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Irreversible thermodynamics in multiscale stochastic dynamical systems
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This work extends the results of a recently developed theory of a rather complete thermodynamic formalism
for discrete-state, continuous-time Markov processes with and without detailed balance. We investigate whether
and in what way the thermodynamic structure is invariant in a multiscale stochastic system, that is, whether the
relations between thermodynamic functions of state and process variables remain unchanged when the system is
viewed at different time scales and resolutions. Our results show that the dynamics on a fast time scale contribute
an entropic term to the internal energy function uS(x) for the slow dynamics. Based on the conditional free
energy uS(x), we can then treat the slow dynamics as if the fast dynamics is nonexistent. Furthermore, we show
that the free energy, which characterizes the spontaneous organization in a system without detailed balance, is
invariant with or without the fast dynamics: The fast dynamics is assumed to reach stationarity instantaneously
on the slow time scale; it has no effect on the system’s free energy. The same cannot be said for the entropy and
the internal energy, both of which contain the same contribution from the fast dynamics. We also investigate the
consequences of time-scale separation in connection to the concepts of quasi-stationarity and steady adiabaticity
introduced in the phenomenological steady-state thermodynamics.
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I. INTRODUCTION

Stochastic dynamics that can be described by a Markov
process embody a rich thermodynamic structure. Recently,
inspired by the discovery of the fluctuation theorem [1–7],
there has been a growing interesting in concepts such as the
Gibbs entropy and the free energy associated with Markov
processes [8–13]. The free energy of a stochastic dynamics is
intimately related to the relative entropy, which is of great im-
portance in the general theory of dynamical systems [14–16].

In the very recent paper [10], a rather complete thermo-
dynamics was presented for discrete-state, continuous-time
stochastic Markov systems with or without detailed balance.
The thermodynamics is characterized by (i) a balance equation
for the Gibbs entropy that includes a non-negative entropy
production rate σ , (ii) a decreasing free energy dF/dt � 0, and
(iii) a decomposition of σ into −dF/dt and the housekeeping
heat Qhk , which are both non-negative.

Assertion (iii) indicates that the total irreversibility has
two distinct origins: the spontaneous self-organization into a
nonequilibrium steady state and the continuous environmental
drive that keeps the system away from its equilibrium. These
terms respectively correspond to Boltzmann’s thesis and
Prigogine’s thesis [10]. For systems in a nondriving environ-
ment, detailed balance holds. Then Qhk = 0, σ = −dF/dt ,
and the system relaxes to an equilibrium steady state with
σ = 0. The mathematical theory is an abstraction from an
earlier phenomenological study of nonequilibrium steady-state
thermodynamics by Oono and Paniconi [17].

For almost all applications of stochastic dynamical theories
in physics, chemistry, and biology there will be multiple time
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scales, often with a significant separation. Recall that in the
Gibbs formalism for equilibrium statistical mechanics the
conditional free energy plays a central role in applications:
One usually does not work with the pure mechanical energy of
a system; rather one works with a conditional free energy from
coarse graining and develops a partition function thereafter.
This paper focuses on the important issue of whether the
thermodynamic structure discussed herein is invariant in a
multiscale stochastic dynamical system or, in other words,
whether the relation between state and process variables
remains unchanged when the system is viewed at different
time scales.

We show that the dynamics on a fast time scale contributes
an entropic term to the internal energy function uS(x) for the
slow dynamics. The term uS(x) should be understood as the
conditional free energy. Based on uS(x), one can then treat
the dynamics on the slow time scale as if the fast dynamics is
nonexistent. Furthermore, we show that the free energy (which
characterizes the spontaneous organization in a system) is
invariant with or without the fast dynamics. Since the dynamics
on the fast time scale reaches its stationarity instantaneously
on the slow time scale, it has no effect on the system’s free
energy. The same cannot be said for the entropy and the internal
energy, both of which contain the same entropic contribution
from the fast dynamics. Since free energy equals internal
energy minus entropy, there is a compensation. Finally, we
study how the time-scale separation affects the concepts of
stationary and steady-adiabatic processes introduced by Oono
and Paniconi [17].

II. ADIABATIC APPROXIMATION

In this section we follow the idea of a quasi-steady-
state approximation, or singular perturbation [18–21], in a
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stochastic dynamics to perform an adiabatic treatment in a
generic Markovian stochastic process where separation of time
scales is possible. We find that the concept of conditional
probability provides a natural language in which to perform
this multiple-time-scale analysis.

Consider a Markov system whose state can be represented
by a dual vector (x,y), where variables x and y take
discrete values. Let p(x,y) be the probability of state (x,y)
and υ(x,y; x ′,y ′) be the transition probability per unit time
from state (x,y) to state (x ′,y ′). We further assume that
υ(x,y; x,y ′) � υ(x ′′,y ′′; x ′′′,y ′′′) for all y �= y ′, x ′′ �= x ′′′, and
(x ′′,y ′′) �= (x ′′′,y ′′′), that is, for any given x, the transition
y → y ′ is much faster than all transitions involving x ′′ → x ′′′.
If the sets of all possible values attained by x and y are finite,
the master equation (or forward Kolmogorov equation) for this
system can be written as

dp(x,y)

dt
=

∑
∀y ′

p(x,y ′)υ(x,y ′; x,y) − p(x,y)υ(x,y; x,y ′)

+
∑
x ′ �=x

∑
∀y ′

p(x ′,y ′)υ(x ′,y ′; x,y)

−p(x,y)υ(x,y; x ′,y ′). (1)

By adding the above equation over all values of y and taking
into consideration that p(x) = ∑

y p(x,y) we obtain

dp(x)

dt

=
∑
∀y,y ′

p(x,y ′)υ(x,y ′; x,y) − p(x,y)υ(x,y; x,y ′)

+
∑
x ′ �=x

∑
∀y,y ′

p(x ′,y ′)υ(x ′,y ′; x,y) − p(x,y)υ(x,y; x ′,y ′).

Note that the first summand on the right-hand side of this
equation equals zero because each term in it is added and
subtracted once. After some algebra this equation can be
rewritten as

dp(x)

dt
=

∑
x ′

p(x ′)ϒ(x ′; x) − p(x)ϒ(x; x ′), (2)

with

ϒ(x; x ′) =
∑
y,y ′

p(y|x)υ(x,y; x ′,y ′). (3)

In Eq. (3) p(y|x) is the conditional probability defined as

p(y|x) = p(x,y)/p(x). (4)

In order to find the equation governing the dynamics
of p(y|x) we differentiate Eq. (4) to obtain the following
expression after some algebraic steps:

p(x)
dp(y|x)

dt
= dp(x,y)

dt
− p(y|x)

dp(x)

dt
.

Further substitution of Eqs. (1) and (2) into this equation
leads to

dp(y|x)

dt
=

∑
y ′

p(y ′|x)υ(x,y ′; x,y) − p(y|x)υ(x,y; x,y ′),

(5)

where we have neglected all terms multiplied by either
υ(x,y; x ′,y ′) [x �= x ′ and (x,y) �= (x ′,y ′)] or ϒ(x; x ′), based
on the fact that they are much smaller than υ(x,y ′; x,y).
Finally, from the same assumed time-scale separation, we can
make an adiabatic approximation and suppose that p(y|x) ≈
ps(y|x), where the conditional stationary distribution ps(y|x)
satisfies∑

y ′
ps(y ′|x)υ(x,y ′; x,y) − ps(y|x)υ(x,y; x,y ′) = 0. (6)

In summary, after performing the above-described adiabatic
approximation, the dynamics of p(x) are governed by Eq. (2),
where the effective transition probability from state x to state
x ′ is given by

ϒ(x; x ′) =
∑
y,y ′

ps(y|x)υ(x,y; x ′,y ′), (7)

while ps(y|x) is the solution of Eq. (6). Notice that the
adiabatic approximation that we have introduced here is
equivalent to that introduced by Pigolotti and Vulpiani [20].

III. THERMODYNAMIC STATE FUNCTIONS

A. Internal energy

Consider a molecular system that is irreducible and thus has
a unique long-time stationary probability distribution ps(x,y).
Further assume that the system is in contact with an isothermal
bath with a potential difference. Thus we can define, following
Ge and Qian [10], the energy function associated with state
(x,y) via the stationary distribution ps(x,y) as

u(x,y) = −kBT ln ps(x,y), (8)

where kB is the Boltzmann constant and T is the absolute tem-
perature. In systems with detailed balance ps(x,y) equals the
thermodynamic-equilibrium probability distribution pe(x,y)
and Eq. (8) is equivalent to the Gibbs grand canonical
ensemble. When detailed balance is not fulfilled, the above
definition of internal energy is related to the stochastic
potential studied by Kubo et al. [22].

From Eq. (8), the mean internal energy of the mesoscopic
state p(x,y) can be written as

U =
∑
x,y

p(x,y)u(x,y) = −kBT
∑
x,y

p(x,y) ln ps(x,y). (9)

By substituting Eq. (4) into Eq. (9), Eq. (9) can be rearranged
as follows:

U =
∑
x,y

p(x,y)u(x,y) =
∑

x

p(x)[uS(x) + uF (x)], (10)

where

uS(x) = −kBT ln ps(x),
(11)

uF (x) = −kBT
∑

y

p(y|x) ln ps(y|x).

041130-2



IRREVERSIBLE THERMODYNAMICS IN MULTISCALE . . . PHYSICAL REVIEW E 83, 041130 (2011)

Moreover, if we impose the adiabatic approximation stating
that p(y|x) ≈ ps(y|x),

uF (x) = −kBT
∑

y

ps(y|x) ln ps(y|x). (12)

These results imply that the internal energy can be split in
two components (U = US + UF ) corresponding to the slow
[US = ∑

x p(x)uS(x)] and fast [UF = ∑
x p(x)uF (x)] time

scales, respectively.

B. Entropy

The Gibbs entropy is defined as usual:

S = −kB

∑
x,y

p(x,y) ln p(x,y). (13)

Substitution of Eq. (4) into Eq. (13) leads to

S = −kB

∑
x

p(x) ln p(x) − kB

×
∑

x

p(x)
∑

y

p(y|x) ln p(y|x). (14)

Again we see that the entropy can be separated into slow and
fast components (S = SS + SF ) defined, respectively, as

SS = −kB

∑
x

p(x) ln p(x),

(15)
SF = −kB

∑
x

p(x)
∑

y

p(y|x) ln p(y|x).

If we enforce the adiabatic approximation p(y|x) = ps(y|x),
the fast component becomes SF = ∑

x p(x)sF (x), with

sF (x) = −kB

∑
y

ps(y|x) ln ps(y|x). (16)

By comparing Eqs. (12) and (16) we note that uF (x) = T sF (x)
due to the adiabatic approximation.

C. Free energy

From its definition, F = U − T S, and Eqs. (9) and (13),
the Helmoltz free energy is given by [10]

F = kBT
∑
x,y

p(x,y) ln

(
p(x,y)

ps(x,y)

)
= kBT

∑
x

p(x) ln
p(x)

ps(x)
+ kBT

×
∑

x

p(x)
∑

y

p(y|x) ln
p(y|x)

ps(y|x)
. (17)

In this case it is also possible to identify slow (FS) and fast
[FF = ∑

x p(x)fF (x)] components for the free energy, where

FS = kBT
∑

x

p(x) ln
p(x)

ps(x)
,

fF (x) = kBT
∑

y

p(y|x) ln
p(y|x)

ps(y|x)
.

However, the imposition of the adiabatic approximation
implies that fF (x) = 0 ∀x and thus FF = ∑

x p(x)fF (x) = 0.
This is in agreement with the fact that enforcing the adiabatic
approximation is equivalent to assuming that the fast-time-
scale distribution p(y|x) equilibrates instantaneously with the
slow one p(x) for every given x. Therefore, the system’s free
energy is invariant whether one considers or neglects the faster
dynamics, as long as there is a reasonable separation of time
scales.

D. Slow-dynamics perspective and
whole-system-level interpretation

First we note from Eqs. (12) and (16) that, once the adiabatic
approximation has been made, sF (x) = uF (x)/T . This term
should be regarded as the entropy of state x due to the fast
dynamics of variable y within the given x. Then Eq. (10)
indicates that the energy of the slow time scale obeys

uS(x) =
(∑

y

ps(y|x)u(x,y)

)
− T sF (x) = ũ(x) − T sF (x),

(18)

where the first term on the right-hand side, ũ(x), is the mean
internal energy of state x. Finally, in terms of ũ(x), one has the
canonical form of the thermodynamics for the slow variable

FS = F =
∑

x

p(x )̃uS(x) + kBT
∑

x

p(x) ln p(x). (19)

To gain more insight into the physical meaning of uS(x) we
shall discuss another feasible interpretation for this quantity
when x is a continuous variable. In such a case, uS(x) takes
the form of a potential of mean force. In fact, noting that
ps(x) = ∑

y ps(x,y), together with the definitions for u(x,y)
[Eq. (8)] and uS(x) [Eq. (11)], one has

uS(x) = −kBT ln
∑

y

exp[−u(x,y)/kBT ], (20)

while

d

dx
uS(x) =

∑
y exp[−u(x,y)/kBT ]∂u(x,y)/∂x∑

y exp[−u(x,y)/kBT ]
, (21)

which corresponds to the usual potential of mean force
definition [23].

IV. TIME EVOLUTION AND THERMODYNAMIC
FUNCTIONS

A. Time derivative of the thermodynamic functions

Following Ge and Qian [10], we shall differentiate the
expressions for U , S, and F [Eqs. (10), (14), and (17)] and
write the corresponding rates of change in terms of energy
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and entropy fluxes since understanding these fluxes under
different conditions provides valuable information regarding
the system’s dynamic and thermodynamic behavior. In par-
ticular, we are interested in investigating how the slow- and
fast-dynamics subspaces contribute to the energy and entropy
fluxes and whether their structures remain invariant from the
slow-dynamics perspective.

The time derivatives for U , S, and F are calculated in
the Appendix. After imposing the adiabatic approximation
p(y|x) ≈ ps(y|x) on the corresponding expressions we obtain

U̇ = −kBT

2

∑
x,x ′

[p(x ′)ϒ(x ′; x) − p(x)ϒ(x; x ′)] ln
ps(x)

ps(x ′)

− kBT

2

∑
x

p(x)
∑
y,y ′

[ps(y ′|x)υ(x,y ′; x,y)

−ps(y|x)υ(x,y; x,y ′)] ln
ps(y|x)

ps(y ′|x)
, (22)

Ḟ = −kBT

2

∑
x,x ′

[p(x ′)ϒ(x ′; x) − p(x)ϒ(x; x ′)]

× ln
p(x ′)ps(x)

p(x)ps(x ′)
, (23)

Ṡ = kB

2

∑
x,x ′

[p(x ′)ϒ(x ′; x) − p(x)ϒ(x; x ′)]

×
(

ln
p(x ′)ϒ(x ′; x)

p(x)ϒ(x; x ′)
− ln

ϒ(x ′; x)

ϒ(x; x ′)

)
+ kB

2

∑
x

p(x)
∑
y,y ′

[ps(y ′|x)υ(x,y ′; x,y)

−ps(y|x)υ(x,y; x,y ′)]
(

ln
ps(y ′|x)υ(x,y ′; x,y)

ps(y|x)υ(x,y; x,y ′)

− ln
υ(x,y ′; x,y)

υ(x,y; x,y ′)

)
. (24)

Before proceeding any further, notice that the formulas for
U̇ and Ṡ possess terms corresponding to the slow- and fast-
dynamics subspaces. Moreover, the slow- and fast-dynamics
terms in each equation have the same general structure. The
same is true when each (slow- or fast-dynamics) term is
compared with that on the right-hand side of the corresponding
equation in Ref. [10]. Finally, because of the adiabatic
approximation, the fast-dynamics terms in U̇ and Ṡ are equal,
except for the multiplicative factor T . Hence they cancel in
U − T S and, as a result, the time derivative for the free energy
(Ḟ ) is the same whether or not a fast time scale exists [24].

B. Detailed balance

So far we have obtained all of our results without making
use of the detailed balance condition. When the environment
of a stochastic system is not driving it out of equilibrium, the
system ultimately reaches an equilibrium steady state, which
is characterized by the fulfillment of detailed balance:

pe(x,y)υ(x,y; x ′,y ′) = pe(x ′,y ′)υ(x ′,y ′; x,y). (25)

Throughout the present section we denote the stationary dis-
tribution by pe(x,y), rather than ps(x,y), to emphasize that it
obeys detailed balance and thus corresponds to thermodynamic
equilibrium.

We consider the effective transition probability defined in
Eq. (3) and make use of Eq. (4) to arrive at the following
expression:

p(x)ϒ(x; x ′) =
∑
y,y ′

p(x,y)υ(x,y; x ′,y ′).

We assume now that the system is in equilibrium and substitute
Eq. (25) into the preceding equation to obtain

pe(x)ϒ(x; x ′) = pe(x ′)ϒ(x ′; x), (26)

that is, Eq. (26) is the form of the detailed balance condition
for the variable with slow dynamics, with the probability
distribution pe(x) = ∑

y pe(x,y). On the other hand, for the
fast-dynamics variable, it follows from Eq. (4) that detailed
balance implies that

pe(y|x)υ(x,y; x,y ′) = pe(y ′|x)υ(x,y ′; x,y). (27)

By employing the preceding results and following the
procedure introduced by Ge and Qian [10], we can decompose
U̇ , Ṡ, and Ḟ as follows:

U̇ = −Qd, Ḟ = −T σ, Ṡ = σ − Qd

T
, (28)

with

Qd = −U̇ = kBT

2

∑
x,x ′

[p(x ′)ϒ(x ′; x)

−p(x)ϒ(x; x ′)] ln
ϒ(x ′; x)

ϒ(x; x ′)
, (29)

σ = kB

2

∑
x,x ′

[p(x ′)ϒ(x ′; x)

−p(x)ϒ(x; x ′)] ln
p(x ′)ϒ(x ′; x)

p(x)ϒ(x; x ′)
. (30)

A comparison of Eqs. (28) and (30) with the equations
defining the dissipation heat and the entropy production rate
in Ref. [10], respectively, reveals that Qd and σ possess the
same mathematical structure as, and thus can be identified
with, those quantities.

When the system is in equilibrium with detailed balance,
U̇ = Ḟ = Ṡ = 0. Furthermore, it is straightforward to verify
that Qd = σ = 0 as well. We thus conclude from these results
that the thermodynamic equilibrium state is characterized not
only by the constancy in time of the thermodynamic state
functions U , F , and S, but also by the nonexistence of both
energy flow and entropy production.
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C. State functions for systems without detailed balance

We now return to Eqs. (22)–(24). We see by following
the procedure in Ref. [10] that, when detailed balance is not
fulfilled, the entropy rate of change can still be decomposed as

Ṡ = σ − Qd

T
, (31)

where the entropy production rate is now given by

σ = kB

2

∑
x,x ′

[p(x ′)ϒ(x ′; x) − p(x)ϒ(x; x ′)] ln
p(x ′)ϒ(x ′; x)

p(x)ϒ(x; x ′)

+ kB

2

∑
x

p(x)
∑
y,y ′

[ps(y ′|x)υ(x,y ′; x,y)

−ps(y|x)υ(x,y; x,y ′)] ln
ps(y ′|x)υ(x,y ′; x,y)

ps(y|x)υ(x,y; x,y ′)
,

while the dissipated heat rate is

Qd = kBT

2

∑
x,x ′

[p(x ′)ϒ(x ′; x) − p(x)ϒ(x; x ′)] ln
ϒ(x ′; x)

ϒ(x; x ′)

+ kBT

2

∑
x

p(x)
∑
y,y ′

[ps(y ′|x)υ(x,y ′; x,y)

−ps(y|x)υ(x,y; x,y ′)] ln
υ(x,y ′; x,y)

υ(x,y; x,y ′)
. (32)

Observe that both σ and Qd can be decomposed into two dif-
ferent terms with the same structure, each one corresponding
to the slow- and fast-dynamics subspaces.

Equation (31) is one of the fundamental postulates of
phenomenological irreversible thermodynamics [25]. By using
these definitions we can also rewrite U̇ and Ḟ as

U̇ = Qhk − Qd, Ḟ = Qhk − T σ, (33)

where

Qhk = kBT

2

∑
x,x ′

(p(x ′)ϒ[x ′; x) − p(x)ϒ(x; x ′)]

× ln
ps(x ′)ϒ(x ′; x)

ps(x)ϒ(x; x ′)
+ kBT

2

∑
x

p(x)

×
∑
y,y ′

[ps(y ′|x)υ(x,y ′; x,y) − ps(y|x)υ(x,y; x,y ′)]

× ln
ps(y ′|x)υ(x,y ′; x,y)

ps(y|x)υ(x,y; x,y ′)
.

This expression for Qhk can again be decomposed into two
terms corresponding to the slow- and fast-dynamics subspaces.
Observe that both terms have the same mathematical structure
as the definition for the housekeeping heat in Ref. [10]. Hence
we can identify Qhk with this quantity, originally introduced
by Oono and Paniconi [10,17] and interpreted as the energy
flow that has to be administered to the system to keep the
stationary state out of equilibrium.

By defining

A(x,y ′,y) = ps(y ′|x)υ(x,y ′; x,y) − ps(y|x)υ(x,y; x,y ′),
B(x,y) = ln ps(y|x),

it is straightforward to verify that A is antisymmetric in y and
y ′: A(x,y ′,y) = −A(x,y,y ′). Moreover, since ps(y|x) is by
definition the stationary conditional probability distribution
for variable y (conditioned to the value of x), it follows
from Eq. (5) that

∑
y ′ A(x,y ′,y) = 0 ∀x,y. Furthermore, as

a function of y and y ′, A is an antisymmetric matrix with all
its rows, and all columns, summing to zero. Then for any real
vector B with component B(·,y),

∑
y,y ′

A(x,y,y ′)[B(x,y) − B(x,y ′)]

=
∑

y

B(x,y)

( ∑
y ′

A(x,y,y ′)

)

−
∑
y ′

B(x,y ′)
(∑

y

A(x,y,y ′)
)

= 0. (34)

This result further implies that

Qhk = kBT

2

∑
x,x ′

[p(x ′)ϒ(x ′; x) − p(x)ϒ(x; x ′)]

× ln
ps(x ′)ϒ(x ′; x)

ps(x)ϒ(x; x ′)
+ kBT

2

∑
x

p(x)

×
∑
y,y ′

[ps(y ′|x)υ(x,y ′; x,y) − ps(y|x)υ(x,y; x,y ′)]

× ln
υ(x,y ′; x,y)

υ(x,y; x,y ′)
, (35)

σ = kB

2

∑
x,x ′

[p(x ′)ϒ(x ′; x) − p(x)ϒ(x; x ′)]

× ln
p(x ′)ϒ(x ′; x)

p(x)ϒ(x; x ′)

+ kB

2

∑
x

p(x)
∑
y,y ′

[ps(y ′|x)υ(x,y ′; x,y)

−ps(y|x)υ(x,y; x,y ′)] ln
υ(x,y ′; x,y)

υ(x,y; x,y ′)
. (36)

Finally, the expressions for U̇ and Ṡ transform into

U̇ = −kBT

2

∑
x,x ′

[p(x ′)ϒ(x ′; x) − p(x)ϒ(x; x ′)] ln
ps(x)

ps(x ′)
,

(37)

Ṡ = kB

2

∑
x,x ′

[p(x ′)ϒ(x ′; x) − p(x)ϒ(x; x ′)]

×
(

ln
p(x ′)ϒ(x ′; x)

p(x)ϒ(x; x ′)
− ln

ϒ(x ′; x)

ϒ(x; x ′)

)
, (38)

while Ḟ remains the same as in Eq. (23).
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Let us define

Qfast = kBT

2

∑
x

p(x)
∑
y,y ′

[ps(y ′|x)υ(x,y ′; x,y)

−ps(y|x)υ(x,y; x,y ′)] ln
υ(x,y ′; x,y)

υ(x,y; x,y ′)
. (39)

We can see from this definition that Qfast is an energy
flux related to a fast time scale. Observe that Qfast appears
as a summand in the expressions for Qd [Eq. (32)] and
Qhk [Eq. (35)], while Qfast/T appears in the expression
for σ [Eq. (36)], that is, the fast-dynamics contributions to
the dissipated heat, the housekeeping heat, and the entropy
production rate are identical (except for a factor T in the case
of σ ) in all three cases. Furthermore, Qfast cancels when Qd ,
Qhk , and T σ are subtracted, which explains why such a term
does not appear in the expressions for U̇ , Ṡ, and Ḟ .

D. Partial detailed balance with rapid pre-equilibrium

We assume that detailed balance is fulfilled by the fast-
dynamics distribution p(y|x), but not necessarily by p(x).
Then there is a rapid pre-equilibrium p(y|x) ≈ pe(y|x), with
pe(y|x) satisfying Eq. (27). If this is the case, then Qfast = 0.
Interestingly, the expressions for U̇ , Ṡ, and Ḟ do not change.
They are the same as in Eqs. (23), (37), and (38), except
that ps(y|x) is replaced by pe(y|x) whenever the former term
appears. This means that having or not having detailed balance
in the fast-dynamics space makes a difference for the energy
flows Qd and Qhk , as well as for the entropy production rate σ

(all of them are smaller in the first case because the contribution
due to fast dynamics vanishes); however, the existence or
nonexistence of a fast dynamics space makes no difference
for the rate of change of all thermodynamic state functions
(U , S, and F ).

E. Stationary distribution without detailed balance

To analyze the behavior of the process variables when the
system is at a steady state without detailed balance we define

A(x,x ′) = ps(x)ϒ(x; x ′) − ps(′x)ϒ(x ′; x),

B(x) = ln ps(x),

C(x) = us(x)/kBT .

Clearly, A(x,x ′) is antisymmetric [A(x,x ′) = −A(x ′,x)].
Moreover, since ps(x) is the stationary probability distribution
for variable x, it follows from Eq. (2) that

∑
x ′ A(x ′,x) = 0.

Hence, similar to the result in Eq. (34), we have∑
x,x ′

A(x ′,x)[B(x ′) − B(x)] =
∑
x,x ′

A(x ′,x)[C(x ′) − C(x)] = 0.

This equation, together with Eqs. (23), (37), and (38), further
implies that

T σ = Qd = Qhk = kBT

2

∑
x,x ′

[ps(x ′)ϒ(x ′; x)

−ps(x)ϒ(x; x ′)] ln
ϒ(x ′; x)

ϒ(x; x ′)
+ Qfast (40)

when p(x) = ps(x) and p(y|x) = ps(y|x). Finally, from
Eq. (40) we obtain the result U̇ = Ṡ = Ḟ = 0 in the stationary
state. Indeed, we can see from Eq. (17) that F = 0 in such a
case.

The results in the preceding paragraph corroborate the fol-
lowing: Once the system reaches the steady-state distribution,
all the thermodynamic state functions (internal energy, free
energy, and entropy) will remain constant. However, contrary
to an equilibrium steady state in which detailed balance is
fulfilled, a nonequilibrium steady state has nonzero fluxes,
given by Eq. (40). The equalities between the fluxes reflect both
the energy conservation and the isothermal Clausius equality:
On the one hand, to keep the system out of equilibrium, energy
has to be supplied to the system (Qhk), which is then dissipated
as heat (Qd ), while, on the other hand, entropy is produced
in the process of the conversion of useful energy to heat
(σ = Qd/T ).

V. QUASISTATIONARY AND STEADY-ADIABATIC
PROCESSES

The concepts of quasistationary and adiabatic processes are
central to thermodynamics. In systems where the stationary
state satisfies detailed balance, a quasistationary process can
be defined as a succession of states where σ = 0, while an
adiabatic processes is a succession of states satisfying Qd = 0.

Oono and Paniconi [17] generalized these concepts for
systems with a nonequilibrium steady state (NESS) by defining
the excess heat and the free-energy dissipation rate as

Qex = Qd − Qhk, (41)

θ = T σ − Qhk (42)

and noting that, in terms of these variables, the rates Ṡ, U̇ , and
Ḟ can be rewritten as [see Eqs. (31) and (33)]

Ṡ = θ − Qex

T
, U̇ = −Qex, Ḟ = −θ. (43)

A comparison of Eqs. (28) and (43) reveals that Qd and
σ in systems where the stationary state satisfies detailed
balance can be respectively identified with Qex and θ/T

in NESS systems. Based on this identification, Oono and
Paniconi [17] generalized the concepts of quasistationary and
steady-adiabatic processes for NESS systems as follows: A
quasistationary process is a succession of states satisfying
θ = 0, while a steady-adiabatic process is a succession of states
complying with Qex = 0. After introducing these concepts,
Oono and Paniconi [17] made extensive use of them in the
development of their phenomenological steady-state thermo-
dynamics. Here we investigate how a time-scale separation
affects these processes.

After substituting Eqs. (32), (35), and (36) into Eqs. (41)
and (42) we obtain

Qex = kBT

2

∑
x,x ′

[p(x ′)ϒ(x ′; x) − p(x)ϒ(x; x ′)] ln
ps(x)

ps(x ′)
,

(44)

θ = kB

2

∑
x,x ′

[p(x ′)ϒ(x ′; x) − p(x)ϒ(x; x ′)] ln
p(x ′)ps(x)

p(x)ps(x ′)
.

(45)
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Recall that the energy flux related to the fast time scale
Qfast [see Eq. (39)] appears as a summand in Qd , Qhk , and
σ . Hence it cancels out when subtracting these quantities
and so it does not show in either Qex or θ . Consequently,
θ has no contribution whatsoever from the fast-dynamics
subspace.

The fact that θ depends only on the slow-dynamics
subspace x means that the fast-dynamics subspace y does not
influence whether or not a given process is quasistationary.
This result is in agreement with the adiabatic approximation
we have made to reduce the system’s master equation,
which is equivalent to assuming that the fast-dynamics
subspace immediately equilibrates with the slow-dynamics
state x.

Regarding steady-adiabatic processes for NESS systems,
we see that, since Qex depends on the fast dynamics through
sF (x) [see Eqs. (16) and (44)], the fast dynamics cannot
be ignored while determining the adiabaticity of a given
process. This can be more clearly appreciated by noticing
that the following generalized Clausius equality is satisfied in
a quasistationary process:

Ṡ = −Qex

T
.

VI. CONCLUSION

In this work we have extended the results of a recent
paper [10] where a rather complete thermodynamic formalism
was introduced for discrete-state, continuous-time Markov
processes with and without detailed balance. Our main objec-
tive was to investigate whether the thermodynamic structure
is invariant in a multiscale stochastic system. By invariance
we mean that the relation between state and process variables
remains unchanged when the system is viewed at different
time scales.

We proceeded as follows. First we assumed that the states
of a system can be classified according to the propensities
of the transitions among them. More precisely, we supposed
that every state can be represented by a dual vector (x,y) and
that transitions involving changes in y alone are much more
probable than those involving changes in x or in both x and
y. Then we imposed an adiabatic approximation to deduce
a reduced master equation for the slower time scale. Finally
we analyzed the implications of this adiabatic approximation
on the thermodynamic formalism introduced by Ge and
Qian [10].

It was revealed that all thermodynamic variables and
their time derivatives can be separated in a very natural
way into contributions from the slow and fast time scales.
The only exceptions were the Helmholtz free energy and
its time derivatives, which only involve terms due to the
slower time scale. In other words, the Helmholtz free energy
(which characterizes the system spontaneous organization)
is invariant with and without a fast time scale. This hap-
pens because, having reached its stationarity, the fast-time-
scale probability distribution does not contribute to the
free energy. The same cannot be said about the entropy
and the internal energy, both of which have fast-dynamics
contributions.

The results discussed above are important because they
provide a framework in which to study the thermodynamics
of complex Markov processes where time-scale separation
is possible. An few examples where this framework may be
useful are: enzymatic reactions (in which one of the chemical
steps is much slower than the rest) or gene regulatory net-
works (where transcription initiation typically is an infrequent
process compared, for instance, with translation initiation and
post-translational modification of the resulting proteins). The
same results can also be interpreted from a more fundamental
thermodynamic perspective. We elaborate on these ideas next.
The dynamics on a fast time scale contribute an entropic term
to the energy function uS(x) for the slow dynamics. This
allows us to identify uS(x) as a free energy. Indeed, uS(x)
ends up being the conditional free energy, a concept used
extensively in equilibrium thermodynamics as one usually
works with a coarse-grained conditional free energy (not a
pure mechanical energy) and develops a partition function
thereafter. In contrast, entropy-enthalpy compensation has
been studied extensively in biochemistry [26,27]. The strong
form of this phenomenon occurs when variations in �H and
�S, caused by regular changes in some experimental variable
(excluding temperature), exhibit a linear correlation. In this
case �G will be small relative to the range of values expected
from the experiment.

As pointed out by Qian [24], internal energy is the
equivalent of enthalpy, while the Helmholtz free energy is
the equivalent of the Gibbs free energy in the types of systems
studied here. In that respect, entropy-internal energy com-
pensation in these systems is tantamount to entropy-enthalpy
compensation in isobaric ones; the effect of entropy-internal
energy compensation will be small changes in F . The insight
from the present work is that the compensating part of entropy
and internal energy is the contribution from fast dynamics, i.e.,
rapid fluctuations.

The expressions we derived for dU/dt and dS/dt contain
terms associated with the slow and fast time scales. However,
when the adiabatic approximation is imposed, the contribu-
tions from the faster time scale are equal, except for a factor
T in dS/dt [see Eqs. (22) and (24)]. As a consequence,
the expression for dF/dt includes only a slow-dynamics
term [see Eq. (23)], that is, we have entropy-internal energy
cancellation for the fast-dynamics contributions. In fact, it is
impossible to know whether or not a fast time scale exists
from the perspective of the Helmholtz free energy. These
results are in complete agreement with previous studies that
prove the existence of entropy-enthalpy compensation by
considering that, in response to a small perturbation, the
free-energy change of a stationary system is independent of
the system’s thermodynamic environment, while the entropy
and the internal energy changes depend on the environmental
constraints [26,27]. Recall that the adiabatic approximation
is equivalent to assuming that the fast-dynamics distribution
p(y|x) reaches its stationary value instantaneously for every
state x(t).
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APPENDIX: RATE OF CHANGE OF THE
THERMODYNAMIC STATE VARIABLES

After differentiating Eqs. (10), (14), and (17) we obtain the
results for the time derivatives of the internal energy,

U̇ =
∑

x

ṗ(x)[uS(x) + uF (x)] +
∑

x

p(x)u̇F (x)

= −kBT

2

∑
x,x ′

[p(x ′)ϒ(x ′; x) − p(x)ϒ(x; x ′)] ln
ps(x)

ps(x ′)

−kBT

2

∑
x

p(x)
∑
y,y ′

[p(y ′|x)υ(x,y ′; x,y)

−p(y|x)υ(x,y; x,y ′)] ln
ps(y|x)

ps(y ′|x)
,

the free energy,

Ḟ =
∑

x

ṗ(x)

(
kBT ln

p(x)

ps(x)
+ fF (x)

)
+

∑
x

p(x)ḟF (x)

= −kBT

2

∑
x,x ′

[p(x ′)ϒ(x ′; x) − p(x)ϒ(x; x ′)]

× ln
p(x ′)ps(x)

p(x)ps(x ′)
− kBT

2

∑
x

p(x)

×
∑
y,y ′

−[p(y ′|x)υ(x,y ′; x,y) − p(y|x)υ(x,y; x,y ′)]

× ln
p(y ′|x)ps(y|x)

p(y|x)ps(y ′|x)
,

and the entropy,

Ṡ =
∑

x

ṗ(x)[kB ln p(x) + sF (x)] +
∑

x

p(x)ṡF (x)

= kB

2

∑
x,x ′

[p(x ′)ϒ(x ′; x) − p(x)ϒ(x; x ′)]

×
(

ln
p(x ′)ϒ(x ′; x)

p(x)ϒ(x; x ′)
− ln

ϒ(x ′; x)

ϒ(x; x ′)

)
+ kBT

2

∑
x

p(x)
∑
y,y ′

[p(y ′|x)υ(x,y ′; x,y)

−p(y|x)υ(x,y; x,y ′)]

×
(

ln
p(y ′|x)υ(x,y ′; x,y)

p(y|x)υ(x,y; x,y ′)
− ln

υ(x,y ′; x,y)

υ(x,y; x,y ′)

)
.

In the derivation of the preceding equations we have taken into
consideration that∑

x

ṗ(x)uF (x),
∑

x

ṗ(x)fF (x),
∑

x

ṗ(x)sF (x) ≈ 0.

The demonstration of these last relations is straightforward
and follows from the fact that ν(x,y,x ′,y ′) ≈ 0 for all x �=
x ′, which is the basic assumption underlying the time-scale
separation.
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