, = 0.879 which shows
that we have a first order structural phase transition.

The distribution of particles along the radial direction is
strongly sensitive to the charge ratio parameter around this
first order structural phase transition as we can see in Fig. 1(c).
The latter figure displays the distance r of the particles from
the center, as a function of §. Initially, for a decreasing value
of B, the one shell configuration gradually forms a set of five
subshells. The two B particles, which have the same radius,
move toward the center [gray curve in Fig. 1(c)]. The latter
is shown in some detail in Fig. 2(b), i.e., the four subshells
formed by particles of the A type [four black curves within
the gray region in Fig. 2(b)] and the two particles of the
B type having the same radius [gray curve in Fig. 2(b)].
Eventually, when the charge ratio parameter achieves the
critical value B, = 0.879, one of the B particles jumps to the
center.

Most importantly, for decreasing values of the charge
ratio parameter, the first nonzero eigenfrequency decreased
abruptly at the critical point 8, = 0.879, i.e., from w; = 0.61
to w_ = 0.19, which are indicated, respectively, by the gray
and black arrows in Fig. 1(a). We use the subscripts (+)
and (—) in o to indicate the first nonzero eigenfrequency
at a value of B slightly larger and smaller than the critical
charge ratio parameter S,.. From the latter fact we can conclude
that for 8 > B. = 0.879 [gray region in Figs. 1(a) and 1(c)]
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FIG. 2. For the system with N = 12 particles and x = 0.167,
(a) and (c) [(d) and (e)] display the first (second) derivatives of the
energy E with respect to  while (b) shows a zoom of Fig. 1(c).
(f) displays the first derivative of the energy E with respect to the
charge ratio parameter B for the system with N = 12 particles and
x = 0.833.

the system still exhibits magic cluster properties, while for
B < B. = 0.879 these properties are completely lost.

Additionally, note also that the radius of the particles
belonging to the subshells of the system with N = 12 and
x = 0.167 also passes though a plastic deformation at the
value B, = 0.686 [see the upward gray arrow in Fig. 2(b)
which is a zoom of Fig. 1(c)]. As we can see from Figs. 2(c)
and 2(d), i.e., the first and second derivatives of the energy with
respect to the charge ratio parameter 8, respectively, there
is no discontinuity for values of the charge ratio parameter
close to the critical point B, = 0.686. However, we can
see clearly from Fig. 2(d) that the third derivative of the
energy with respect to the charge ratio parameter will be
discontinuous at the critical point S, = 0.686 (minimum of the
curve) which indicates a structural phase transition of the third
order.

Figure 3 shows plots of the clusters’ configuration for a
few different values of B, where black and red (gray) balls
indicate, respectively, particles of type A and B, and bonds
between particles of the same type are drawn only to enhance
visualization. The clusters for 8 = 0.9 and 0.8, i.e., before and
after the first order structural phase transition that occurs at
B. = 0.879, are shown, respectively, in Figs. 3(c) and 3(b).
Notice that the GS configuration of Fig. 3(c) is still formed by
one single (quasi-) shell, while after the transition, one particle
moves to the center of the cluster, as shown in Fig. 3(b).
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FIG. 3. (Color online) Ground state configurations for the system
with N =12, x = 0.166 (first row), x = 0.833 (second row) and
different values of the charge ratio parameter § as indicated in figures.
The black and red (gray) balls represent, respectively, particles of
the type A and B and bonds between balls are only to enhance
visualization.

The system undergoes a second structural phase transition
at . = 0.491. The latter transition corresponds to a reorgani-
zation of particles belonging to the external shell [see the black
upward arrow in Fig. 2(b)] where the number of subshells in
the external shell decreases discontinuously from 5 to 3. The
first derivative of the energy as a function of § is not presented
here but it is discontinuous at the critical value 8. = 0.491.

Three-dimensional finite systems of binary charged parti-
cles also undergo structural phase transitions of the second
order. For the latter case, the first derivative of the energy
with respect to the charge ratio remains continuous while its
second derivative exhibits a discontinuity. Such a transition
can be seen, for example, at the critical value B, = 0.6, as
demonstrated by the second derivative of the energy with
respect to B in Fig. 2(e). This is a continuous transition
mediated by the softening of a normal mode, i.e., one of the
eigenfrequencies decreases to zero as shown in Fig. 1(a).

Note that this second order structural phase transition at
Bc = 0.6 results in an enhancement of the structural order of
the whole cluster, since (1) the two internal particles move
toward a position with the same distance r = 0.32 from the
center of the cluster as shown in Fig. 1(c) and (2) the number
of subshells belonging to the external shell is reduced from 7
to 5 [see the gray downward arrow in Fig. 2(b)].

Figure 3(a) shows the cluster configuration of the GS for
B =0.5, ie., just after the second order structural phase
transition that occurs at B, = 0.6. Note that the two less
charged particles [red (gray) balls] are located in the interior of
the cluster and are topologically separated from the rest of the
particles, therefore it becomes evident that decreasing g leads,
as a final result, to a topological phase segregation between
particles of different species A and B.
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B. Large value of x

In the previous section we demonstrated that for systems
with a small value of the relative number of different types of
particles, i.e., x = 0.167, as a function of 8, structural phase
transitions are found of first and second order. Furthermore,
as the charge ratio parameter 8 decreases, the less charged
particles (particles of specie B) segregates from the more
charged particles (particles of specie A). Such a phenomenon
of particle segregation was found to modify the magic cluster
properties of the system, which became evident by the large
drop of the first nonzero eigenfrequency that was mediated by
a structural phase transition of the first order. In this section, we
investigated if the latter physical phenomena are also present
in a system with a large x value.

Figure 1(b) shows the eigenfrequencies for the system with
N = 12 particles and x = 0.833,i.e., N4 =2 and Ny = 10,
as a function of the charge ratio parameter 8. Note that the
system undergoes a first order structural phase transition at
B, = 0.38, which is indicated by a discontinuity in both: the
eigenfrequencies [see the black downward arrow in Fig. 1(b)]
and the first derivative of the energy with respect to the charge
ratio parameter 8 as shown in Fig. 2(f).

Note that for 8 > B, = 0.380 [gray region in Fig. 1(b)],
the cluster exhibits an arrangement which is reminiscent for an
icosahedral structure [see Fig. 3(f) for ], and no structural phase
transition is seen in this 8 region. Moreover, along this gray
region the first nonzero eigenfrequency decreases gradually
from w =0.66 to 0.39, when the charge ratio parameter
decreases from 8 = 1.00 to 0.38. The latter fact shows that
for x = 0.833 the system undergoes a continuous crossover
where the properties of magic cluster are reduced gradually as
the value of f is decreased.

When further decreasing 8 the GS configuration becomes a
highly symmetric structure [see Fig. 3(e) for 8 = 0.30] where
the positions of all particles of the B type converge to the same
radius r = 0.52 as shown in Fig. 1(d). This configuration has
a similar symmetry as the one found in magic clusters of
monodisperse anisotropically confined particles [24,25], i.e.,
the so-called multiple ring structures. In the latter case, the
cluster exhibits distinct properties, such as a large value of
the critical melting temperature and a large lowest energy
eigenfrequency.

Ultimately, note that for lower values of the charge ratio
parameter, i.e., for 8 = 0.1-0.4, the system passes through a
sequence of first order structural phase transitions which occur
at 8 = 0.37,0.24,0.23,0.21, and 0.12. The latter fact strongly
suggests that for a small value of 8 there will be a substantial
decrease of the melting temperature of the system [13,25]. A
typical configuration found within this latter region is shown
in Fig. 3(d) for 8 = 0.20.

C. Intermediate values of x

From the latter two sections we found that the transition
magic-to-normal cluster can occur via two distinct paths:
through an abrupt (first order) or a gradually (crossover)
transition for systems with extreme values of x, i.e., x =
0.167 and 0.876. In order to obtain general trends about the
magic-to-normal cluster transition, we extend in this section
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FIG. 4. Critical charge ratio parameter S, related to a first (opened
circle) and a second (closed circle) order structural phase transition
and (b) the lowest energy eigenfrequencies w, and w_ computed,
respectively, for a value of B slightly larger and smaller than the
critical charge ratio B.. Both quantities are plotted as a function of
the relative number of different types of particles.

our previous investigation by considering the magic cluster
with N = 12 particles for several values of .

Figure 4(a) plots the critical charge ratio parameter S,
related to first (opened circles) and second (closed circles)
order structural phase transitions as a function of x for the
one shell system with N = 12 particles. From Fig. 4(a) we
notice that for x < 0.5 the value of the critical charge ratio
parameter is relatively large, i.e., 8, >~ 0.9, while it drops to a
value smaller than 8, = 0.3 for x > 0.65. Additionally, notice
that as the charge ratio parameter g is decreased from 1.0 to
0.0 for systems with x < 0.60 (x > 0.60), the first structural
phase transition is of first (second) order.

Figure 4(b) displays, as a function of yx, the eigenfre-
quencies w4 and w_ obtained for values of the charge ratio
parameter, respectively, slightly larger and smaller than g..
Note that for the range 0.0 < x < 0.4 we have w; > 0.5
which indicates that for this interval of x and for 8 < . the
system exhibits magic cluster properties. The magic cluster
properties are lost for values of 8 smaller than the critical
charge ratio parameter as indicated by the small values of the
eigenfrequencies just after the transition, i.e., w_ < 0.40 for
x < 0.45. From the latter facts we can conclude that for small
values of y, i.e., for x < 0.45, the transition magic-to-normal
cluster is well defined and mediated by a structural phase

PHYSICAL REVIEW E 83, 041136 (2011)

FIG. 5. (Color online) Particles’ arrangement of the external shell
(first line) and the internal shell (second line) of the GS configuration
of the system with N = 38 particles; x; = 0.33 and x, = 0.0.
Configurations in the same column have the same critical charge
ratio parameter 8 which are given in the figures. In the top panels all
particles are of the same type, and red (gray) and black balls represent,
respectively, five- and sixfold particles. On the second line, particles
of the A and Btypes are represented, respectively, by black and red
(gray) balls. Bars between the different balls are used to enhance
visualization.

transition of the first order. Note that we cannot conclude the
same for systems with larger values of x, since for y > 0.5 the
value of w, is already small, i.e., w; < 0.4. The latter facts
demonstrate that for a system with one shell and large values
of x the magic-to-normal cluster transition evolves gradually
as B decreases, i.e., without the mediation of a first order
structural phase transition.

IV. TWO SHELL SYSTEMS

In this section we investigate, for large size systems, e.g.,
clusters with two shells, the mechanisms that are responsible
for a particle’s segregation and its dependencies on the
parameter y. We consider the system with N = 38 particles
which is a magic cluster when § = 1.

The magic cluster structure of the system with N = 38
particles is formed by two concentric shells with arrangement
(6,32), i.e., 6 and 32 particles forming, respectively, the
internal and external shells [13,15]. Such a configuration,
for the monodisperse case, is shown in Figs. 5(d) and 5(h),
respectively, for the external and internal shells. Note that
the external shell [see Fig. 5(d)] has two types of particles
topologically distinct, i.e., five- and sixfold particles which are
surrounded by, respectively, five and six neighboring particles.
The five- and sixfold particles are represented by black and
red (gray) balls in Fig. 5(d) and we have 20 fivefold and 12
sixfold particles, respectively. Note that the fivefold particles
form an icosahedron, while each of the sixfold particles are
symmetrically positioned near the sides’ center of the polygon.
Such an arrangement results in a closure of the external shell
which is responsible for the large mechanical stability against
intrashell melting [13].

A detailed analysis was realized in Ref. [13] in order to
determine the normal mode related to the mechanical stability
of the external shell. As a result it was shown that the
fourth nonzero lowest energy eigenfrequency is related to the
mechanical stability of the cluster, i.e., the larger the fourth
nonzero lowest energy eigenfrequency, the more stable the
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FIG. 6. The top and bottom panels show systems with N =
38 particles and, respectively, the eigenfrequencies and the radial
positions of particles as a function of the charge ratio parameter
B. Figures in the same column are related to the same system.
From left to right, figures in the first, second, and third columns,
correspond, respectively, to the parts of parameters x; = 0.33 and
x2=0.0, xy = 1.0 and x, =0.125, and x; = 1.0 and x, = 0.938.
In (d), (e), and (f) the black and gray curves represent, respectively,
the radius of particles of types A and B.

external shell is. The eigenfrequency mode for a monodisperse
system, i.e., a system with g = 1.0, is equal to w = 0.43. It
has already known for some time that only the fourth nonzero
lowest energy eigenfrequency is important for the analysis of
the cluster stability [13].

For large systems we found that it is convenient to define
the ratio of the different types of particles x for each one of the
shells. Accordingly, x; = Ng) /N®_ where Ng) and N9 are,
respectively, the number of particles of type B and the total
number of particles in the ith shell, where “i”” can stand for 1
and 2, respectively, for the internal and external shells.

Figure 6 displays the eigenfrequencies (top panel) and the
radial position of each particle (bottom panels) against the
charge ratio parameter 8 for systems with N = 38 particles
and different values of x; and x,. For the system with
N = 38 particles, x; =0.33 and yx, = 0.0 [see Figs. 6(a)
and 6(d)], a first order structural phase transition occurs at
the two critical values 8. = 0.419 and 0.273 [see the black
downward arrows in Fig. 6(a)]. Moreover, note that the fourth
lowest nonzero eigenfrequency [see the leftward black arrow
in Fig. 6(a)], for the interval 0.419 = 8. < B < 1.0, has a
large eigenfrequency value, i.e., ® ~ 0.43. Figure 7 displays
the number of particles with five [N(5), see the gray circles
in Fig. 7] and six [N(6), see the black squares in Fig. 7] first
neighboring particles, i.e., the coordination number, computed
on the external shell as a function of 8. Notice that within
the latter interval, i.e., 0.419 = 8. < B < 1.0, the number of
five- and sixfold particles remains, respectively, equal to 20
and 12. Therefore we can conclude that, within the interval
0.419 = 8. < B < 1.0, the GS configuration still exhibits
magic cluster properties [13,15]. Figures 5(c) and 5(g) display,
respectively, the external and internal shells of the system
with N = 38 particles with x; = 0.33, x, = 0.0,and 8 = 0.5.
Accordingly, we can see that the external shells shown in
Figs. 5(c) and 5(d) have the same symmetry. However, we
cannot arrive at the same conclusion for the internal shell. The
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FIG. 7. The number of particles in the external shell, N (x), having
x nearest neighboring other particles in the same shell, as a function
of the charge ratio parameter g for the system with N = 38 particles;
x1 = 0.33 and x, = 0.0.

two particles of B type [(red) gray balls in Fig. 5(g)] and the
four particles of A type [black balls in Fig. 5(g)] have radii
equal tor = 0.2 and r = 0.8, respectively. Note that the latter
configuration is different from the octahedral configuration
found for B8 = 1.0, which is shown in Fig. 5(h). The latter
facts demonstrate that, for the parameters chosen above, the
internal shell is more sensitive to a decrease of the charge ratio
parameter than the external one.

From Figs. 6(b) and 6(e) we notice that the system with
x1 = 1.0, xp =0.125, and N = 38 passes through a large
number of first order structural phase transitions for values
of the charge ratio parameter close to one, i.e., roughly
B > 0.936.

For values of the charge ratio parameter larger than =
0.936 [indicated by the upward gray arrow in Fig. 6(e)] the
internal shell still has six particles of B type. Between the
values B = 0.936 [indicated by the upward gray arrow in
Fig. 6(e)] and 8 = 0.876 [indicated by the upward black arrow
in Fig. 6(e)], the internal shell has two extra particles of B type,
i.e., it has eight particles in total. Finally, for 8 < 0.876 all ten
particles of B type form the internal shell.

It becomes clear from Figs. 6(b) and 6(e) that the region
of successive first order structural phase transitions is related
to a mixed state where particles of A and B types coexist in
the external shell. Such a mixed state presents a huge number
of minimum energy configurations with energies very close to
each other, and therefore, a slight variation of the charge ratio
parameter results in a different GS configuration.

Despite this additional complication, i.e., the presence of a
vitric phase for values of 8 close to one, we still can conclude
that the migration of particles from the external shell toward
the internal one happens for a large value of the charge ratio
parameter, i.e., for 8 ~ 0.876. The latter is in concordance to
the fact that y, is relatively small, i.e., xo = 0.125. However, a
detailed analysis of the mechanical stability of the cluster based
on the fourth nonzero lowest energy eigenfrequency and the
number of first neighboring particles would be difficult due to
the presence of the vitric phase. Nevertheless, from Figs. 6(b)
and 6(e) we can clearly conclude that for 8 < 0.85 the external
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shell does not exhibit the closure condition found in a magic
cluster since it has only 31 particles.

Finally, Figs. 6(c) and 6(f) show, respectively, the eigenfre-
quencies and the radial position of particles for the system with
x1 = 1.0, x» =0.938, and N = 38 particles. From the latter
figures it is clear that there are no indications of structural
phase transitions of the first order related to the migration of
particles from the external shell towards the internal one. The
latter is in concordance of the fact that the relative number of
different types of particles on the external shell is relatively
large, i.e., x» = 0.938.

V. CONCLUSION

We considered a 3D binary system of two distinct types of
particles differing from each other by their charge, interacting
through a repulsive Coulomb potential, and trapped together
by an external isotropic confinement potential. The mechanical
stability of magic clusters in 3D systems were investigated as
a function of the clusters’ parameters: the charge ratio g, the
total number of particles N, and the parameter x;, which gives
the relative number of particles of B type in the ith shell.

Our investigation of the magic cluster properties of 3D
binary systems were focused on two representative systems:
the system with N = 12 and 38 particles, where the GS
configurations for 8 = 1.0 consist of one and two shells,
respectively, and both form a magic cluster.

We have found that independently of the cluster size de-
creasing, the charge ratio parameter ultimately brings particles
of B type towards the internal region of the cluster. As a result,
adecrease of the charge ratio parameter causes the segregation
of the different types of particles and leads the cluster to lose
its magic cluster properties. Such a magic-to-normal cluster
transition was found to be strongly dependent on the relative
number of different types of particles per shell.

For the system with N = 12 particles, i.e., the system with
one shell, and decreasing values of the charge ratio parameter
B, the magic-to-normal cluster transition was found to evolve
in two distinct ways depending on the magnitude of y: (1)
for small values of y, ie., x < 0.6, the magic-to-normal
cluster transition occurred through a first order structural phase
transition and (2) for large values of x, i.e., x = 0.7, the
magic-to-normal cluster transition evolved gradually without
the mediation of a first order structural phase transition.
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Therefore, for the system with one shell, a normal mode
analysis was able to determine precisely, the region of the
charge ratio parameter § within which the system exhibits
magic cluster properties. We could not develop the same
analysis for large systems with two shells due to the presence
of a vitric phase. Nevertheless, the magic-to-normal cluster
transition in large systems showed similar behavior to the
one found in small systems, i.e., for small values of y, the
magic-to-normal cluster transition occurs through a first order
structural phase transition, while for large values of y, there is
a continuous crossover.

For systems with small x; and a decreasing value of S,
there are not enough particles of B type belonging to the
ith shell to form by themselves an extra shell. Additionally,
we know that close to the monodisperse regime (8 =~ 1.0),
configurations having an isolated set of particles, i.e., those
that do not form a shell, will tend to be less energetically
favorable than configurations having all particles confined in a
shell. The latter is the reason for the first order structural phase
transition occurring for large values of B, i.e., for § ~ 1.0,
when the parameter y is small.

Additionally, we found that binary systems can exhibit a
particular configuration called multiple ring structure as shown
in Fig. 3(e). This kind of configuration was found to exhibit
magic cluster properties as shown in Ref. [25].

Finally, note that since the differences of energies between
the ground state of nonmagic clusters and the metastable
states are usually very small, metastable states can be easily
accessible via a slight increase of temperature. Therefore,
results involving structural phase transitions of the ground
state configuration of nonmagic clusters are, in general, not
valid for temperatures other than zero. However, note that
such a picture is different for magic clusters since they
hold large mechanical stability, which is responsible for
keeping the symmetry of the cluster even for temperatures
relatively large, i.e., for temperatures close to the melting
temperature.
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