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Network structures are reconstructed from dynamical data by respectively naive mean field (nMF) and
Thouless-Anderson-Palmer (TAP) approximations. TAP approximation adds simple corrections to the nMF
approximation, taking into account the effect of the focused spin on itself via its influence on other neighboring
spins. For TAP approximation, we use two methods to reconstruct the network: (a) iterative method; (b) casting
the inference formula to a set of cubic equations and solving it directly. We investigate inference of the asymmetric
Sherrington-Kirkpatrick (aS-K) model using asynchronous update. The solutions of the set of cubic equations
depend on temperature T in the aS-K model, and a critical temperature Tc ≈ 2.1 is found. The two methods for
TAP approximation produce the same results when the iterative method is convergent. Compared to nMF, TAP
is somewhat better at low temperatures, but approaches the same performance as temperature increases. Both
nMF and TAP approximation reconstruct better for longer data length L, but for the degree of improvement, TAP
performs better than nMF.
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I. INTRODUCTION

A present challenge in biological research is how to
deal with the data originating from the high-throughput
technologies. However, network theory provides a path to
structure the information. Vertices on a network are entities
and the links with numbers or other descriptions attached
to them are the interactions between the elements, for
example, in the biological system [1–5]. On different levels
of abstraction, information about the interactions between
element pairs is hence useful to understand the biological
system. As in [6], with distinct types of data, the challenge is to
discover gene modules and interactions between the modules
computationally. Finding interactions between entities from
observable data is an inverse problem called “network recon-
struction.” Many approaches have been developed to unveil the
underlying network topology, like iterative reverse engineering
method [7,8] and correlation-based method [9–12].

In this work, we use an idealized system to generate
“empirical” data with a computer and then try to reconstruct
the network structure of the system using these test data. With
a precisely known network, the assessments and comparisons
of inference algorithms, as in [13,14], are feasible. The system
is the kinetic Ising model, intended as a proxy for simultaneous
recordings from many neurons. The model is called “kinetic”
because, except for the fully symmetric case, it does not
correspond to an equilibrium statistical mechanics system.
In this setting, symmetric couplings between the entities are
not appropriate, as two neurons typically do not act on each
other in a symmetric way [15]. The properties of asymmetric
neural networks have been studied previously [16–18], but
not much work has been done in the context of network
reconstruction.

Here we extend a presently reported approach using dy-
namic mean field theory [19,20] from synchronously updated
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models to asynchronously updated models. The analysis
closely parallels that of [20], with the difference that data
are continuous in time. There are several reasons to consider
the asynchronous case instead of the synchronous case. First,
asynchronous updates converge to a stationary state which
for symmetric models is the Boltzmann-Gibbs equilibrium
measure, while this is not necessarily true for a synchronous
case. A second reason is that most plausible applications are
naturally asynchronous. For instance, the expression of gene
is not a synchronous process; the transcription of DNA and
the transport of enzymes may take from milliseconds up to
a few seconds. The refractory period for neuron is that in
which the neuron cannot respond to an input signal because
it is still processing or recovering from the previous input
signal [21]. It generally lasts for 1 ms in a neuron. Besides,
studies in [22,23] expect that the biological networks do not
have a completely synchronous update. Thus, we focus on the
asynchronous update Glauber dynamics.

Multineuron firing patterns can be observed with present
technologies up to thousands of neurons (recordings on retina
systems). Schneidman et al. [24] showed that the interactions
between neuron pairs could be reconstructed using only the
observed firing rates and the pairwise correlations. Recently,
questions have arisen whether the methods used in [24]
generalize to other data sets and if the approximations involved
can be improved [9–12]. There has also been significant
development on the more theoretical side [9,25–27].

A theoretical model, which can be used to generate the
frequencies of all possible spiking configurations, is the
well-known Ising model [9]. For a system of N neurons, it
is characterized by up to N2 parameters: N external fields,
θi , on each individual neuron, and N (N − 1) “links,” Jij ,
between each pair of neurons. In an asymmetric Sherrington-
Kirkpatrick (aS-K) model, Jij is not equal to Jji .

With the observed average firing rates and all pairwise
equal-time correlations in an empirical data set, maximum
entropy models can find a probability distribution which
maximizes the entropy of the data domain. This condition
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implies that the samples are drawn independently from the
same distribution. The state given maximum entropy is an
equilibrium state which has a probability distribution of Ising
form [28]. The quantities Jij and hi are then Lagrange multi-
pliers to satisfy the constraints that the ensemble expectation
values agree with sample averages in the data set. However, if
the data is generated by a dynamics, then samplings drawn
close in time are typically dependent. This is the extra
information which will be used here through the kinetic inverse
Ising reconstruction scheme. For the equilibrium version of
the inverse Ising problem, Roudi and collaborators review
and investigate several approximation methods [10,11,27]
with the maximum entropy method, arriving at the general
conclusion that all of them are unreliable in a dynamic setting,
if the systems are sufficiently large, and in most ranges of
parameters. Better inference methods on dynamic data are
called for.

A standard approach to sample the equilibrium Ising model
is Glauber dynamics [29,30], which we describe below. It
is, however, not restricted to symmetric Ising model, but
also well-defined for models with asymmetric couplings.
It is plausible that such a more general framework can
describe the underlying system not close to equilibrium and,
with asymmetric couplings, describe it better. Here we are
therefore interested in using a kinetic Ising model, typically
with asymmetric couplings, to reconstruct a neural network
dynamically.

The paper is organized as follows: We describe the aS-K
model and Glauber dynamics in Sec. II; the inference formula
with naive mean field (nMF) and Thouless-Anderson-Palmer
(TAP) approximation for the asynchronous case is derived in
Sec. III; the performances of the inference formula are given
in Sec. IV. Finally, we summarize the work in Sec. V.

II. ASYMMETRIC S-K MODEL AND GLAUBER
DYNAMICS

The aS-K model is a system of N spins, which models N

neurons with binary states (si = 1 for firing state; otherwise
si = −1). It is a fully connected model; that is, all neurons in
the system have interactions with each other. The interactions
Jij between each pair of neurons have the following form:

Jij = J s
ij + kJ as

ij , k � 0, (1)

where k measures the asymmetric degree of these interactions,
J s

ij and J as
ij are symmetric J s

ij = J s
ji and asymmetric J as

ij =
−J as

ji matrices, respectively. They both consist of identically
and independently Gaussian distributed random variables with
means 0 and variances:

〈
J s

ij
2〉 = 〈

J as
ij

2〉 = J 2

N

1

1 + k2
. (2)

The self-connections are avoided; that is, the on-diagonal
elements of J s

ij and J as
ij equal 0.

We now define the kinetic Ising model with asynchronous
updates. Let the joint probability distribution of spin states in

system at time t be p(s1,...,sN ; t), and let the master equation
of our model be written as

d

dt
p(s1,...,sN ; t) =

∑
i

ωi(−si)p(s1,..., − si,...,sN ; t)

−
∑

i

ωi(si)p(s; t), (3)

where ωi(si) is the flipping rate; that is, the probability for the
state of ith neuron changes from si to −si per unit time. The
flipping rates are given by Glauber dynamics as follows:

ωi(si) = 1

1 + exp
[
2βsi

(
θi + ∑

j Jij sj

)] , (4)

where, β is the inverse of temperature T . For convenience,
define Hi = ∑

j Jij sj + θi as the effective field on neuron
i, where θi is the external field of spin i. If the cou-
plings are symmetric (i.e., J as

ij = 0), then the steady state
of the dynamics given by Eqs. (3) and (4) is p(s1,...,sN ) ∝
exp(β

∑
i siθi + ∑

ij sisj Jij ). If the couplings are not symmet-
ric, then Eqs. (3) and (4) still have a steady state (under general
condition), but this state does not have a simple description.

With state for each neuron si , we can naturally define the
time-dependent means and correlations as follows:

mi = 〈si(t)〉;
(5)

Cij (t − t0) = 〈si(t)sj (t0)〉 − mimj .

From Eqs. (3) and (4), we get the equations of motion for
means and correlations as

dmi

dt
= −mi + 〈tanh[βsiHi(t)]〉.

(6)
d

dt
〈si(t)sj (t0)〉 = −〈si(t)sj (t0)〉 + 〈tanh[βHi(t)sj (t0)]〉.

For the second equation of Eq. (6), the term on the
left-hand side and the first term on the right-hand side can
be solved based on the empirical data produced by the
Glauber dynamics. However, the calculation of the average
value for tanh[βHi(t)sj (t0)] involves all kinds of higher-order
correlations and is therefore not easily expressed only in terms
of means and pairwise correlations. In order to solve the second
equation in (6), perturbative approximations for the second
term of the right-hand side are obviously needed. Here we use
the nMF and TAP approximations, respectively, to deal with
this tanh function.

III. NMF APPROXIMATION AND TAP APPROXIMATION

The simplest method to find out the parameters of the Ising
model from empirical data is the mean-field theory:

mi = tanhβ

(
θi +

∑
j

Jijmj

)
. (7)

Following recent practice, and to distinguish this first level of
approximation from others, we refer to it as naive mean field
(nMF). Let bi = θi + ∑

j Jijmj and rewrite Hi as

Hi = bi +
∑

j

Jij (sj − mj ) ≡
∑

j

Jij δsj + bi. (8)
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Expanding the tanh function with respect to βbi in Eq. (6),

d

dt
〈si(t)sj (t0)〉 + 〈si(t)sj (t0)〉 = mimj + β

(
1 − m2

i

)

×
( ∑

k

Jik〈δsk(t)δsj (t0)〉
)

,

(9)

and denoting the time difference t − t0 as τ , we have

d

dτ
Cij (τ ) + Cij (τ ) = β

(
1 − m2

i

)∑
k

JikCkj (τ ). (10)

In the limit τ → 0, we obtain the equation which we need to
infer the network couplings:

J = T A−1DC−1, (11)

where D = Ċ + C and Aij = δij (1 − m2
i ).

Equation (11) is a linear matrix equation with respect to
Jij . We can solve it directly.

Next, we turn to derive the inference formula with TAP [31]
approximation. If the Onsager term, that is, the effect of the
mean value of neuron i on itself via its influence on another
neuron j , is taken into account, then the TAP equation can be
obtained as [32,33]

mi = tanh

(
βbi − miβ

2
∑
k �=i

J 2
ik

(
1 − m2

k

))
. (12)

With

Ti = bi ± miβ
2
∑
k �=i

J 2
ik

(
1 − m2

k

) +
∑

j

Jikδsk. (13)

and Eq. (12), we expand the tanh function in Eq. (6) with
respect to

βbi − miβ
2
∑
k �=i

J 2
ik

(
1 − m2

k

)

to the third order and keep the terms only up to the third
order of J. Then the corresponding TAP inference formula
for Jij is obtained, which is formally the same as in the nMF
approximation:

J = T A−1DC−1. (14)

However, matrix A in a TAP formula is different:

Aij = δij

(
1 − m2

i

)[
1 − β2(1 − m2

i

)∑
j

J 2
ij

(
1 − m2

j

)]
. (15)

Equation (14) is a function of the couplings J, and therefore it
is a nonlinear equation for matrix J.

We try to solve Eq. (14) for J though two approaches. One
way is to solve it iteratively. We start from reasonable initial
values J 0

ij and insert them in the right-hand side of the formula.
The resulting J 1

ij is the solution after one iteration. This can be
again replaced in the right-hand side to get the second iteration
results, etc.,

J t+1 = T A−1(J t )DC−1. (16)

An alternative way is to solve it directly, as done for
the synchronous update model in [20], casting the inference
formula to a set of cubic equations. For Eq. (15), we denote

Fi = β2
(
1 − m2

i

)∑
j

J 2
ij

(
1 − m2

j

)
(17)

and plug it into Eq. (14), and then obtain the following equation
for Jij :

J TAP
ij = T ∗ Vij(

1 − m2
i

)
(1 − Fi)

, (18)

where Vij = [DC−1]ij . Inserting Eq. (18) into Eq. (17), we
obtain the cubic equation for Fi as

Fi(1 − Fi)
2 −

∑
j V 2

ij

(
1 − m2

j

)
1 − m2

i

= 0. (19)

With the obtained physical solution for Fi , we get the
reconstructed couplings J TAP as

J TAP
ij = J nMF

ij

1 − Fi

. (20)

It is worth mentioning that for the cubic equation (18), we
have three solutions with possible imaginary parts. Here we
study the real roots of the cubic equation and ignore those
solutions with imaginary parts. When three solutions are all
real ones, we take the smallest one.

We introduce � to measure the difference between the
reconstructed network structure and the original true ones;
that is, � is the reconstruction error

� =

√√√√∑
i �=j

(
J re

ij − J true
ij

)2

∑
(J true

ij )2
,

where J true
ij represents the true network couplings and J re

ij for
the reconstructed ones.

IV. THE PERFORMANCES OF NMF AND TAP
APPROXIMATION

As the starting point, we take a look at the number of
solutions given by nMF and TAP approximation. The nMF
gives a unique solution while the iteration method of TAP
starting from nMF provides 0 solution when the iteration is
divergent and 1 solution for convergence. However, the cubic-
equation method of TAP approximation always contains at
least one solution. We denote the constant term of Eq. (19)
as x,

x = −
∑

j V 2
ij

(
1 − m2

j

)
(
1 − m2

i

) . (21)

x is temperature dependent and negative as 0 < m2
i < 1. The

cubic equation (19) has three real roots when − 4
27 < x < 0.

We only consider the smallest one and indeed it provides
the most accurate Jij ’s (data are not shown). With x < − 4

27 ,
Eq. (19) has only one real root and other two complex
solutions with imaginary part which are discarded as they
have no physical meaning. In Fig. 1, we give the fraction
of cubic-equation set (19) (as i = 1,2,...,N , where N is the
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FIG. 1. (Color online) The fraction of three real roots for the cubic
equation set Eq. (19). A transition seems to occur around Tc = 2.1.
Here we find larger N , the transition curve sharper. The parameter
values: θ = 0.5, k = 1, L = 20 × 106.

system size), which contains three real solutions. When the
cubic-equation set at given T contains N real and 2 ∗ N

complex solutions, we say the fraction of three real roots equals
0 at this temperature point. As shown in Fig. 1, a transition
seems to occur around Tc = 2.1. For large system size and
T < 2.1, the solutions for Eq. (19) have only one real root
while for T > 2.1 they have three real ones. We plot this figure
for data length L = N × 106, so smaller N means shorter data
length, which explains why the curve of N = 20 is not quite
smooth.

For the iterative method of TAP approximation, we take
J nMF, the reconstructed J by nMF approximation, as the initial
input J 0. Following Eq. (16), we get J 1, J 2, . . ., iteratively. If
the change from iteration to iteration ε(t) is

ε(t) = 1

(N − 1)2

∑
i,j (i �=j )

∣∣J t
ij − J t−1

ij

∣∣, (22)

less than the threshold value 10−5, then we consider the
iteration is convergent and take J t

ij as the result from the
iterative method of TAP approximation. There exists an
interesting phenomena for the iterative method of TAP. The
method is divergent when the solutions of the cubic-equation
set contain complex roots but convergent when the solutions
are all real roots. Here we mention three possible causes for the
divergence. One originates from the frozen states of spin-glass
where m2

i = 1 and neither nMF nor TAP can work. A second
possible cause is that there exists a single fixed point of the
solution but the initial Jij ’s are drawn as J nMF

ij , which may be
a little bit far away from the true solutions for Jij ’s at low T ,
and the iteration cannot reach the fixed point. The last possible
cause may come from the fixed point which is unstable. Here
the given results are for θ = 0 and k = 1; there are no frozen
states for the given temperatures.

We next investigate the influence of T on the reconstruction
errors � in the case of a zero-external-field (θ = 0) aS-K
model (k = 1). We plot � with T for nMF and TAP in
Fig. 2. For TAP approximation, when the iterative method
is convergent, it produces the same results (blue triangles) as
the cubic-equation method (red circles). Both approximations

FIG. 2. (Color online) The reconstruction error � with tempera-
ture T for both nMF and TAP approximation. The other parameter
values: N = 20, data length L = 20 × 1010, external field θ = 0,
asymmetric degree k = 1. Black squares, nMF; red circles, cubic
equation method for TAP; blue triangles, iterative method for TAP.
Each data point is averaged on 10 realizations.

work better with temperature T increasing but approach the
same behavior when T goes higher. This is because for Eq. (15)
the Onsager term will approach 0 if T goes high enough;
that is, there will be no difference between nMF and TAP
approximation. As shown in Fig. 2, TAP always works better
than nMF before they approach the same results. However,
there is a noticeable area in which the curve by the cubic
equation method of TAP indicated with the letter “A” is not
as smooth as that of nMF. The reason is this temperature
interval is located in the critical area where the solutions of
the cubic-equation set Eq. (19) represent the coexistence of
two states: Some spins have three reals roots and the others
have only one real root. We tested also for systems with
different sizes and found that larger system size gives more
clear inflexions and closer to the critical temperature Tc, around
2.1. Such results are consistent with the results shown in Fig. 1.

Figure 3 illustrates the reconstruction errors for every Jij

with scatter plots of the inferred Jij ’s by nMF and TAP
approximations against J t

ij ’s. The left plot is for the data length
L = N × 105 and L = N × 107 for the right one. Here, the
system size N = 20 and the temperature T = 3.7 for this plot
where the iterative method of TAP is convergent. The scatter
plot shows that both nMF and TAP perform better for larger L.
As shown in both the left panel and the right panel of Fig. 3, the
data points for J TAP

ij ’s inferred by cubic-equation method are
almost covered by that for J TAP

ij ’s inferred by iterative method,
especially for L = N × 107.

At last, we see how the data length L works on the
reconstruction error � in the case of external field θ = 0. For a
system with size N , we find the following condition when the
data length for asynchronous case L and that for synchronous
case L′ meet: L = N ∗ L′; then the asynchronous update
showing comparable behavior (say, � versus data length)
with that in synchronous case [20]. In Fig. 4, � versus L
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FIG. 3. (Color online) The scatter plot for the reconstructed
couplings versus the true ones. The parameter values: N = 20,
temperature T = 3.7, external field θ = 0, asymmetric degree k = 1.
Black squares, inferred couplings using nMF versus J true

ij ; blue circles,
iterative equation method of TAP versus J true

ij ; red triangles, cubic
method of TAP versus J true

ij .

for both nMF and TAP with asynchronous update are plotted
at a given temperature T = 8, where the iterative method of
TAP is convergent. Both nMF and TAP reconstruct better with
increasing L; that is, � decreases as L increases. For short
data length, say, L < N × 107, nMF and TAP approximation
produce almost the same reconstruction error. However, TAP
works better than nMF when L > N × 108. Here again we find
the data points for cubic-equation method of TAP are covered
by those from an iterative method of TAP.

The above results are general to different system size N .
The performances for nMF and TAP are also compared with
nonzero external field θ �= 0. We find there exists a frozen
state at low testing temperature where neither nMF nor TAP
can work.

V. CONCLUSION

We studied the network inference using asynchronously
updated kinetic Ising model. Two approximations, nMF and
TAP, are introduced to infer the connections and connection
strengths in the network. We have found the transition of the
solutions’ type for the cubic equation method of TAP with
critical temperature Tc ≈ 2.1. We have implemented the TAP
approximation as two different schemes: the cubic scheme and
the iteration scheme. For a large system, the Tc seems to be the
lowest starting temperature point for the TAP iterative method
to converge.

Comparing our work with [20], the only difference is
the update rules of the Glauber dynamics applied on the
aS-K model. The synchronous update is used in [20] while
asynchronous update is used in our work. There are two
similarities between synchronous and asynchronous update

FIG. 4. (Color online) Reconstruction error � versus the data
length L for nMF and TAP approximation. The other parameter
values: N = 20, temperature T = 8, external field θ = 0, asymmetric
degree k = 1. Black squares, nMF; blue circles, iterative equation
method of TAP; red triangles, cubic method of TAP.

rules. The first one is for both updating rules: nMF and TAP
approximation reconstruct better with increasing temperature
T or longer data length L. The other one is that TAP works
better than nMF with long data length L at given temperatures
T . There exist differences between these two update rules also.
For instance, the improvement by TAP approximation in the
asynchronous case is not as much as that in the synchronous
case. Besides, in order to get comparable results with the
synchronous case, the data length L for the asynchronous case
should be at least N times longer than that for the synchronous
case.

This work is able to extend to deal with the biological data
from experiments, especially for data produced in continuous
time which correspond to the asynchronous updates. Given the
large amount of data needed to see a difference, we believe
that in most application scenarios, network inference using
asynchronously updated kinetic Ising models should work well
enough using nMF reconstruction and that the further step to
TAP reconstruction would not be needed.
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