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We investigate the critical properties of the two-dimensional Z(5) vector model. For this purpose, we propose
a cluster algorithm, valid for Z(N) models with odd values of N . The two-dimensional Z(5) vector model is
conjectured to exhibit two phase transitions with a massless intermediate phase. We locate the position of the
critical points and study the critical behavior across both phase transitions in details. In particular, we determine
various critical indices and compare the results with analytical predictions.
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I. INTRODUCTION

The Berezinskii-Kosterlitz-Thouless (BKT) phase transi-
tion is known to take place in a variety of two-dimensional (2D)
systems: certain spin models, two-dimensional Coulomb gas,
sine-Gordon model, solid-on-solid (SOS) model, etc., with the
most popular and elaborate case being the two-dimensional
XY model [1–3]. There are several indications that this
type of phase transition is not a rare phenomenon in gauge
models at finite temperature. One can argue that in some
three-dimensional lattice gauge models the deconfinement
phase transition is of BKT type as well. Here we are going
to study an example of a lattice spin model where this type of
transition is exhibited, namely, the 2D Z(N) spin model, also
known as the vector Potts model.

Consider a 2D lattice � = L2 with linear extension L

and impose periodic boundary conditions on spin fields in
both directions. The partition function of the model can be
written as

Z(�,β)=
( ∏

x∈�

1

N

N−1∑
s(x)=0

){ ∏
x∈�

∏
n=1,2

Q[s(x)−s(x+en)]

}
.

(1)

In the standard formulation the most general Z(N)-invariant
Boltzmann weight with N − 1 different couplings is

Q(s) = exp

( N−1∑
k=1

βk cos
2πk

N
s

)
. (2)

In the Villain formulation the Boltzmann weight reads instead

Q(s) =
∞∑

m=−∞
exp

[
− 1

2
β

(
2π

N
s + 2πm

)2]
. (3)
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Some details of the critical behavior of 2D Z(N) spin
models are well known (see the review in Ref. [4]). The
Z(N) spin model in the Villain formulation (3) has been
studied analytically in Refs. [5–9]. It was shown that the
model has at least two phase transitions when N � 5. The
intermediate phase is a massless phase with powerlike decay
of the correlation function. The critical index η has been
estimated both from the renormalization group (RG) approach
of the Kosterlitz-Thouless type and from the weak-coupling
series for the susceptibility. It turns out that η(β(1)

c ) = 1/4 at the
transition point from the strong-coupling (high-temperature)
phase to the massless phase (i.e., the behavior is similar to
that of the XY model). At the transition point β(2)

c from the
massless phase to the ordered low-temperature phase one
has η(β(2)

c ) = 4/N2. A rigorous proof that the BKT phase
transition does take place, and therefore that the massless
phase exists, has been constructed in Ref. [10] for both Villain
and standard formulations (with one nonvanishing coupling
β1). Monte Carlo simulations of the standard version with
N = 6,8,12 were performed in Ref. [11]. Results for the
critical index η agree well with the analytical predictions
obtained from the Villain formulation of the model.

In this paper we thoroughly investigate the case N = 5,
the lowest number where the BKT transition is expected. In
particular, we concentrate on the standard formulation [Eq. (2)]
with one nonzero coupling β1. The motivation of our study
is threefold: (i) to compute critical indices at the transition
points, which could serve as checking points of universality;
(ii) to shed light on the discrepancy in the literature concerning
the Z(5) model; and (iii) to develop and test a version
of the Monte Carlo cluster algorithm that is valid for odd
values of N .

The first motivation is related to the study of the finite-
temperature transitions in 3D Z(N) and SU(N) lattice gauge
theory (LGT). It is expected that in 3D Z(N) LGT a deconfine-
ment phase transition takes place at finite temperature. There
is no precise statement about the order of the phase transition,
but presumably it is of the BKT type if N > 4. If this is the
case, the Svetitsky-Yaffe conjecture [12] implies that the 3D
Z(N) LGT is in the universality class of the 2D vector Potts
model. Moreover, it can be proven that in the strong-coupling
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region with respect to the spatial coupling, the 3D Z(N) LGT
reduces to a 2D Z(N) model with the general Boltzmann
weight [Eq. (2)], and such that β1 = β4 � β2 = β3, for N = 5.
Here, βk are effective couplings which depend on the gauge
coupling and the temporal extension Nt . Thus, our Z(5) model
represents a good approximation to 3D Z(5) LGT in this region.

Next, let W (x) ∈ SU(N ) and consider the following effec-
tive action in 2D

Seff =
∑
x,n

TrW (x)TrW †(x + en) + c.c. (4)

The effective action [Eq. (4)] can be regarded as the simplest
effective model for the Polyakov loop which can be derived in
the strong-coupling region of 3D SU(N) LGT at finite temper-
ature. It possesses Z(N) global symmetry and thus may well
exhibit the BKT transitions which belong to the universality
class of the corresponding vector Potts model. Therefore,
our investigation here can be viewed as a preliminary step
in studying deconfinement phase transition in 3D Z(N) and
SU(N) LGTs.

The second motivation reflects the fact that many features
of the critical behavior of the Z(5) model are not reliably
established. Moreover, there are certain discrepancies even in
determining the nature of the phase transition (i.e., whether
the phase transition is of BKT type or not).

To summarize the current situation:
(i) The rigorous proof of the massless phase existence in

2D Z(N) models utilizes methods which do not allow the exact
value of N to be established, above which the BKT phase
transition exists [10].

(ii) Reliable analytical calculations can only be performed
with the Villain formulation [Eq. (3)]. The RG study of Ref. [5]
predicts that the massless phase exists for all N > 4.

(iii) Some information on the phase structure of the
general Z(N) spin models can be obtained through the duality
transformations (Ref. [13]). These transformations cannot be
used to establish the position of the critical points in the Z(5)
model [14]. However, duality transformations relate the two
critical points and thus can be used to verify the accuracy
of numerical data. Moreover, one can predict an approximate
phase diagram and argue that the massless phase and the BKT
transition exist for N = 5 in a certain region of the parameter
space [15,16]. The rigorous proof of the existence of the
massless phase, constructed in Ref. [15] for the generalized
Villain formulation, is particularly important in this context.
This generalized formulation contains the vector Potts model
defined in Eq. (2) with one nonzero coupling β1 as a particular
case. For completeness we mention that in Ref. [17] it was
suggested that there is only one first-order phase transition in
the Z(5) model. This, however, contradicts the rigorous results
of [15].

(iv) An analytical prediction for the critical index η has
been obtained for the Villain formulation in Ref. [5]: η(β(1)

c ) =
1/4 and η(β(2)

c ) = 0.16 (for N = 5). The situation remains
unclear for the index ν which governs the behavior of the
correlation length. Normally, the value of ν can be estimated
from the solution of the RG equations as in the XY model
[3]. The analytical solution of the system of RG equations
for Z(N) vector models is unknown [5]. Therefore, strictly
speaking, there are no strong theoretical arguments indicating

that ν = 1/2, similarly to the XY model. Moreover, the strong-
coupling expansion of the Z(5) model combined with Padé
approximants predicts that ν ≈ 0.22 [5].

(v) Monte Carlo simulations of the Z(N) model have been
performed in Refs. [11,18–20]. The results of Ref. [18],
though obtained on rather small lattices, indicate that the BKT
transition takes place in models with N � 8. This contradicts
the results of [11,20] which are in good agreement with the
BKT behavior for N = 6.

However, most recent simulations of the helicity modulus in
the Z(5) model at β(1)

c do not agree with what is expected at the
BKT transition [19]. Namely, at the critical point the helicity
modulus is expected to jump discontinuously to zero, and the
jump is observed for the Z(6) model, while in Z(5) the helicity
modulus stays small but nonvanishing in the high-temperature
region β < β(1)

c .
Still, it remains unclear how this behavior of the helicity

modulus influences other features of the BKT transition. The
key feature of the massless BKT phase in Z(N) models is the
enhancement of the discrete symmetry of the Hamiltonian—
the symmetry of the ground state in the intermediate phase
is U(1) rather than Z(N) [10]. This can be seen in the
characteristic distribution of the complex magnetization, in the
powerlike decay of the correlation functions in the massless
phase, in the vanishing of the beta function, etc. Also, on
the basis of the universality one could conjecture that the
critical indices in the Z(5) model are the same both in the
standard and Villain formulations. We are not aware of any
numerical calculations of these quantities in Z(5). Here, we
would like to fill this gap by computing various quantities and
extracting critical indices at both transitions. Among the main
quantities calculated in this paper are Binder cumulants. As
RG invariant quantities, Binder cumulants are very useful in
locating the critical couplings and determining the nature of the
phase transition. Indeed, the computation of Binder cumulants
proved to be very efficient in studying BKT transitions in a
variety of models, like the XY model, the discrete Gaussian
model, and the SOS model [21]. We therefore believe that
these cumulants are also of great value in the investigation of
phase transitions in 2D Z(N) models. Preliminary results of
our study have been presented in Ref. [22].

This paper is organized as follows: in Sec. II we describe
the setup of the Monte Carlo simulation and the cluster

TABLE I. Cluster versus heat-bath in Z(5) on a 642 lattice at three
values of β: autocorrelation time τ for three observables (energy,
magnetization ML, and population SL), number of thermalization
sweeps, and computer time for 50 000 updates.

Energy ML SL Thermalization Time

β = 0.80
cluster 5.135(82) 1.528(38) 1.494(39) ∼10 46.69 s
heat-bath 5.43(33) 12.83(27) 12.65(28) ∼100 1290 s

β = 1.10
cluster 7.36(11) 5.56(10) 7.18(11) ∼10 45.14 s
heat-bath10.11(48) 48.3(4.8) 60.6(6.1) ∼1000 1194 s

β = 1.50
cluster 8.97(17) 8.71(17) 8.84(17) ∼100 42.60 s
heat-bath 2.38(12) 3.73(15) 3.78(13) ∼6500 1064 s
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FIG. 1. (Color online) Scatter plot of the complex magnetization ML at β = 0.80,1.10,1.50 in Z(5) on a 642 lattice.

algorithm; in Sec. III we introduce the observables adopted in
this work and study the transition from the high-temperature
to the massless phase; in Sec. IV we move on to consider the
transition from the massless to the low-temperature ordered
phase; finally, in Sec. V we draw our conclusions. In the
Appendix we check the consistency of our determination of
the critical couplings with the duality transformations.

II. ALGORITHM AND NUMERICAL SETUP

In this work we concentrate our attention on the model
defined by Eqs. (1) and (2), with only one nonzero coupling,
β1 ≡ β.1 This model is also known as the N -state ferromag-
netic clock model and is a discrete version of the continuous
XY (plane rotator) model. It consists of 2D planar spins
restricted to N evenly spaced directions, with spin interaction
energy proportional to their scalar product.

The Hamiltonian of the model is

H = −β
∑
〈ij〉

cos

[
2π

N
(si − sj )

]
, si = 0,1, . . . ,N − 1,

(5)

1All forthcoming tables and plots refer to the case N = 5, but we
nevertheless present all definitions and formulas for a generic N .

with summation taken over nearest-neighbor sites. For N = 2
this is the Ising model, whereas in the N → ∞ limit we get
the XY model.

Here we develop an algorithm, valid for odd N , by which
an accurate numerical study of the model can be performed for
N = 5 (i.e., the smallest N value for which the phase structure
described in Sec. I holds).

Here are the steps of our cluster algorithm for the update of
a spin configuration si :

(i) choose randomly n in the set (0,1,2, . . . ,N − 1);
(ii) build a cluster configuration according to the following

probability of bond activation between neighboring sites ij

pij =
{

1 − exp(−2β αiαj ) if αiαj > 0,

0 otherwise,

with αk ≡ sin

[
2π

N
(sk − n)

]
;

(iii) flip each cluster with probability 1/2 by replacing all
its spins according to the transformation

si → mod(−si + 2n + N,N ),

which amounts to replacing each spin si in a cluster by the
spin sj for which αj = −αi . Equivalently, if the spins are
mapped into the N roots of unity in the complex plane, the
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FIG. 2. (Color online) Behavior of |ML| (left) and of its susceptibility χ
(M)
L (right) versus β in Z(5) on lattices with L ranging from 16 to

1024.
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FIG. 3. (Color online) Behavior of SL (left) and of its susceptibility χ
(S)
L (right) versus β in Z(5) on lattices with L ranging from 16 to 1024.

above replacement means flipping the component of each spin
transverse to the direction identified by n.

It is easy to prove that this cluster algorithm fulfills the
detailed balance.

We have tested the efficiency of the cluster algorithm
against the standard heat-bath algorithm. On a lattice with
L = 64 we simulated the model with N = 5 and deter-
mined the autocorrelation time τ of three observables: the
energy, defined in Eq. (5), the magnetization ML, and the
population SL, to be defined below. We considered three β

values (0.80, 1.10, and 1.50) lying in the high-temperature,
massless, and low-temperature phase of the model, respec-
tively. Results are summarized in Table I, whose last two
columns also give the number of sweeps needed to reach
thermal equilibrium and the computer time to collect 50 000
statistics.

At β = 0.80 and β = 1.10 the autocorrelation time in
the cluster algorithm is lower than in the heat-bath for the
energy and much lower for magnetization and population.
At β = 1.50, deep in the low-temperature ordered phase,
τ is systematically higher in the cluster than in the heat-bath.
This is a consequence of the lowering of the bond activation
probability for increasing β. This drawback, however, is
compensated by the higher simulation speed, with respect to
the heat-bath algorithm. Moreover since the two transitions
in the 2D Z(5) model are rather close (see Sections III and
IV), there is no doubt that the cluster algorithm is strongly
preferable.

The improvement brought along by the cluster algorithm
becomes more visible when the dynamical critical exponent
z is considered, defined as τ ∼ ξz, where ξ is the correlation
length. We have evaluated z in the 2D Z(5) model on lattices
with L = 16,32,64,128,256,384,512 at both transition points,
using the autocorrelation time of the magnetization ML. Since
the correlation length diverges at both points, the expected
scaling law becomes τ ∼ Lz. In all cases we found that τ

keeps almost constant at ≈7, implying z � 0 (i.e., no critical
slowing down).

The three phases exhibited by the 2D Z(5) spin model can
be characterized by means of two observables: the complex
magnetization ML and the population SL.

The complex magnetization is given by

ML = 1

L2

∑
i

exp

(
i
2π

N
si

)
≡ |ML|eiψ . (6)

In Fig. 1 we show the scatter plot of ML on a lattice with L =
64 in Z(5) at three values of β, each representative of a different
phase: β = 0.80 (high-temperature, disordered phase), β =
1.10 (BKT massless phase), and β = 1.50 (low-temperature,
ordered phase). As shown, we pass from a uniform distribution
(low β) to a ring distribution (intermediate β) and finally to
five isolated spots (high β).

The naive average of the complex magnetization constantly
gives zero, therefore ML is not an order parameter. Instead, an
observable to detect the transition from one phase to the other
is the absolute value |ML| of the complex magnetization. In
Fig. 2 we show the behavior of |ML| and of its susceptibility,

χ
(M)
L = L2(〈|ML|2〉 − 〈|ML|〉2), (7)

in Z(5) on lattices with L ranging from 16 to 1024 over a
wide interval of β values. On each lattice the susceptibility
χ

(M)
L clearly exhibits two peaks, the first of them, more

pronounced than the second, identifies the pseudocritical
coupling β(1)

pc (L) at which the transition from the disordered to
the massless phase occurs, whereas the second corresponds to
the pseudocritical coupling β(2)

pc (L) of the transition from the
massless to the ordered phase. It is evident from Fig. 2 that
|ML| is particularly sensitive to the first transition, thus making
this observable the best candidate for studying its properties.

As the order parameter to better detect the second transition
(i.e., that from the massless to the ordered phase) we chose
instead the population SL, defined as

SL = N

N − 1

[
maxi=0,N−1(ni)

L2
− 1

N

]
, (8)

where ni represents the number of spins of a given configura-
tion which are in the state si . In a phase in which there is not
a preferred spin direction in the system (disorder), we have
ni ∼ L2/N for each index i, therefore SL ∼ 0. Otherwise, in
a phase in which there is a preferred spin direction (order), we
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TABLE II. Values of β (1)
pc in Z(5) on L2 lattices. The last two

columns give the susceptibility χ
(M)
L and the magnetization |ML| at

the infinite-volume coupling constant β (1)
c = 1.0510.

L β (1)
pc χ

(M)
L (β (1)

c ) |ML|(β (1)
c )

16 0.8523(20) — —
32 0.91429(90) — —
64 0.95373(40) — —
128 0.98054(30) — —
256 0.99838(20) — —
384 1.00621(10) 187.9(1.2) 0.48929(13)
512 1.01112(20) 311.5(2.0) 0.47181(13)
640 — 458.6(3.4) 0.45918(11)
768 — 631.3(4.2) 0.44863(11)
896 — 824.4(5.2) 0.44004(11)
1024 1.01991(10) 1040.0(6.9) 0.43277(11)

have ni ∼ L2 for a given index i, therefore SL ∼ 1. In Fig. 3
we show the behavior of SL and of its susceptibility

χ
(S)
L = L2(〈S2

L

〉 − 〈
SL

〉2)
, (9)

in Z(5) on lattices with L ranging from 16 to 1024 over a
wide interval of β values. Again the peaks signaling the two
transitions are clearly visible and their positions agree with
Fig. 2, but now the second one is more pronounced. Other
observables which have been used in this work are the real
part of the rotated magnetization, MR = |ML| cos(Nψ), and
the order parameter introduced in Ref. [20], mψ = cos(Nψ),
where ψ is the phase of the complex magnetization defined in
Eq. (6).

In the next two sections we will study separately the two
transitions of 2D Z(5) and determine some of the related
critical indices. For all observables considered in this work we
typically collected 100 000 measurements, on configurations
separated by ten updating sweeps. For each new run the first
10 000 configurations were discarded to ensure thermalization.
Data analysis was performed by the jackknife method over bins
at different blocking levels.
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FIG. 4. (Color online) Reduced fourth-order Binder cumulant
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III. THE TRANSITION FROM THE HIGH-TEMPERATURE
TO THE MASSLESS PHASE

The first inflection point in the plot of the magnetization
|ML| and the first peak in the plot of the susceptibility χ

(M)
L

(see Fig. 2) indicate the transition from the disordered to the
massless phase. The couplings where this transition occurs
[denoted as the pseudocritical couplings β(1)

pc (L)] have been
determined by a Lorentzian interpolation around the peak of
the susceptibility χ

(M)
L . Their values are summarized in the

second column of Table II. We observe that when the lattice
size L grows, β(1)

pc (L) increases toward the infinite-volume

critical coupling β(1)
c and that the susceptibility χ

(M)
L goes to

zero less rapidly for β > β(1)
pc , as expected in the BKT scenario.

In order to apply the finite-size scaling (FSS) program,
the location of the infinite-volume critical coupling β(1)

c is
needed. In Refs. [23,24] this was done by extrapolating
the pseudocritical couplings to the infinite-volume limit,
according to a suitable scaling law. First-order transition is
ruled out by the data in Table II. Second-order transition,
though not incompatible with the data in Table II, is to be
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FIG. 6. (Color online) Reduced fourth-order Binder cumulant
U

(M)
L versus (β − βc)(ln L)1/ν , for βc = 1.0510 and ν = 1/2 on

lattices with L ranging from 128 to 1024.
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TABLE III. Results of the fit to the data of |ML|(β (1)
c ) with the

scaling law [Eq. (13)] on L2 lattices with L � Lmin.

Lmin A β/ν χ 2/NDOF

384 1.0299(21) 0.12508(32) 1.3
512 1.0294(32) 0.12501(47) 1.7
640 1.0371(49) 0.12610(71) 0.40
768 1.0305(89) 0.1252(13) 0.021

excluded due to the vanishing of the long-distance correlations
combined with the clusterization property (we will come back
to this point in Sec. V). Therefore, we assume that the transition
is of the BKT type and adopt the scaling law dictated by the
essential scaling of the BKT transition (i.e., ξ ∼ ebt−ν

) which
reads

β(1)
pc = β(1)

c + A

(ln L + B)1/ν
. (10)

The index ν characterizes the universality class of the system.
For example, ν = 1/2 holds for the 2D XY universality class.

Unfortunately, four-parameter fits of the data for β(1)
pc (L)

give very unstable results for the parameters. This led us to
move to three-parameter fits of the data, with ν fixed at 1/2.
We found, as best fit with the MINUIT optimization code,

β(1)
c = 1.0602(20), A1 = −2.09(20), B1 = 0.27(18),

χ2/NDOF = 0.48 (where NDOF indicates degrees of freedom),

Lmin = 64.

We observe that β(1)
c is rather far from the value of β(1)

pc on
the largest available lattice, thus casting some doubts on the
reliability of the extrapolation to the thermodynamic limit.
For this reason, we turned to an independent method for the
determination of β(1)

c , based on the use of Binder cumulants.
In particular, we considered the reduced fourth-order

Binder cumulant U
(M)
L defined as

U
(M)
L = 1 − 〈|ML|4〉

3〈|ML|2〉2
, (11)

and the cumulant B
(MR)
4 defined as

B
(MR )
4 = 〈|MR − 〈MR〉|4〉

〈|MR − 〈MR〉|2〉2
. (12)

Plots of the various Binder cumulants versus β show that
data obtained on different lattice volumes align on curves that
cross in two points, corresponding to the two transitions (see
Figs. 4 and 5). We used also the reduced fourth-order Binder
cumulant of the action which showed no crossing points nor

TABLE IV. Results of the fit to the data of χ
(M)
L (β (1)

c ) with the
scaling law [Eq. (14)] on L2 lattices with L � Lmin.

Lmin A γ/ν χ 2/NDOF

384 0.00586(30) 1.7438(80) 0.060
512 0.00602(48) 1.740(12) 0.018
640 0.00598(81) 1.741(20) 0.025
768 0.0062(14) 1.735(34) 0.0063

0 50 100 150
R

0.21

0.22

0.23

0.24

0.25

η ef
f

(1
)

L=384

L=512 L=640

L=768
L=896

L=1024

FIG. 7. (Color online) η
(1)
eff versus R at β (1)

c = 1.0510 on lattices
with L = 384,512,640,768,896,1024.

volume-dependent dips, thus confirming the absence of first-
order phase transitions.

We determined the crossing point by plotting the Binder
cumulants versus (β − βc)(ln L)1/ν , with ν fixed at 1/2, and
by looking for the optimal overlap of data from different
lattices using the χ2 method (see Fig. 6 for an example of
this kind of plot). As a result of this analysis we arrived at the
following estimate: β(1)

c = 1.0510(10). We observe that β(1)
c

is not compatible with the infinite-volume extrapolation of
the corresponding pseudocritical couplings, thus confirming
our previous worries about the safety of the infinite-volume
extrapolation of β(1)

pc . It should be noted, however, that a fit to
β(1)

pc (L) with the law (10) and with β(1)
c fixed at 1.0510 and ν

fixed at 1/2 gives a good χ2/NDOF if only the three largest
volumes are considered in the fit.

We have also tested the strong-coupling prediction of
Ref. [5] suggesting ν = 0.22. In particular, we have plotted
the Binder cumulant U

(M)
L versus (β − βc)(ln L)1/ν , with ν

fixed now at the candidate value 0.22. We have seen that when
βc varies on a wide interval the overlap among curves from
different lattices is always rather poor.

We are now in the position to extract other critical indices
and thus check the hyperscaling relation. According to the

TABLE V. Values of β (2)
pc in Z(5) on L2 lattices. The last two

columns give the susceptibility χ
(MR )
L and the rotated magnetization

MR at the infinite-volume coupling constant β (2)
c = 1.1048.

L β (2)
pc χ

(MR )
L (β (2)

c ) MR(β (2)
c )

16 1.1323(19) – –
32 1.1363(11) – –
64 1.13212(60) – –
128 1.12875(66) – –
256 1.12290(16) – –
384 1.12103(50) 47116(77) 0.1618(18)
512 1.11912(28) 80057(139) 0.1575(19)
640 – 120777(229) 0.1557(20)
768 – 169358(298) 0.1517(19)
896 – 224879(339) 0.1502(16)
1024 1.11596(38) 288151(532) 0.1473(18)
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FIG. 8. (Color online) Behavior of mψ versus β on lattices with
L ranging from 128 to 1024.

standard FSS theory, in an L × L lattice at criticality the
equilibrium magnetization |ML| should obey the relation
|ML| ∼ L−β/ν for sufficiently large L.2 We performed a fit
to the data of |ML|(β(1)

c ) (reported in the last column of
Table II) on all lattices with size L not smaller than a given
Lmin according to the scaling law

|ML| = AL−β/ν (13)

and summarized our results in Table III.
The FSS behavior of the χ

(M)
L susceptibility defined in

Eq. (7) is given by χ
(M)
L ∼ Lγ/ν , where γ /ν = 2 − η and η

is the magnetic critical index. We performed a fit to the data
of χ

(M)
L (β(1)

c ) (reported in the third column of Table II) on all
lattices with size L not smaller than a given Lmin according to
the scaling law

χ
(M)
L = ALγ/ν (14)

and summarized our results in Table IV. As we can see,
for all values of Lmin considered, the value of the magnetic
index3 η(1) ≡ 2 − γ /ν is compatible with 1/4. Note also
that the hyperscaling relation γ /ν + 2β/ν = d, where d is

2The symbol β here denotes a critical index and not, obviously, the
coupling of the theory. In spite of this inconvenient notation, we are
confident that no confusion will arise, since it will always be clear
from the context which β is to be referred to.

3The notation (1) in η means “at the infinite-volume critical coupling
of the first transition.”

TABLE VI. Results of the fit to the data of χ
(MR )
L (β (2)

c ) with the
scaling law (14) on L2 lattices with L � Lmin.

Lmin A γ/ν χ 2/NDOF

384 0.799(11) 1.8459(21) 0.23
512 0.791(17) 1.8473(32) 0.19
640 0.784(28) 1.8487(53) 0.22
768 0.793(50) 1.8470(92) 0.39

TABLE VII. Results of the fit to the data of MR(β (2)
c ) with the

scaling law (13) on L2 lattices with L � Lmin.

Lmin A β/ν χ 2/NDOF

384 0.281(26) 0.093(14) 0.15
512 0.288(41) 0.096(22) 0.18
640 0.322(77) 0.112(36) 0.12
768 0.30(12) 0.102(60) 0.19

the dimension of the system, is always satisfied within the
statistical error.

An independent determination of the magnetic index η

can be achieved by the approach developed in Ref. [23]. An
effective η index is defined through the spin-spin correlation
function 
(R), according to

η
(1)
eff (R) ≡ ln[
(R)/
(R0)]

ln[R0/R]
, (15)

with R0 chosen equal to 10, as in Ref. [23]. This quantity is
constructed in such a way that it exhibits a plateau in R if the
correlator obeys the law


(R) 
 1

Rη(T )
, (16)

valid in the BKT phase, β � β(1)
c . In Fig. 7 we show the be-

havior of η
(1)
eff (R) at the infinite-volume critical coupling β(1)

c =
1.0510 on lattices with L = 384,512,640,768,896,1024. It
turns out that a plateau develops at small distances when L

increases and that the extension of this plateau gets larger
with L, consistent with the fact that finite-volume effects are
becoming less important. The plateau value of η

(1)
eff can be

estimated at about 0.24. We checked that this result is stable
under variation of the parameter R0. The discrepancy with
the expected value of 1/4 can be explained by the imperfect
localization of the critical point and (or) by the effect of
logarithmic corrections [25,26] that we were not able to include
in our analysis.

IV. THE TRANSITION FROM THE MASSLESS TO THE
LOW-TEMPERATURE ORDERED PHASE

The second inflection point in the plot of the population SL

and the second peak in the plot of the susceptibility χ
(S)
L (see

Fig. 3) indicate the transition from the massless to the ordered
phase. The couplings where this transition occurs [denoted as
the pseudocritical couplings β(2)

pc (L)] have been determined by
a Lorentzian interpolation around the peak of the susceptibility
χ

(S)
L . Their values are summarized in the second column of

Table V.
Available results [5,11] suggest that the correlation length

diverges according to the essential scaling scenario when the
critical point is approached from above. Our aim is to check
the validity of this statement and then extract relevant indices
characterizing the system at this transition. Again, first-order
transition is ruled out by the data in Table V (and by the
aforementioned analysis of the Binder cumulant of the action),
while second-order transition is not. We assume that a BKT
transition is at work here and, therefore, that pseudocritical
couplings scale with L according to the law (10). As before,
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FIG. 9. (Color online) Correlation between χ
(MR )
L Lη−2 and the Binder cumulant B

(MR )
4 for (a) η = 0.26 and (b) η = 0.16 on lattices with L

ranging from 128 to 1024. For η = 0.26 (a) data from different lattices tend to fall on a universal curve in the lower branch, corresponding to
β values in the region of the first transition. For η = 0.16 (b) data from different lattices tend to fall on a universal curve in the upper branch,
corresponding to β values in the region of the second transition.

four-parameter fits of the data for β(2)
pc (L) are unstable and we

moved to three-parameter fits of the data, with ν fixed at 1/2,
and found that the parameter B2 turns out to be compatible
with zero so that, in fact, a two-parameter fit works well:

β(2)
c = 1.1042(12), A2 = 0.578(41), B2 = 0,

χ2/NDOF = 0.61, Lmin = 128.

Now β(2)
c is not far from the value of β(2)

pc on the largest available
lattice, thus supporting the reliability of the extrapolation to
the thermodynamic limit.

In order to localize the critical coupling β(2)
c , we looked

for the crossing point at higher β of the Binder cumulant
B

(MR )
4 defined in Eq. (12) and repeated the analysis based

on the optimal overlap of data points when they are plotted
against (β − βc)(ln L)1/ν , with ν fixed at 1/2. The same
procedure was also carried out using the observable mψ ,
which is itself an RG-invariant quantity and therefore shares
the same properties as a Binder cumulant (see Fig. 8 for the
behavior of mψ versus β on various lattices, which shows

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mψ

0.0

0.2

0.4

0.6

0.8

M
R

 L
η/

2

L=128
L=256
L=384
L=512
L=1024

η=0.16

FIG. 10. (Color online) Correlation between MRLη/2 and mψ for
η = 0.16 on lattices with L ranging from 128 to 1024.

two crossing points, the one at higher β corresponding to
the transition from the massless to the ordered phase). This
analysis led to the result β(2)

c = 1.1048(10), which agrees
with the infinite-volume extrapolation of the corresponding
pseudocritical couplings.

We can now determine the ratios of critical indices β/ν

and γ /ν as we did in Sec. III. It should be noted, however,
that the population SL and its susceptibility are not suitable
observables for this purpose, since they are defined in a
nonlocal manner and, thus, not directly related to the two-point
correlator. Instead we use the rotated magnetization MR

and its susceptibility χ
(MR)
L and compare their values at the

infinite-volume critical coupling β(2)
c (see the last two columns

of Table V) with the scaling laws (13) and (14), respectively.
Results for β/ν and γ /ν are summarized in Tables VI and
VII. All the values for η(2) = 2 − γ /ν given in Table VI are
in agreement with the prediction 4/N2, which gives 0.16 for
N = 5. The hyperscaling relation γ /ν + 2β/ν = d is always
satisfied within the statistical error.

-4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00

(β−β
c
) L

1/ν

0.35

0.40

0.45
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0.65

U
L

(M)

L=128
L=256
L=384
L=512
L=1024

β
c
=1.0425

ν=2

FIG. 11. (Color online) Reduced fourth-order Binder cumulant
U

(M)
L versus (β − βc)L1/ν , for βc = 1.0425 and ν = 2 on lattices with

L ranging from 128 to 1024.
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FIG. 12. (Color online) Specific heat CV measured on lattices
with L ranging from 16 to 1024.

The determination of the magnetic critical index based on
the effective η index defined in (15) is plagued, in this region
of values of β, by a sizable dependence on the choice of the
arbitrary parameter R0. The shape of the curves for ηeff(R)
and the way they depend on R0 suggest that logarithmic
corrections to the scaling could be at work here. However, our
data are not accurate enough to include them reliably in our
fits.

We conclude this section by presenting several examples
of a posteriori checks of consistency of our determinations
for η(1) and η(2). The basic idea is to build plots in which
we correlate two RG-invariant quantities and to check that
sequences of data points corresponding to different values of
β fall on a universal curve, irrespective of the lattice size
L [27,28].

The first example is the plot of the rescaled susceptibility
χ

(MR)
L Lη−2 against the Binder cumulant B

(MR )
4 . One can

see from Fig. 9(a) that, for η = 0.26 � η(1), data points
from different lattices fall on the same curve in the lower
branch corresponding to β values in the region of the first
transition. For η = 0.16 � η(2), on the contrary, data points
from different lattices fall on the same curve in the upper
branch, corresponding to β values in the region of the second
transition [see Fig. 9(b)].

Another example is provided by the plot of the rescaled
magnetization MRLη/2 against mψ . For η = 0.16 � η(2),
again, data points from different lattices fall on the same curve
(see Fig. 10).

V. DISCUSSION AND CONCLUSIONS

In this paper we have presented a wealth of numerical data
aimed at shedding light on the phase structure of the 2D Z(5)
vector model. By means of a Monte Carlo cluster updating
algorithm, designed to work for Z(N) models with odd N , we
have outlined a scenario compatible with the existence of three
phases: disordered (small β), massless or BKT (intermediate
β), ordered (large β). We have determined (i) the critical points
β(1)

c and β(2)
c in the infinite-volume limit by means of the FSS of

suitable Binder cumulants, and (ii) the critical indices β/ν and

γ /ν at the two critical points by means of the FSS of suitable
definitions of the magnetization and of its susceptibility.

The determination of β(2)
c has been cross-checked with

the infinite-volume extrapolation of the (volume-dependent)
pseudocritical couplings of the second transition, assuming
essential scaling. We have found the following values of the
critical couplings: β(1)

c = 1.0510(10) and β(2)
c = 1.1048(10).

As mentioned in Sec. I, values of the critical points are related
by the duality transformations. In the Appendix we check,
via the duality, the accuracy of our predictions and show that
our determination of the critical couplings is in rather good
agreement with it.

The determination of the index η(1) = 2 − γ /ν at the
first transition has been cross-checked with the effective
η index method. The values of the index γ /ν at both critical
points agree well with theoretical predictions obtained for the
Villain formulation [5] thus supporting the conjecture that both
standard and Villain formulations are in the same universality
class. The behavior of the complex magnetization as well
as the two-point correlation function strongly indicate that
the intermediate phase is a massless phase whose symmetry
is U(1). Moreover, using spin-wave–vortex approximation
and conventional perturbation theory one can calculate the
two-point correlation function analytically and extract the
perturbative beta function in the intermediate phase. It turns
out that the beta function vanishes in this phase, a property
which further supports the presence of the BKT transition and
massless phase.

For completeness, we have tested a scenario in which both
transitions are second order. In this case, the infinite-volume
extrapolation of the pseudocritical couplings should obey

β(1,2)
pc = β(1,2)

c + A

L1/ν
,

whereas the overlap method of the Binder cumulants should
work when data are plotted against (β − βc)L1/ν . Under these
conditions, we found

β(1)
c = 1.0425(25), 1/ν(1) = 0.50(5),

β(2)
c = 1.1075(25), 1/ν(2) = 0.45(5).

In Fig. 11 we show the overlap of the curves for the Binder
cumulant U

(M)
L obtained on various lattices when plotted

versus (β − βc)L1/ν , with 1/ν fixed at 0.5 and βc = 1.0425.
The quality of the overlap seems to be better overall than in
the BKT scenario of Fig. 6, but a closer inspection shows that
it is worse in the region near the critical point.

Second-order transition at β(1)
c , however, should be ex-

cluded by the numerical evidence that the intermediate phase is
massless. In particular, two-point correlators tend to vanish at
large distances for large volumes, whereas one should expect
spontaneous symmetry breaking and nonvanishing values of
long-distance correlations in the case of second-order phase
transition. The exclusion of the second-order transition at
β(2)

c seems to be a more subtle problem, at least on the
numerical side. One should probably simulate the system
on larger lattices to reliably distinguish the BKT scenario
from the second-order one, if we deal with the quantities
studied so far. However, one could consider more traditional
observables to determine the order of the phase transition. The
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BKT phase transition is of infinite order. In particular, it is
expected that the singular part of the free energy of the XY

model behaves like Fs ∼ ξ−2. Hence, all derivatives of the
free energy are analytic functions of the temperature. In turn,
the second derivative of the free energy shows a finite jump
if the system undergoes a second-order phase transition. We
have decided, therefore, to compute the specific heat CV of
the Z(5) model. Figure 12 shows the result of simulations for
various lattice sizes. As suggested by this plot, the specific
heat shows neither a divergence nor a finite jump. We interpret
this behavior as further evidence in favor of the infinite-order
phase transition. On the theoretical side, the second-order
transition seems incompatible with the analysis of the dual
transformations [15,16].

As discussed in Sec. I, in a recent work [19] it has been
claimed that the phase transition at β(1)

c is not a standard BKT
phase transition. The main tool in the analysis of Ref. [19]
was the helicity modulus ϒ , which was not considered in
this work. The key observation in Ref. [19] was that the
helicity modulus does not jump to zero across the phase
transition. This property prompted the authors of Ref. [19]
to conclude that the phase transition at β(1)

c is a weaker
cousin of the standard BKT transition. Our data indicate
that such behavior of the helicity modulus seems to have
no influence on other characteristic features of the phase
transition. Most important is the fact that both standard and
Villain formulation are still in the same universality class since
they show equal critical indices. Moreover, one could consider
the critical index which governs the behavior of the helicity
modulus [29]

ϒ ∼
(

T − Tc

Tc

)υ

, υ = 2β − ην.

Our data for the indices β and η(1) are compatible with a
vanishing value of υ. Thus, ϒ = const right at the critical
point. Obviously, υ = 0 also for the Villain model. The
nonvanishing value of ϒ at β < β(1)

c seems to characterize the
high-temperature phase rather than the massless BKT phase.
Indeed, a physical interpretation given in Ref. [19] refers to the
lack of free vortices in the high-temperature phase of the Z(5)
models. It would then be interesting and important to study the
dynamics of the vortex-antivortex pairs in both formulations.
These dynamics can indeed be different. This task, however,
is beyond the scope of this paper.
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APPENDIX

Consider the general Z(5) vector Potts model with
Boltzmann weight given by

Q(s) = 1 + 2x(β) cos
2π

5
s + 2y(β) cos

4π

5
s.

Duality transformations read [14]

xd (β) = [1 + 2x(β) cos(2π/5) + 2y(β) cos(4π/5)]/

× [1 + 2x(β) + 2y(β)],

yd (β) = [1 + 2x(β) cos(4π/5) + 2y(β) cos(2π/5)]/

× [1 + 2x(β) + 2y(β)].

The initial couplings x(β) and y(β) can be calculated from the
Fourier transform of the original Boltzmann weight and in our
case they are given by

x(β) = [ − 1 −
√

5 + (−1 +
√

5)e
√

5β

2 + 2e
1
4 (5+√

5)β
]/

× [
4 + 4e

√
5β

2 + 2e
1
4 (5+√

5)β]
, (A1)

y(β) = [ − 1 +
√

5 − (1 +
√

5)e
√

5β

2 + 2e
1
4 (5+√

5)β
]/

× [
4 + 4e

√
5β

2 + 2e
1
4 (5+√

5)β
]
. (A2)

It follows that

xd (β) = e
1
4 (−5+√

5)β, (A3)

yd (β) = e− 1
4 (5+√

5)β. (A4)

Now, consider original and dual partition functions,

Z[x(β),y(β)] = C(β) Z[xd (β),yd (β)].

They have the same form and differ only by a smooth function
C(β). Suppose the original partition function is critical at β(1)

c

and β(2)
c . These values correspond to (x(1),y(1)) and (x(2),y(2)).

Let (x(1)
d ,y

(1)
d ) and (x(2)

d ,y
(2)
d ) be the values of dual couplings

at critical points. The interaction in the original and dual
partition functions is the same. Therefore, numerical values
of the critical points in terms of (x,y) and (xd,yd ) should be
the same. However, we know from the solution of the self-dual
equation (see [14]) that the self-dual point is not a critical point
for the vector Potts model. This leaves only one possibility: at
the critical points one must have

x(1) = x
(2)
d , y(1) = y

(2)
d

and

x(2) = x
(1)
d , y(2) = y

(1)
d .

Results for critical points reported in the text are β(1)
c = 1.051

and β(2)
c = 1.1048. So, we easily find from Eqs. (A1)–(A4)

x(1.051) = 0.466 532, xd (1.1048) = 0.466 08

y(1.051) = 0.136 626, yd (1.1048) = 0.135 523

and

x(1.1048) = 0.485 097, xd (1.051) = 0.483 733

y(1.1048) = 0.149 612, yd (1.051) = 0.149 378.
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