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Fluctuation-dissipation relation for nonlinear Langevin equations
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It is shown that the fluctuation-dissipation theorem is satisfied by the solutions of a general set of nonlinear
Langevin equations with a quadratic free-energy functional (constant susceptibility) and field-dependent kinetic
coefficients, provided the kinetic coefficients satisfy the Onsager reciprocal relations for the irreversible terms
and the antisymmetry relations for the reversible terms. The analysis employs a perturbation expansion of the
nonlinear terms, and a functional integral calculation of the correlation and response functions, and it is shown
that the fluctuation-dissipation relation is satisfied at each order in the expansion.
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I. INTRODUCTION

Nonlinear Langevin equations are encountered in applica-
tions such as mode-coupling theories for supercooled liquids
[1,2], complex and polymeric fluids [3,4], dynamical critical
phenomena [5], and numerous others. Suppressing the position
and time (or frequency and wave vector) dependence of the
fields, the nonlinear Langevin equations have the general form
oV SF SF
rYale ®,,({1ﬁ})(wj F,,({lﬁ})&/fj + &, ey
where v; (i = 1,N) are the fields that are space and time
dependent, F is variously referred to as the free energy
functional or the entropy function, and it is usually written
in the form (suppressing position and time dependence again)

1 .
F= EZwix,-,-l({w})w,», @)
i,J

and the inverse of the susceptibility matrix XJI is symmetric.
In Eq. (1), the first term on the right is the “reversible” part,
where the matrix ®;; is antisymmetric, and the second term
is the “irreversible” part, where the matrix I';; is symmetric.
The last term on the right side of Eq. (1) is the noise, which
is assumed to be a random process with Gaussian distribution
whose correlation is a § function in time. The variance of
the noise distribution is related to the coefficient I';; in the
irreversible part of the evolution equation via the fluctuation-
dissipation theorem (FDT).

The Langevin equation, (1), is linear if the coefficients ©;;
and I';; and the susceptibility matrix x;; are independent of
the fields ;. In this case, the FDT is satisfied if the noise
correlation is related to the kinetic coefficient I';; in the
irreversible part of Eq. (1):

(&(1)E; (1) = 2kpTT;;8(t — 1), 3)

where kg is the Boltzmann constant and 7 is the absolute
temperature. In nonlinear Langevin equations, one source of
nonlinearity is the dependence of the coefficients ®;; and
I';; and the random noise correlations on the v fields. The
second source is the dependence of the susceptibility x;; on
the field variables. These are correctly formulated only if, at
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equilibrium, the fluctuation-dissipation relation between the
kinetic coefficients and the noise correlations are satisfied in
these equations.

One way to derive the macroscopic Langevin equations
is to use “coarse-graining” of the microscopic equations for
all the particles in the system, using the projection-operator
technique, for example. Since the microscopic equations
satisfy all conservation laws, it is expected that the macro-
scopic field equations will also satisfy the FDT. However,
strong approximations are usually made in the coarse-graining
procedure to arrive at a tractable set of field equations, and it is
not clear whether the macroscopic field equations also satisfy
the fluctuation-dissipation relations at equilibrium. For this
reason, it is important to have a framework to independently
demonstrate the relation between the correlation function and
the time derivative of the response function.

The nonlinear Langevin equations are difficult to solve,
in general, analytically or numerically. The evaluation of
correlation and response functions in perturbation expansions
of the nonlinear terms was facilitated by the development of
the Martin-Siggia-Rose [6] (MSR) formalism. This permits us
to evaluate renormalizations of the correlation and response
functions in a perturbative manner. In practical calculations,
approximate solutions are obtained by truncating the pertur-
bation expansions at some order in the expansion (usually
one-loop order). In these calculations, it is important to
demonstrate that the FDT is valid up to the order of truncation
in the expansion, since one is not concerned about terms
that are neglected. However, more fundamental questions are
whether the fluctuation-dissipation relation is valid up to all
orders in the expansion, and whether the relation between the
response function and the time derivative of the correlation
function is valid at each order in the expansion. Here, we
examine these issues using a functional integral formalism.

The MSR formalism was first used by Deker and Haake [7],
to prove that the FDT is valid at all orders in the perturbation
expansion for certain restricted classes of nonlinear Langevin
equations. It was shown that the relations between the MSR
correlation and response functions are satisfied to all orders
in perturbation theory for three specific classes of problems:
class A, where ®;; is 0 and I';; is field independent, while
xij can be field dependent; class B, where ©;; is nonzero
and both I';; and x;; are field independent; and class C, for
Hamiltonian systems without an irreversible part. There have
been many subsequent studies showing the validity of the
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fluctuation-dissipation theorem (FDT) relations [8—11] for a
specific nonlinear Langevin equation, particularly those for
interacting Brownian particles [12,13].

The MSR formalism was used by Miyazaki and Reichman
[14] to show that the FDT relation is valid to one-loop order
when X,-;l in Eq. (2) is field independent, and the coefficient I';;
has a contribution linear in fields ;. The authors realized the
difficulty of extending this to field-dependent x;; and observed
that fluctuation-dissipation relations may not be valid at each
order in the loop expansion in this case. Andreanov et al. [15]
showed that it is important to satisfy time-reversal symmetries
to preserve the FDT. The authors considered the particular
case of the fluctuating nonlinear hydrodynamics equation, (1),
and the equations for interacting Brownian particles [12,13].
In all of these cases, the focus has been on examining whether
a particular set of nonlinear Langevin equation, derived on
the basis of physical considerations, satisfies the fluctuation-
dissipation relations.

It is also of interest to ask the complementary question,
that is, What is the form of nonlinearities in coupled nonlinear
Langevin equations that will ensure that fluctuation-dissipation
relations are preserved at equilibrium? In the case of conserva-
tive nonlinearities proportional to ©;; in Eq. (1), the derivation
is usually on the basis of the Poisson-bracket relations (see,
e.g., the model H equations [5]), and consequently, these
can be shown to satisfy fluctuation-dissipation relations quite
easily. It is more difficult to solve equations where the kinetic
coefficients I';; and ©;; and the susceptibility x;; are field
dependent. Moreover, the noise correlations in Eq. (2) are also
field dependent in cases where the kinetic coefficients I';; are
field dependent, and this introduces more complications as
discussed below.

Here, we use the functional integral formalism [16] to
examine relations between correlation and response functions
in general nonlinear Langevin equations. This approach turns
out to be simpler and more natural for analyzing diagrammatic
perturbation expansions in comparison to the classical MSR
approach [6,17,18]. In this approach, conjugate “hatted” fields
are defined in a manner very similar to that in the MSR
approach, but there are small differences in the physical
interpretation of unhatted and hatted fields. The MSR approach
was used by Miyazaki and Reichmann [14] to build on the
earlier work of Deker and Haake [7], and they showed that the
fluctuation-dissipation relation is satisfied at one-loop order
for the case of the linear dependence of the kinetic coefficients
on the fields. In an earlier work [3], we examined the relations
between the correlation functions for the hatted and unhatted
fields using this formalism, and it was shown that relations
between the functional integral correlation and response
functions are satisfied to all orders in perturbations theory for
dissipative nonlinearities. Although not subsequently cited in
this context, this work [3] preceded, and was more general than,
that of Andreanov et al. [15] and Miyazaki and Reichmann
[14], because the relation between the functional integral
correlation and response functions was proved for a general
nonlinear Langevin equation with multiple fields and with no
restriction on the exponents in the nonlinear terms. In contrast,
the proofs of Miyazaki and Reichmann [14] were restricted
to one-loop expansions. Although the proof by Andreanov
et al. [15] was valid at all orders in the perturbation expansion,
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it was restricted to nonlinearity in the form of a three-leg
vertex for a nonlinear Langevin equation containing only one
field; this enabled the authors to prove the correlation-response
relations at increasing orders in the perturbation expansion
using induction.

Here, we build on these analyses and prove the fluctuation-
dissipation relations for the case of reversible and dissipative
nonlinearities. It is shown that the fluctuation-dissipation rela-
tions are identically satisfied, at each order in the perturbation
expansion, when the kinetic coefficients I';; and ©;; are field
dependent and the susceptibility y;; is field-independent. In
the opposite case, where I';; and ®;; are field independent
and y;; are field dependent, it is quite an easy exercise to show
that the fluctuation-dissipation relations are satisfied. The more
complicated case is where I';;, ©;; and y;; are field dependent;
it is almost certain that the fluctuation-dissipation relations are
not valid at each order in the perturbation expansion in this
case.

In equations where the kinetic coefficients I';; are depen-
dent on the field variables, there is the “Ito-Stratonovich”
paradox [19,20] in the interpretation of noise correlations.
If the random noise in Eq. (1) is a § function in time,
the field variable y; is a step function. Therefore, there is
ambiguity whether the value of the function v; to be used
in the kinetic coefficient I';; is before the step change (Ito
calculus), after the step change, or the average of the two
(Stratonovich calculus). The Stratonovich calculus is useful
for writing down the Fokker-Planck analog of the Langevin
equation, since it is possible to use the Novikov theorem.
Since we use the functional integral formalism [16] to relate
the correlation and response functions, it is more convenient to
use the Ito formulation because the Jacobian in the functional
integrals are constants. It should also be noted that the form of
Eq. (1) changes when the interpretation of noise correlations
is changed, and we use a form that is consistent with the Ito
formulation, which is slightly different from Eq. (1). This form
is determined from the condition that the averages of the fields
Y; are O at equilibrium, to remove any gauge ambiguities.

II. NONLINEAR LANGEVIN EQUATIONS

We use a quadratic free energy functional,
Fdyh =" / / vi(—K)x; KK (—K), @)
— JkJK
L]

The equilibrium probability distribution is given by
Pe({y) = Z" exp (=BF (). ®)
where the equilibrium partition function Zg is,

Zp = A exp (—BF(¥ ). ©)

where f v = I'L f D[] is the functional integral over the
¥ fields. The fields {y} are defined to have 0 equilibrium
averages,

(Yi)9 =2z fw Vi exp (—BF) (7)
= O,
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where the notation (-)*? is used for equilibrium averages as
defined above, to distinguish them from dynamical averages
defined a little later. The equilibrium correlation function is
given by

W0y (k)% = 25! /¢ Vi, exp(—BF)

= (x(K));;' 8k + K). (8)

In the reminder of the analysis, we set 8 = (kgT)~' =1
without loss of generality, since the susceptibility can always
be scaled by kg T. Here kp is the Boltzmann constant and 7 is
the absolute temperature.

It should be noted that in the free energy functional, Eq. (4),
all terms should necessarily have even time parity. That is, all
terms in the equation should remain unchanged under time
reversal (when the direction of time is reversed), even though
the fields ¥; could, in general, have either odd time parity
(sign of field changes when direction of time is reversed)
or even time parity (sign of field remains unchanged when
direction of time is reversed). One important implication of the
even time parity of the free energy functional is that all terms in
the quadratic approximation, Eq. (4), should contain products
of fields with the same time parity.

The general expression for the nonlinear Langevin equation
for the variables ; is

0 (x)
ot

__ . / §F  oTy({y}).x.x\1)
= /}; X]: (sz({‘/f},X,x ’I)SIﬁj(X/) al/fj(x/,t) )

oF
- f > (@U-({m,x,xcr)W) +Gi({Y),x00).
x’ j J

€))

In the above equations, the kinetic coefficients I';; ({/},x,X",7)
and ©;;({v},x,x,¢) are functions of the field variables y/;(x,1).
These coefficients also depend on time through the time
dependence of the field variables, as indicated in Eq. (9). The
second term in the first integral on the right side of Eq. (9)
is required, in the nonlinear Langevin equation, to ensure that
the relaxation rate, averaged over the equilibrium realizations
of the field variables, is 0 when the average values of the
field variables are 0. In the absence of this term, there will be
a nonzero relaxation rate even at equilibrium when the field
variables have 0 average. The Onsager reciprocal relations
require that

Fij({w}vxsx/vt) = Fji({w}9x/’xst)' (10)

The transport coefficients are local if the value of I';; at
position x depends only on the field variables at x. However, we
also account for the possibility that the transport coefficients
are nonlocal, so that the value of the coefficient at x depends
on the fields at other locations. The case of local transport
coefficients is a special case of the more general formulation
considered here.

The “reversible” nonlinearities on the right side of Eq. (9),
proportional to ®;;({1/},x,X/,1), arise from the Poisson bracket
relations in the microscopic equations. The convective term in
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the convection-diffusion equation, (V.(vc)) (where v is the
velocity and c is the concentration), as well as the reciprocal
terms in the model H equations [5] for the concentration
field, are examples of reversible nonlinearities. These are
antisymmetric:

®ij({w}vxvx/st) = _®ji({w}sx/vx7t)' (ll)

In addition, these terms have opposite time parity to the
field ;, that is, the term ©;;(8F/8;) reverses sign on
time reversal if 1; is invariant under time reversal, and vice
versa. The antisymmetry in Eq. (11), as well as the time
reversal symmetry, will be important later in the diagrammatic
expansion.

The fluctuating force G;({1},x,£)0(¢) is modeled as Gaus-
sian white noise with 0 average. The term 6 represents the
rapidly fluctuating component in time,

(0(1)) =0, (12)
OO =8t — 1), 13)

where the average is over all possible realizations of the Gaus-
sian noise distribution. G;({y/},x,#) is the noise amplitude,
which is also a function of time, through the time dependence
of the field variables ;. This is related to the transport
coefficients,

G:({y}x,0G;({y}1.x.0) = 2I';({y ) x.x\0). (14)

There is subjectivity in the value of the field variables v
to be used in the above expression for the noise amplitude.
Since the noise is a § function in time, Eq. (9) indicates
that the field variables i are step functions. Due to this,
the value of the variable ¥ to be used in Eq. (14) could
be either just before the step change (Ito formulation), just
after the step change, or the average of the two (Stratonovich
formulation). Here, we use the Ito formulation where the value
of ¢ before the step change is used, since the Jacobian is field
independent.

The transport coefficient I';;({/},x,X’,¢) is expanded in a
series in the fields i as follows:

Lii{y}xx,r)

= 1:‘(X - X/) + Z F(l)(X,X/,X,n)I/fm(Xm,t) + -

Xm

+ Z / Fi(;r)n,,,z(X,X/,Xz,Xm, ce X, 1)
m,n,...,z Y X0Xm . Xg
Xw](xlvl)Wm(Xm,t)"'Iﬁz(xz,t)—k...7 (15)

where the coefficients Ff’]«’,)nz are now independent of time
and depend only on positions. We assume that the Onsager
reciprocal relations are valid at each order in the expansion,
that is,

re

ijm...

Lx) =TI

/
]immz(x X, X7 Xy - - - Xg ).

(16)

’
(XXX, X -

The transport ©;;({y/},x,X',t) of the reversible term
in Eq. (9) is also expanded in a series similar
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to Eq. (15).

O;;({v}.x,x 1)
= Z/ GE}L(X,X/,Xm)%l’m(XmJ) + -

+ Z / ®l(?l)n“‘z(x7x/’xlsxm, e ,XZ,I)
mn,...z X7 X seees Xz
XWl(xz,l)llfm(xm,t)---wz(xz,[)_k...7 (17)

where the coefficients @f;')z are independent of time and

depend only on positions. We assume that each of the

n)

coefficients O is antisymmetric under the interchange

ijm..n
of i and j:
0" (x,X,x;,X x.)=-0"  (x' xx )
I/mz ] A3 Ay o e vy z) — ]zmz 9 4Ry lvxmv "'7XZ .
(18)

It is important to note that there is no field-independent contri-
bution to ©;;({¥},x,x’,¢), analogous to the term [(x,x,t) in
Eq. (15). The reason is as follows. As noted in the discussion
of the time parity of the free energy functional, the quadratic
approximation for the free energy, Eq. (4), contains products
of fields with the same time parity. Therefore, the contribution
from the quadratic free energy in the third term on the right
side of Eq. (9) would have the same parity as the field ;.
However, this violates the requirement that the reversible
term proportional to ©;;({¥},Xx,X’,¢) has to have time parity

/exp (ik-x)/ I X,
X X X[y Xy

SEU (K DY (=K ) - (K, 0). (23)

(n) /
= / Fijl...z(k’k ki, .
K k,...k.
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opposite to the field v;. Therefore, the field-independent
contribution to ®;; in Eq. (17) has to be 0.
The Fourier transforms of the field variables are defined as

vk,t) = /exp (Ik-x)y¥(x,1), 19)

where fx = f dx. The inverse Fourier transform of this is

r(x,t) = /exp(—ik~x)¢(k,t), (20)
k

where [, = (27)7? [dk. The terms in Eq. (9) can be ex-
pressed in terms of Fourier components as follows. First,
we define &;(x,t), the chemical potential, as the functional
derivative of the free energy functional with respect to the
variable ;,

- SF
Yi(x,t) =

3 (x,1)
=> f (x(x = X)) v (x0), (21)
i X

and the associated Fourier transform,
itk = —F
ST Y=k
= > (x®);'vik.1). (22)
J

The Fourier transform of the first term on the right side of
Eq. (16) is

XY X DY (X0 1) - - Yo (X, 1)

A similar transform can be used for the ® nonlinearities. The equivalent of the Onsager reciprocal relations, (16), and the

antisymmetry relation, (18), in Fourier space are

Fgl;l;..-z(k’k,’kl’ ... ,kz) =
O (kK. ... k)=

In Fourier space, the nonlinear Langevin, Eq. (9), is

i K Kk, ko), (24)
-0 (K kk, ... k). (25)

dyik,r) = /k Z [ — T (Y )Lk K 0T (K 1) + T (v Lk K ) — /k Z ®ij({1ﬂ},k,k',t)lﬁj(k’,t)] + Gi({¥}Lk,0o (),
i j

(26)

where l"lfj({ljf},k,k’,t) = (8T;;({y}. kK ,1)/8%;(—=K',1)) is the second term on the right side of Eq. (9) required to ensure a
0 relaxation rate at equilibrium. It is convenient to use the temporal Fourier transform of the field,

T2
Yi(q) = f dt exp tot)y (K1), (27)
-T2

where q = (k,w), and T is the averaging time interval, which is much longer than the longest relaxation time in the system. The
temporal Fourier transform of the irreversible nonlinear term, Eq. (23), is

/exp (tot) F}j} (kK K,
! Kkiook
= / Fz(;ll)z(k’k,vkla ce
q.q...9;

= / re) (a.q.q. ...
q.q;....9

KU (K O (=K, 1) - (=K, 1)
,kz)lﬁj(—q/)lﬂz(—(h) s (—q)d(w + o + W+ -+ wy)

AV (—qYi (=) - - Yo (—q), (28)
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where [, = ffﬁz dr,and [, = (2n)™* [ J°., dw, and we have used the notation i @d.aq.....q) =T kK. .. . k)
8w+ & + w; + - - - + w,). With this, the Fourier transform of the nonlinear term in Eq. (26) is
f exp (i (kX + o)) (Y )X, X)P(xX )
X,t
= T;K)8(q+ V() + ) / @99 (—)¥i(—a) + -
1 YA
+ > / L Q. Qs -GV (W (— @)Y (— ) -+ V(=) + - (29)
lm,...z 9444
In discussing the diagrammatic expansions a little later, we use the notation
Fi((¥),q.4) = T 3@+a) + ) / rq,q k)vi(—a) + -
[ Y
+ > / Ly 0 GG - Y=V (— Q) - Yo (=) + - (30)
L.z Al

Equations equivalent to (28),(29) and (30) can also be derived  [p the special case where transport is local, so that I'"?) s

. .. . 7 , i o . tjl...z
for the ® nonlinearities, with FE ,-’,)m,,,z(q,q .qi» - - -,qz)replaced  independent of position, the first term on the right side of
by ®§7;nl”l(q,q/,q1, ...,q;). Using the notation in Eq. (30), ~ Eq. (9) becomes

Eq. (26) becomes Tijt W XY X0) - Pa(o0). (33)

i (q) = / Z[_Fij({l/f},q,q/)&j(—q/) + F,{j({l/f}:qsq/) The Fourier transform of this is
a;

o [ raedmea- e
0,1~ + Gi((¥hap@), (3D -

8 " ) 34
with the noise correlation AQ+q -t ) (34)
) ) The generating functional for the dynamics of the system

O(@)f(w)) = d(w + w). (32) s defined as

i L
(35)

where [ v = [1; / DI¥:]is the functional integral. A functional Fourier transform is used to express the generating functional as

Z = c/ exp(=L), (36)
/A

where f]/m/; =1, / DI¥:1/ D[¥;], and

L= / 1/7,~<—q>[—zwwi (@) + / > T a)(—a) — T (v ).a.q) + 0, }.a.a)(—q) - Gi({w},qu)}.
q 9
(37)
The Jacobian ¢ in Eq. (36) is a constant in the Ito formulation, and v; are the auxiliary fields in the functional Fourier transforms.

The generating functional Z can be explicitly averaged over the noise realizations to obtain the averaged generating
functional,

Z = (Z)noise = C/ _exp (=L), (38)
v
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where (Z)noise 1S the average of the generating functional over the Gaussian noise realizations, and

L= /1/71(—(1)|:—la)1/f1(Q)+/ Z(Fu({w}’q’q/)&j(_q/)_F:/({w}’qvq/)
q q j

+0;;({(v}.q.9)9;(—q) — F[j({l//},q,q’)z@j(—q’))}.

(39
I
III. CORRELATION AND RESPONSE FUNCTIONS function, (39):
The correlation functions of the hatted and unhatted fields, (o) = ¢ / ecxp(—L) (42)
C;; and C;;, are different from those used in the FDT, Egs. (45) . '

and (49), discussed a little later. The functional integral

. . Note that L is the Lagrangian averaged over different noise
correlation and response functions are

realizations in Eq. (37).

Cij(%,1) = (Wi (x + X .t + 1) (1), (40) The FDT relates the time dprivative of .the correlatipn
N , o function to the response function. To derive the Fourier
Ci;(x.1) = (Yi(x + X1 + )Y (X, 1)), (41)  transform of the time derivative of the correlation function,

it is necessary to return to the original formulation in Eq. (10),
where the averages are defined over the Lagrangian which incorporates the Gaussian noise:

dCij . al/fj(X—i-X/,l +l/) PN ‘ , , al/fj(x/,[/)
T _< o wj(x,t)>_ <¢,(X+x,t+t)—at, > (43)
= - <C/ N eXp (—,C)'Q/IZ(X + X/vt + t/)/ (Z(_ij({l/f}?lexl/’t/)‘pk(xﬁ)
v A
+ F}k({w}’x/9xl/vt/) - ®ij({1//}7xl’x//1t/)¢k(x”3t/)) + GJ(X/)Q(I/)>> s (44)

where (-)noise 1S the average over noise realizations. Note that £ in the above equation is the Lagrangian in Eq. (37), which has
not yet been averaged over the noise realizations. When we take the average of this over the noise realizations, the first, second,
and third terms in the spatial integral on the right are unchanged because they do not depend on the noise, while the last term is
linear in the noise. As shown in Appendix A, after averaging we obtain

dC,'j
dt

_/ N exp (—L)WI(X + X/yt + t/)/ Z(_ij({l//},X/,X//,l‘/)'&k(x//,l/) + F;’k({‘/f}sx/vxﬁ’t/)
V.Y L S
- ®jk({w}7X/’X//st/)lpk(x//st/) + 2ij({w}sx/vx//vt/)ﬁk(x//’t/))

= - <1//'i(X + X/’t + t/) \/”(_ij({w}7X/5X”»t/)l/}k(x//7t/) + F;‘k({w}’xlvx”at/)

— (¥} xX" 1) (X" 1') + erk({l//}aX/aX”7t/)1}k(X//vt/))>s (45)

where L is the Lagrangian defined in Eq. (39). The Fourier transform of the time derivative of the correlation
function is

1 -
1wS$;;(q) = —ﬁ<1ﬁi(Q)/ Z(—ij({w}, —q.9)Y(—q) + T (¥}, —q.q4)
4 g

- 0 ({v} —a.9) + 2T (Y}, —q’q/)iﬁk(—q/))>, (40)

where the average (-) is defined for the Lagrangian L, V is the total volume, and T is the time period of averaging.
The response function R;;(q), the value of v; due to a force f; conjugate to the variable v;, is added to the free energy
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functional. In the presence of the conjugate force, the generating functional is modified as

Z= C/ ~exp(—L)exp ( —f /l@k(x//,f’)ij({I/f}7X//7X/,f/)fj(x/,t/))
v xx' Jr

= C/ N exp (_L)(l - /, .y '&k(x//vt/)rkj({w}1X//9X/7l/)fj(xlst/)>7 (47)

vy

where the linearization approximation has been used in the final step for small force. The change in v; at (x + X',z 4 ¢") due to

this applied force is

(Api(xD) = —c /W L exP L) | [ o x a0 )

where (-) s is the average value of the variable - in the presence
of a force. Therefore, the response function due to the force

fiis

S(AY(X,1)) s
8fi(x,t)

Using spatial inhomogeneity and time-translation invariance,

the above equation can be recast as

Rij(X—X/,t—l/)Z (49)

Rij(x,1)

= - /”Wi(x + Xt + )X Dy (¥}, X 1)),
(50)

The Fourier transform of the response function is

Rij(q) = —//exp (kX + wt))R;j(X,1)

! " 7 "
=TTV q”(lﬁi(Q)ij({W}aq s —QYr(—q)). (S1)

Due to the symmetry of the kinetic coefficients I'y;, the above
response functions can also be written as

1 R
Rij(q) = ﬁ/ Wi (@T (¥}, —q.q4)Y(=q").  (52)
o

IV. BARE CORRELATION FUNCTIONS

For a linear Langevin Eq. (9), where Fx'[)__.z =0forn >0,
the Lagrangian L is quadratic, ‘
Lo=)_ f Ji(—q)(—1ovi(qQ)
ij U4
+ L 0T, (@) — Ty (09 (q)). (53)

_ (—tol +T-x H 12Dl + x 1. T)7!
M(q) = _
(ol + ()~ "D)™!

_// , /((1/[1'(X,[)IZ}k(XU,t/)rkj({l[f},x//,x/,t/»fj(X/,l‘/), (48)

Here, we have used the property I';;(x,x) = [';;(x —X) in
a spatially homogeneous system. This Lagrangian can be
symmetrized and written in matrix form as

L=y [ enmn (§). e
q

where W and W are column vectors whose elements are
¥:(q) and ¥;(q), while ¥* and W* are column vectors whose
elements are the complex conjugates v;(—q) and ¥;(—q),
respectively, and the superscript T is the transpose. The
matrix M(q) is a block-diagonal matrix, whose inverse is
given by

) 0 4 ()T
M—'<q>=( rel+ 00 ) (55)

—1l +T-(x)7! 2r

where I is the identity matrix, I’ and (x)~! are square matrices
whose elements are [ j(K) and ( X(k));l, and 0 is a null
square matrix. The product I'-(x)~! represents the matrix
multiplication I'j( X)k_jl' In Eq. (55), the block 2T is real and

symmetric. In the off-diagonal blocks (—iwI+ T'-x~!) and
(1wl + x~'-T"), both matrix " and matrix (x )~ are symmetric.
Moreover, the elements of the matrices ( )()’1 and T are real,
since the free energy is a real function and the transport
coefficients represent irreversible processes. Therefore, one
of the off-diagonal blocks is obtained by taking the transpose
of the complex conjugate of the other, and the square matrix
in Ly is Hermetian.
It is convenient to define the bare averages as

(@) = c[ eexp (—Ly). (56)
V.Y

The matrix M, which is the inverse of the matrix M™!
[Eq. (55)], is

(-1l + f-(x)‘l)‘l)
. (57)

0
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The bare correlation and response functions, evaluated as
shown in Appendix B, are

Wi@¥;(@)o = (—tl + TkR)-(x®)™);'8(q +q). (58)
Wi@¥;(@)o = (10l + FR)-(x (k) ™) ™I K)ol
+(x (k)™ T(—k)8(q + ). (59)

(Fi(@¥r;(@)o = 0. (60)

The final result above is a consequence of the causal discretiza-
tion scheme used, where averages involving v, (¢) vanish if ¢
is the latest time. In addition, we can show the following
relations between the bare correlation functions. Since the
matrix M is Hermetian, the correlations between the hatted
and the unhatted fields satisfy

(Wi(@¥;(d)o = (¥ (—i(—q))o (61)
and
(X () (W @T (— D)o + (i (@ (—@)o(x K))y;

= (xR (Ve @y (=)o (x (K)); - (62)
From this, by pre- and postmultiplying by x, we obtain the
reciprocal relation,

(Wi ( @V (—@))oxa; K) + xie K (@ (—q))o

= (Yi(@y;(—q)o. (63)

The bare time correlation functions can be obtained by
taking the inverse Fourier transforms of the structure factors:

Wikt + )P (K ,t))o
= / / exp (1ot +1) — 1/t )Y @P; (@) (64)

Since the correlation function depends only on the time
difference ¢, stationarity can be used to reformulate the
correlation function as

(Wit + ) (K, 1))o
1 (72 .
= 7/ dt(y;(k,t + 1)K 1)
-T/2
= (exp(—t(f‘(k)-(x(k))’l))ij(S(k+k') for t>0
=0 for r<O. (65)

The equal-time response function is interpreted as if the time
argument of the hatted field is displaced by an infinitesimal
interval after the unhatted field, in which case the equal-time
response function is 0:

(i (k) (—k,1))o = 0. (66)

M = ( ‘
—1ol + T (@)-(x (k)" — DI (:))

For a consistent functional-integral formulation, it is necessary
to show that the self-energies X,,;, X, and X satisfy the
same relations as the bare correlation and response functions:

PHYSICAL REVIEW E 83, 041126 (2011)

The inverse Fourier transform of the correlation function
(Wi(k,t + 1)y (k' ,1"))g is given by

Wikt + 1) (K ,1'))o
=T f exp (—101) (Vi (K,0)¥; (K, — ®))o

(exp (=17 1T () x () ™)- x (K));;8(k + K)
= (x(K)-exp (—|t|x ()" -T(k));;8(k + k). (67)

The equal-time bare correlation function is given by the
equilibrium correlation function:

Wik, = xij (K3 + K. (68)

From Egs. (65) and (67), the Fourier transforms of the
correlation functions satisfy the relations

(Wi (k.1 + 1) (K 1))o
= (Yilk,t + YK, )o(x ) for 1>0
= (Wit + ) (xR YK 1)) for 1>0
= (w,-(k,t+t’)1/}.,-(k’,t’))0 for > 0. (69)
The following relation is valid for both positive and negative ¢:
Wikt + 09K 1o + (Yik,t — Dk 1))o
= (Yi(k,t + 1)K 1))o. (70)

The correlations between the hatted and the tilde fields also
satisfy the reciprocal relations:

(Wi (k.1 + 1) (K 1"))o
= (xR (YKt + 1)K 1))od(k + k')
= (x (&) (exp (=T (K)-(x (k)™ );8(k + K
= (exp (—t(x (&)™) (x () Sk + K
= (iKWt + 1))o(x )y
= (YK, 0)P;(k.t +1))o.

We use the above reciprocal relations to show that the
correlation-response relations are also valid for the renormal-
ized correlation and response functions.

(71)

V. FIELD-DEPENDENT KINETIC COEFFICIENTS

The nonlinearities in the Lagrangian L’ renormalize the
bare propagators, through the self-energies ¥, and Xy,

resulting in the renormalization M matrix [Eq. (55)]:

1ol + (x (k)™ -['(—k) — EW(—q))
_ ) (72)
—2T'(q) — =4 (q)
[
XKD Sy, (@ = Zy g (K, (73)
200 @4 ) + Xk (K g (—Q) = =Ty (@, (74)
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The renormalized matrix M is also Hermetian if Eq. (73)
is satisfied. Equation (74) ensures that the diagonal and
off-diagonal blocks of the renormalized matrix M~! are related
in a manner identical to those for M~

A diagrammatic expansion is used to obtain the relationship
between the self-energies in the renormalized matrix M
[Eq. (72)]. In the expansion, solid lines are used for the v
field, dashed lines for the 1} field, and dotted linesfor the 1&
fields. The vertices due to the ¥ dependence of the Onsager
coefficient are represented as shown in Fig. 1. For the nonlinear
terms proportional to Fi(;',:m“z [second term on the right side of
Eq. (39)], the vertex is

lﬁi(—q)/ rf) @.q.q....q)%;(-q)
q.4q,--.9;

X Y (=qp) - - - Y (—qp).

This vertex has (n + 2) legs, of which one is hatted (I) and the
remainder are unhatted. Of the unhatted legs, one leg, v, is
designated II, while all the others are III. This vertex is shown
in Fig. 1(a), and is called the A vertex. There is also a vertex
due to noise correlations, the fourth term on the right side of
Eq. (39), which can be derived in a manner similar to that
above:

o [T @ a)d )
q.9,....9:

X 1pl(_(ll) e 1pz(_qz)- (75)

In this case, the II leg is also hatted, while all the III legs are
unhatted, as shown in Fig. 1(b). This is referred to as the B
vertex. There is a vertex due to the concentration dependence
of the transport coefficient, the third term on the right side of
Eq. (39):

(
XYi(=qp,1) -+ Y(—qc,0). (76)

This is easily simplified to provide

o )
—l/fi(—(I)/ W(Fiﬂ...z(”)(q,q/,m, .. qy)
q.q...q; OV

—%(—q,t)/ (Cijr.:()q.q',qi, ... q)Vi(—q,1) - -
q.q,--9;

X Yo (=qe,1))(8;8(q — q) + - +8;:8(q' — q.)).  (77)

This vertex has one hatted I leg, no II legs, and n III legs,
as shown in Fig. 1, and is called a C vertex. Finally, there
is the vertex due to the time-reversible part of the equation,
proportional to ®;;:

Ji(—q) f o) .a.q.q....q.)
q.9,....9:

X Ui (—aWi(—aqp) . .. ¥.(—qy). (78)

As in the A vertex, this vertex has (n + 2) legs, of which one
is hatted (I), and the remainder are unhatted. Of the unhatted
legs, one vertex ;. is designated II, while all the others are III.
This vertex is shown in Fig. 1(d) and is called the D vertex.
Next, we derive some general rules that govern the diagrams
for the self-energies %, ., and £ in Eq. (72). The
self-energy for the X, contains one terminal hatted and
one terminal unhatted leg. The diagrams are time ordered,
with the time increasing monotonically from the unhatted to

PHYSICAL REVIEW E 83, 041126 (2011)

~ Yo -~ // ‘Vmil
A " g [
[ ‘
v, | v,
m .. @ ..
F_l (i,j,m,n,...,7) —rijl [gla_]amana-"bz)
l] ..
(a) (b)

m .. ..
- (ij,m,n,...,z) Gi),l (i,j,m,n,...,z)
ijl.n yl.n

(©) (d)

FIG. 1. Vertices due to the field dependence of the transport
coefficients.

the hatted leg. In these diagrams, the hatted legs are always
at earlier times than the unhatted legs. We derive general
rules of two types—the first for the terminal vertices and
the other for the internal vertices—which can be used to
obtain a set of “reduced” diagrams after cancellation. The
former are discussed in detail, while the latter, which are small
modifications of the former, are briefly enumerated.

(1) A terminal C vertex with a terminal I leg [Fig. 2(a)] is
exactly canceled by a terminal A vertex with a bubble involving

il <
,,,,,, <

Type B
(2
111
Type D
0 () )

FIG. 2. Figures illustrating the rules for terminal vertices in the
diagrams for self-energies.
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the II leg [Fig. 2(b)]. Therefore, the reduced diagrams for the
self-energies do not have either C vertices with a terminal I leg
or A vertices with a terminal I leg and a bubble involving the
Il leg.

(2) A terminal C vertex with a terminal III leg [Fig. 2(c)]
is canceled by a terminal A vertex with a terminal III leg,
which has a bubble involving the II leg, as shown in Fig. 2(d).
From the above two rules, it is clear that there are no reduced
diagrams with terminal C vertices, and no reduced diagrams
in which the terminal A vertex has a bubble involving the
Il leg.

(3) Due to causality, there are no terminal A or B vertices
with a bubble involving the hatted legs, as shown in Fig. 2(e),
in the reduced diagrams. This is because such a bubble is

Q2! / do(Fi(—vj(@))o = (i (—k, ) (K, 1))o

=0. (79)

Here, the correlation (&i(—k,t)l//j(k,t))o is interpreted such
that the hatted field is displaced by an infinitesimal time
interval after the unhatted field.

(4) An A terminal vertex with a III terminal leg, shown in
Fig. 2(f), is exactly canceled by a B terminal vertex with the
same III terminal leg, shown in Fig. 2(g). This is because the
correlation function due to the II ¥ leg in Fig. 2(f) is exactly
equal to that involving the II ¥ leg in Fig. 2(g) from Eq. (69).
Moreover, the coefficients of the A and B vertices are exactly
equal in magnitude and opposite in sign from Fig. 1, and so
these contributions cancel.

(5) A B terminal vertex with a I or II terminal leg, shown
in Fig. 2(h), provides a nonzero contribution only if the vertex
shown in Fig. 2(h) has the earliest time index in the diagram,
and time increases toward both the left and the right; that is,
the vertex is the “primordial vertex” in the diagram.

(6) There are no terminal D vertices with a terminal III leg,
and with the I and II legs directed inward, as shown in Fig. 2(i)
in the reduced diagrams. This is because the contribution
due to the D vertex in Fig. 2(i) is exactly canceled by that
due to the D vertex in Fig. 2(j). The vertex in Fig. 2(j) is
obtained by interchanging the I and II legs of Fig. 2(i) or by
the transformation G)f;’)z — @5’:) .- The correlation functions
involving the I and II legs are unchanged, due to the equality
in Eq. (69). Due to the antisymmetry condition, Eq. (25), the
value of the diagram in Fig. 2(j) is exactly the negative of that
in Fig. 2(1), and therefore these two diagrams exactly cancel.
Therefore, it is only possible to have terminal ® vertices with
terminal I or II legs.

Due to the above rules, there are only three possible terminal
vertices in the reduced diagrams. The first is an A type, with
either a I or a II leg as the terminal leg, with the additional
restriction that the II leg that is not a terminal leg cannot be
part of a bubble. The second is a B primordial vertex, with
hatted legs in both directions of increasing time. The third is a
D terminal vertex, with terminal I or II legs.

For the internal vertices in correlation functions, the rules
contain some minor modifications of the rules for terminal
vertices above. The major modification is that the III legs in
all the vertices can be directed either forward or backward in
time.

PHYSICAL REVIEW E 83, 041126 (2011)

(1) As in the case of the terminal vertices, C vertices
[Figs. 2(a) and 2(c)] are canceled by A vertices with a bubble
involving the II legs [Figs. 2(b) and 2(d)].

(2) There are no bubbles involving the I or the hatted II legs
[Fig. 2(e)] due to causality.

(3) A vertices with hatted I and II legs in the same direction
[Fig. 2(f)] are canceled by B vertices with I and II legs in the
same direction [Fig. 2(g)].

(4) B vertices with hatted I and II legs in opposite directions
[Fig. 2(k)] are permitted only if time increases on both
sides of the vertex, that is, the vertex has the earliest time
index (primordial vertex). However, in this case, the B vertex
in Fig. 2(k) is exactly canceled by a A vertex shown in
Fig. 2(1).

(5) Itisnotpossible to have D vertices with both the I and the

II legs in the same direction, since these are exactly canceled
by equivalent D vertices with I and II legs interchanged, as
a consequence of the antisymmetry condition, Eq. (25). The
diagrams are identical to those for terminal vertices shown in
Figs. 2(i) and 2(j), except that these are now internal vertices
linked by III legs on both sides.
Due to these rules, the only internal vertices in the reduced
diagrams are A or D vertices in which the I leg is directed
toward increasing time, the II leg is directed toward decreasing
time, and the III legs can be directed toward increasing or
decreasing time.

Using the above rules, the reciprocal relations for the
correlations between hatted and unhatted fields, EM,, can
be proved as follows. These diagrams contain a hatted leg
at one end and an unhatted leg at the other end. Since
there are no primordial internal vertices, all diagrams contain
A or D vertices in which the I hatted legs are directed
toward increasing time, while the II unhatted legs are directed
toward decreasing time. A typical diagram for the self-energy
(Wi Q)W i(q)) is shown in Fig. 3(a). Note that this diagram
represents the self-energy (x (k))[_k1 EW/;j (q), which is the left
side of Eq. (73). From this diagram, we can obtain a diagram
for the right side of Eq. (73), E]z,”/,k(—q))(k_jl(k), which is the

self-energy for (/;(—q)¥:(q), as follows.

¥, Vn@m)

Ty @)
@

FIG. 3. Diagrams for X;k(Q)EW&, (@) and Xy, (—q) X1 (—qQ)-
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(1) We interchange all vertices,

F-(")

(n)
k)= T,

kK Kk, ... jil___z(k/,k,kl, ....k;). (80)

Due to reciprocal relation (24), the value of the vertices remain
unchanged. In addition, we also make the change

o)

ijl..z akz) - _®(”) (k/,k,kl, ..

kK Kk, ... jil..z

k). (81

Therefore, all vertices due to the reversible term in the
nonlinear Langevin equations change sign.

(2) All the Ilegs are interchanged to II legs, and vice versa,
as shown in Fig. 3.

(3) In the process, the direction of time, from left to right,
in Fig. 3(a), is reversed in Fig. 3(b). Due to the time reversal,
all irreversible terms (I" vertices) in the Langevin equation
with even time parity remain unchanged. All reversible terms
(O vertices) with odd time parity change sign. However, note
that the reversible terms have already changed sign once due
to the antisymmetry in Eq. (81). Therefore, they recover the
same sign as in Fig. 3(a).

(4) Due to the above, all internal correlation functions
involving II vertices are changed to correlation functions
involving I vertices, and vice versa. All III vertices remain
unchanged. For example, taking just two correlation functions
involving the terminal vertices,

<wl(qn)17/a(q/)>0 g <wl(qn)1[}a(q/)>0~ (82)

It is clear that the value of the correlation function
(wn(qn)lﬂa(q’))o, with time ordered from left to right, is the
complex conjugate of (1, (qn)lﬁa (q'))o, with time ordered from
right to left, due to Eq. (69). In addition, we have also carried
out the transformation

(&b(qb)&m(qm»o - <1/~fb((lb)12m(%))0- (83)

In this case, as well, the value on the right sides is the complex
conjugate of the left side due to Eq. (71).

(5) It can be easily verified that in this transformation
process, all other correlation functions remain unchanged,
since they involve only unhatted fields, and the correlations
of these fields are all real.

Therefore, the self-energy term in Fig. 3(a), which is
Xik(k)zq,k@, (q), is the complex conjugate of Fig. 3(b),
DIN S (@) xxj(q). Since every term in the equation for the
self-energy of the type shown in Fig. 3(a) has an equivalent
term of the type shown in Fig. 3(b), it is proved that Eq. (73)
is valid term-by-term in the expansion.

Next, we come to the relation between the correlation
functions for the hatted and unhatted fields, wa and 21/;1;,.
The diagrams for the self-energy of the correlation functions
contain two terminal hatted legs, and these are obtained by
modifications of the vertex with the terminal unhatted leg in
Figs. 3(a) and 3(b). The reasoning for relating the correlation
functions for the hatted and unhatted fields is different for
terminal I" and ©® vertices, and so we discuss the two separately.

In the case of a I terminal vertex, time increases outward
from a set of “primordial” vertices somewhere in the diagram,
which are at the earliest time in comparison to vertices on
either side. The primordial vertices are defined such that the
vertices closest to these, on either side, have a later time index
than the primordial vertices. On either side of the primordial

PHYSICAL REVIEW E 83, 041126 (2011)

@ (b) ©

FIG. 4. Figures illustrating the rules for terminal vertices in the
diagrams for the self-energy ;.

vertices, the rules for the vertices are identical to those for the
terminal and internal vertices for the response functions. Only
the primordial vertices are different, because time increases
outward on both sides. In these cases, the following rules are
modified.

(1) It is possible to have internal vertices with hatted legs
directed in opposite directions at B primordial vertices, as
shown in Fig. 2(k). This is because time is increasing outward
on both sides of the primordial vertices.

(2) For internal vertices, the diagrams due to B primordial
vertices, as shown in Fig. 2(k), are exactly canceled by A
primordial vertices, as shown in Fig. 2(1). Therefore, the sum
of all diagrams with internal primordial vertices is identically
0, and there are no internal primordial vertices in the reduced
diagrams.

(3) Terminal B primordial vertices for the correlation
function can be of two types. The first is a B primoridal vertex
with a terminal I leg, as shown in Fig. 4(a), while the second
is a B primordial vertex with a terminal II leg, as shown in
Fig. 4(b). However, the terminal B primordial vertex with a
terminal I leg [Fig. 4(a)] is exactly canceled by a terminal
A primordial vertex, shown in Fig. 4(c). Therefore, there are
nonzero contributions only from diagrams with terminal B
vertices with a terminal II leg, as shown in Fig. 4(b).

The diagrams for the self-energies X 7 (q) contain a
primordial vertex at one of the two ends, as shown in Fig. 5.
These diagrams are obtained by replacing the A terminal vertex
in Fig. 3, which consists of a II unhatted terminal leg [on the
right in Fig. 5(a) and on the left in Fig. 5(b)], by a B terminal
vertex with a Il terminal leg. Since this is the primordial vertex,
the terminal leg has to be of type II (a diagram containing a

~ Yn@xn) ﬁm(qm) o~
. Wa(‘_la) """ ' - wu*"}‘l{k\)(qb) .
Vi(-a) N Vi@

V()

(@)
2@

1

N Va(@n)
A Wagqa)—/
ey —

FIG. 5. Diagrams for the self-energy ¥ ; (q) with a terminal B
vertex.
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vertex | terminal leg is canceled by other equivalent diagrams
due to rule 3 above).

Comparing Figs. 3(a) and 5(a), it is clear that all the internal
vertices and correlation functions are identical. There is only a
modiﬁcation in the terminal vertex on the right, where v/;(q) =
X,Z Yi(q) is rePIaced by 1/},~ (q). In this case, the coefficient of
the A vertex, I'y;” _, had changed to that of the B vertex, which
is —Fl(Z) Similarly, all the internal vertices in Figs. 3(b)
and 5(b) are 1dent1(:a1 except for the terminal leg on the left,
¥ (—q) = (x(K); Yx(—q). The self-energy X, (@) is just
the sum of the two diagrams in Figs. 5(a) and 5(b). Therefore,
we obtain Eq. (74) for the terminal I" vertex.

In the case of a terminal ® (D) vertex, Eq. (74) is obtained
in a slightly different way. In this case, the equivalent of
Fig. 3(a), with a ® vertex at the right, is Fig. 6(a). In this
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case, the vertex on the extreme right is a ® vertex with
a I terminal hatted leg. The transformation from Fig. 3(a)
to Fig. 6(a) involves the interchange 8(”) — @gf) .- Since
the © vertices are antisymmetric [Eq. (25)] we find that the
relation between the equations in Fig. 3(a) is y;; DIWA 0, is equal
to _EM A similar relation holds between Fig. 3(b) and
Fig. 6(b). "From this, we obtain Eq. (74) for the terminal ®
vertex. This shows that the self-energies in Eq. (72) satisfy the
same reciprocal relations as the bare transport coefficients in
Eq. (59).

Next, we come to the relation between the time derivatives
of the correlation function, Eq. (46), and the response function,
Eq. (52). Comparing these equations, it is clear that the time
derivative of the correlation function is equal to the response
function if

<1ﬁi(Q)/ L}, _qu/)lﬁk(_q/)> - <¢i(Q)/ I (v} —q,q/)> = <1ﬁi(Q)/ L}, —q,Q’)lﬁk(—Q’)>~ (84)
q q q

The most general diagram for the term on the right and
the first term on the left of the above equation is shown in
Figs. 7(a) and 7(b). There, the extreme right vertex represents
atypical term in the expansion of I'j, ({1}, —q,9)V(—q) and
iy}, —q.q) ¥ (—q'), respectively, while the vertex on the
left is due to the nonlinear terms in the Langevin equation. The
rules for the internal and terminal vertices discussed above for
the self-energies apply to these diagrams as well.

(1) The terms due to terminal C vertices, shown in Figs. 2(a)
and 2(c), are exactly canceled by terms with terminal A vertices
that have a bubble involving the II leg, shown in Figs. 2(b)
and 2(d). Therefore, there are no terminal C vertices, or
terminal A vertices with bubbles involving the II leg, in the
diagrams for the terms on the left and right sides of Eq. (84).
It is easily seen that the same rule also applies to all internal
vertices.

(2) Diagrams with A vertices with a terminal III leg are
exactly canceled by equivalent diagrams with B vertices

v@,) V)

FIG. 6. Diagrams for the self-energy i, (q) with a terminal D
vertex.

[
with a shown
and 2(g).

(3) The terms due to primordial internal vertices of A and
B cancel, and so there are no contributions due to primordial
internal vertices.

(4) In a similar manner, all contributions due to primordial
terminal A and B vertices on the left with terminal I legs, in
Figs. 7(a) and 7(b), cancel.

Due to the above rules, nonzero contributions are only due to
terminal A or D vertices that are not primordial, with terminal
I or II legs, so that time increases monotonically from right
to left, or vice versa, in these diagrams. The typical diagram
for the term on the right side of Eq. (84), shown in Fig. 7(a),
has a terminal A or D vertex with a terminal I leg, with time
increasing from right to left. The equivalent diagram for the
term on the left side of Eq. (84), shown in Fig. 7(b), has a
terminal A or D vertex with a terminal II leg. The latter is
obtained by interchanging all the I and II legs in the former.
In this transformation, if the terminal vertex is type A, the

terminal III leg, as in Figs. 2(f)

vi@) ¥

%) inam)

Wa(qa,) k( qa)

V(@)

(b)

FIG. 7. Equivalent diagrams for the correlation and response
functions.
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values of all the vertices are unchanged [Eq. (17)], due to
the Onsager reciprocal relations (24). In addition, the internal
correlation functions for the hatted and unhatted fields also
remain unchanged, due to relations (69) to (71). Therefore, the
nonzero contributions in the expressions for the time derivative
of the correlation function (46) and response functions (52),
which are the left and right sides of Eq. (84), are equal at
each order in the perturbation expansion. In the case where
the A terminal or internal vertex is D, the value of the vertex
changes sign when we go from Fig. 7(a) to Fig. 7(b), due
to antisymmetry condition (18). In addition, the value of the
nonlinear term represented by the vertex on the left side of
Fig. (7a) also changes sign due to time reversal. Therefore, we
obtain equality of the terms shown in diagrams in Figs. 7(a)
and 7(b). This proves that the FDT is valid at each order in the
perturbation expansion.

VI. CONCLUSION

The nonlinear Langevin equations have been analyzed
using the functional integral formalism, with the Ito inter-
pretation of the noise correlations. It is shown that these
equations satisfy the fluctuation-dissipation relations, at each
order in the perturbation expansion, when the nonlinearities
in the Langevin equation are due to field-dependent kinetic
coefficients, and the free energy functional is quadratic in
the fields (field-independent susceptibility). This is regardless
of the form of the kinetic coefficient and degree of non-
linearity, provided that each term in the expansion of the
kinetic coefficient satisfies the Onsager reciprocal relations
for the irreversible terms in the Langevin equation and the
antisymmetry relation for the reversible terms. This settles the
issue of validity of fluctuation-dissipation relations for systems
with field-dependent kinetic coefficients and a quadratic free
energy functional.

When the kinetic coefficients are field independent, and
the susceptibility is field dependent, the fluctuation-dissipation
relation is still valid, provided the renormalized susceptibility
is used in the Langevin equation. This is a direct result from the
ergodic hypothesis, because if the equilibrium and dynamical
averages are equal, the fluctuation dissipation theorem is
satisfied at all orders.

In the more complicated case where both the kinetic
coefficients and the susceptibility are field dependent, it is
much more difficult to prove that the fluctuation-dissipation
relations hold. This is because there are two distinct types

N , ; 1 . ) ,
cg / Gi(q) exp (— / G7.Gls(qt + qi)) exp (—— / g+T~(Tg<qi,q*>)1-gT>,
g qf.q* 2 qf.qf
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of vertices, and it is virtually certain that the fluctuation-
dissipation relations do not hold at each order in the per-
turbation expansion. In this case, a trivial extension of our
analysis is that when the renormalized susceptibility is used
in the Langevin equation (preaveraging approximation), the
fluctuation-dissipation relations are valid at each order in
the expansion. However, there are several coupling terms
that are neglected in the preaveraging approximation for the
susceptibility, and it is a formidable challenge to prove that
the sum of all these terms is equal in both the correlation
and the response functions. Despite this, the preaveraging
approximation may be a useful practical approximation in
solving nonlinear Langevin equations, since it ensures that
the fluctuation-dissipation relations are satisfied.
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APPENDIX A: AVERAGE OF TIME DERIVATIVE OF
CORRELATION FUNCTION OVER NOISE REALIZATIONS

Here, we provide the details of the calculation of the average
of the right side of Eq. (45) over noise realizations to obtain
Eq. (46). It is more convenient to carry out the averaging in
Fourier space:

G(@) = Gi({y}.9)0(w).

The average over the noise realizations is defined as

1 .
(@) noise = cg/ e exp (—_/ giT . (Tg(qiqT))_l ,gT))
g 2 Jgi gt

(A2)

(AL)

where cg is the normalization constant, G 1 is the column vector
whose elements are G;(—q), Jo =11 [dG:, and T94q',q")
is the matrix whose elements are the averages of the noise
correlations:

T9".q") = (GGG noise
=2I;({v).q',q").

The average over noise correlations in Eq. (45) is of the form

(A3)

(A4)

where Tj is the noise correlation, lﬁ;[ = lﬁi(—qT), and 1}} = 1/Afi(—qi). The above average can be symmetrized and expressed in

matrix form as follows:

A 1 4
s [ Giwexp ( - [ erigisa + qﬁ) ew (-5 [ gHTaan o)
g q'.q! q'.q'

— o [G@e (-~ 5 [ @6 g+ |ew (- [ @7 a)0))
g 2 Jyi 2 Jga
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Cg/gi(Q)CXP (‘
g

1 . .
« exp (_5/ v\yiT,TG(qi’qi).\yT)
q.q

cg L / (G(—q)@q+q) - T%q.q)¥(— q)); + (T9%q.94)¥(—q)))
.

/ - G — (T9q'q")- ¥ (T qT) T (GT - (Tg(qi,q*w)))
q'.q

| =

| =

/T 1 @iT.Tg(qi’qT).\fﬂ).
q'.q

(AS5)

1 o A
X exp <—§ / (G = (T aN ¥ (T} aD (G - (Tg(qi,q*)w*))) exp ( -
q'.q

The first term in the pre-exponential in the above equation averages to 0, while the second term, upon averaging over the noise

realizations, gives
A 1 R
cg / Gi(q)exp (— f w}gf) exp (—— / Gl (1 Gls(q’ +qi))
g q.qt 2 Jqi qt

= ¢g //(Tg(q,q/).@@(_q/)),» exp(— %/ .\iJiT.’]’g(qiqu).\iJT) (A6)
q q’.q
[
In  the above equation, (7 9(q.9)¥(—q)); = To simplify the calculation, we rewrite L in Eq. (54) as
25 fy Ty (0} a.005(—q). bo=g [, e vrad
q Jq

APPENDIX B: BARE CORRELATION AND RESPONSE w( T)
FUNCTIONS _ a
x (Mp'(qhé(q" +q")) (® ) (B4)

The bare correlation and response functions can be deter- ("
mined by defining the generating functional for the auxiliary Equation (B1) can be reformulated by first symmetrizing the

fields, & and &, last two terms in the equation:
FIZ.81 = [ DIVIDI)exp (- Lo [arweeri
q
X exp (/(E*T,\Il—i— @*T,lﬁ(q))), (BI) — E/E*T.\p_,_\y*T.E_;_ BTy 4 T8
q 2
q

where E and E are column vectors whose elements are 1 _ _ _

&(q), and é,-(q), respectively, and E* and 2%, the complex = 2 /q(cu*T-M-M LM MLE
conjugates, are column vectors whose elements are &;(—q)
and &;(—q), respectively. The bare averages can be evaluated
from the generating functional (B1) as Since the matrix M(q) is Hermetian, M(—q)” = M*T =

M(q), the above equation can be written as

+ET MM+ T MM ). (BS)

5 8*F
Wi—vi @)oo= . (B2 T
! SE (W5 (— )|y 5y / =7 . w4+ &7 . d(q)
Higher order correlation functions can also be calculated in a ! 1
similar manner; for example, =3 / M- M v+ T . M. (M- E)
R N qt
(lﬁz(Qz)lﬂm(Qm)I/f;(q])lﬂn(Qn»o + (M . @)*T _M—l A \i’ 4 \’I\I*T . M—l . (M . @)) (B6)

3F
8E/(—qi)8E(—qn)8E(—q,)8E,(q,)

. (B3)  For calculating the averages, it is convenient to rewrite the
above equation in a manner similar to Eq. (B3):

£=0,E8=0

N -

/ - gh7 . et et i o g
q'.qt
+ MF-EHT . M) Ut + \I;ir -MH™ . M- @T))g(qT + qi)’ (B7)
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where Ef = E(qlf), B = E(qi), wi = \Il(qT), wi = \IJ(qi), M = M(qT), and Mt = M(qi). Using the above transformations,

the generating functional F[Z,Z] can be written as

F[E,E] = c/D[E]D[@]D[\I}]D[\i}]

A _ T_Mf. gt
q'.q =

(Wt — M-

1 A _ L =i
X exp (—— /T (= a“)(M%(qu%)(m)) (BSY)
q'.q =

2

The integrals over the ¥, and vJ; fields are explicitly performed, to obtain

634

F[gE,

The correlation functions can now be calculated using
Eq. (B2),

, 82F[E,E]
(Wi @y(q))o = m
= M;;(q"s(q" + q"Hs(q' + q)d(q +q")
= M;i(—q)s(q+q)
= M;j(q)s(q+q)
= ((—1o + T®)-(x (k) ™")-2L (k))-

+(o(x &) -TK));8q+4q),  (B10)

]:c/D[s]D[é]exp (%(E” @”)(M*S(q*+qi))(

(B9)

G o1
N——
N——

and
. 82F[E,E]
(Vi @Y ;(q))o = m
= M;i(q"3(q" + q")3(q" + q")s(q + q")
= M;i(—qs(q+q)
= M;;(q)s(q+q)
= (=t + T &K)-(x (k) )i;8(q+4q), (Bl

where j = j + N, and N is the total number of elements in
the W and ¥ column matrices.
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