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Bose-Einstein condensation and a two-dimensional walk model
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We introduce a two-dimensional walk model in which a random walker can only move on the first quarter of a
two-dimensional plane. We calculate the partition function of this walk model using a transfer matrix method and
show that the model undergoes a phase transition. Surprisingly the partition function of this two-dimensional walk
model is exactly equal to that of a driven-diffusive system defined on a discrete lattice with periodic boundary
conditions in which a phase transition occurs from a high-density to a low-density phase. The driven-diffusive
system can be mapped to a zero-range process where the particles can accumulate in a single lattice site in the
low-density phase. This is very reminiscent of real-space Bose-Einstein condensation.

DOI: 10.1103/PhysRevE.83.041112 PACS number(s): 05.70.Fh, 05.70.Ln, 05.50.+q

I. INTRODUCTION

Over the last couple of years there has been a growing
interest in studying the connections between one-dimensional
driven-diffusive systems and two-dimensional walk models
[1–4]. It has been shown that a properly defined steady-state
normalization factor, called the partition function, of some
of the one-dimensional driven-diffusive systems with open
boundaries obtained using a matrix product method (reader
can see [5] for a review) is equal to the partition function of a
two-dimensional walk model obtained using a transfer matrix
method [1,6,7].

It is known that the one-dimensional driven-diffusive
systems exhibit a variety of interesting critical behaviors, such
as nonequilibrium phase transition and real-space conden-
sation, by changing their microscopic reaction rates. In [8]
the authors have shown that the phase transitions in the
steady-state of nonequilibrium systems can be investigated and
classified using the Lee-Yang theory of phase transitions. The
asymmetric simple exclusion process (ASEP) is known as the
simplest system among the one-dimensional driven-diffusive
systems [9]. In an inhomogeneous version of this process
(also known as the ASEP in the presence of the impurities or
second-class particles) the particles hop in a preferred direction
with different hopping rates on a one-dimensional lattice with
periodic boundary conditions [9–12]. It has been shown that
there is an exact mapping from this process to a zero-range
process in which the particles behave like bosons and the
steady state is a product measure [12]. The zero-range process
was first introduced into the mathematical literature as an
example of interacting Markov processes. By fine tuning of the
microscopic hopping rates, a finite fraction of a system’s mass
can accumulate within a microscopic region of the system.
This can be thought of as a traffic jam. In an equivalent
zero-range process, it turns out that the average number of
the particles at a single lattice site in this phase can be of
order of the system size. This is in contrast to the exclusion
process where each lattice site can be only occupied by a
single particle. The condensation in this phase reminds us of
real-space Bose-Einstein condensation [11,12].
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In recent years different types of walk models have
been introduced where some of these models can describe
physical phenomena such as polymer phase transitions. Some
examples are given in [13]. As we mentioned earlier, two-
dimensional versions of these models have been adopted to
describe nonequilibrium phase transition in one-dimensional
driven-diffusive systems with open boundaries. To the best
of our knowledge the walk models, counterpart of the one-
dimensional driven-diffusive systems with periodic boundary
conditions, have not been widely studied.

In this paper we introduce a two-dimensional walk model
and calculate its partition function using a transfer matrix
method. We then investigate the critical behaviors of this walk
model. Finally, we show that the partition function of the walk
model is exactly equal to that of an exactly solvable one-
dimensional driven-diffusive system with periodic boundary
condition. It is known that this driven-diffusive system can be
mapped to a zero-range process in which a phase transition
into a Bose condensate occurs.

II. THE WALK MODEL

Consider a walk model in which a random walker starts
from the origin (0,0) and takes a finite number of steps
on Z2

+ = {(i,j ) : i,j � 0 are integers} according to two forth-
coming rules. We assign a weight to each step taken by the
random walker. All the paths made by the random walker are
weighted. The weight of a given path will be equal to the
product of the weights of the consecutive steps in that path.
The random walker moves according to the following rules.

(1) For i � j from the lattice site (i,j ) to (i + 1,j + 1) with
a weight 1

p
where i,j = 0,1,2, . . . ,∞. This is to be referred

to as an upward step.
(2) For i � j from the lattice site (i,j ) to (i + 1,0) with a

weight pj where i,j = 0,1,2, . . . ,∞. For j �= 0 (j = 0) this
is to be referred to as a downward (horizontal) step.

We will be finally interested in the paths with fixed number
of steps (fixed length) which contain a certain number of
downward and horizontal steps (equivalently upward steps);
therefore, for our later convenience we introduce an ad hoc
fugacity z and change the second rule as follows.

For i � j from the lattice site (i,j ) to (i + 1,0) with a
weight zpj where i,j = 0,1,2, . . . ,∞.
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FIG. 1. Four different paths of length 5 which end up to different
heights 0, 1, 2, and 3.

While keeping the first rule unchanged. As can be seen
the random walker does not take any steps in the negative i

direction. Let us assume that the random walker starts from the
origin (0,0) and takes N − 1 consecutive steps according to
the above mentioned rules. The reason that we have chosen the
number of steps as N − 1 will be clear later. After taking these
steps the random walker can get to the lattice site (N − 1,j )
where j = 0,1, . . . ,N − 1 through different paths. In Fig. 1
we have plotted four different paths of length 5 according
to the above mentioned rules. It is easy to see that there is
only one path which ends up at the lattice site (N − 1,N − 1)
and has the weight 1/pN−1. It can be verified that there are
2N−j−2 different ways to get to the lattice site (N − 1,j ) for
j = 0,1, . . . ,N − 2. The total weight of the paths which end
up at the lattice site (N − 1,j ) for j = 0,1, . . . ,N − 2 is equal
to z(z + 1)N−j−2/pj .

We define the partition function of the walk model as the
sum of the unnormalized weights of different paths consisting
of N − 1 steps. In what follows we show that the partition
function of the model can be obtained using a transfer matrix
method. We assume that after i steps the state (position) of the
random walker is given by the vector |j 〉 where j is the height
of the random walker measured from the horizontal axis and
can be an integer from 0 to i. These vectors have the following
properties:

|j 〉k = δj,k for j,k = 0,1, . . . ,∞,

〈j |j ′〉 = δj,j ′ for j,j ′ = 0,1, . . . ,∞,

∞∑
j=0

|j 〉〈j | = I

in which I is an infinite-dimensional identity matrix. Now we
define a transfer matrix T with the following property at each
step:

T |j 〉 = zpj |0〉 + 1
p
|j + 1〉. (1)

One can introduce the following matrix representation for the
transfer matrix T :

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

z zp zp2 zp3 · · ·
1
p

0 0 0 · · ·
0 1

p
0 0 · · ·

0 0 1
p

0 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

In fact the transfer matrix T updates the state (position) of
the random walker. The random walker starts from the origin
(0,0) which is represented by |0〉 at the zeroth step. After taking
N − 1 steps the random walker is in the state |j 〉 where j =
0,1, . . . ,N − 1. As we mentioned above, there are different
ways (along different paths) to get to the lattice site (N − 1,j ).
The total weight associated with the lattice site (N − 1,j ) is
equal to the sum of the weights associated with the paths that
end at that lattice site. It can be verified that

T N−1|0〉 =
N−2∑
j=0

z(z + 1)N−j−2

pj
|j 〉 + 1

pN−1
|N − 1〉. (3)

Finally the partition function of the model, which is equal
to the sum of the weights associated with the lattice sites
(N − 1,j ) with j = 0,1, . . . ,N − 1, can be easily calculated
by multiplying

∑∞
j=0〈j | by (3) from the left:

ZN (p,z) =
∞∑

j=0

〈j |T N−1|0〉 =
N−2∑
j=0

z(z + 1)N−j−2

pj
+ 1

pN−1

=
N−1∑
i=1

N−i−1∑
j=0

(
N − j − 2

i − 1

)
p−j zi + 1

pN−1
(4)

in which (
a

b

)
= a!

b!(a − b)!

is the usual binomial coefficient. As we mentioned above, we
are interested in the partition function of the original walk
model in a special case that after taking N − 1 consecutive
steps the random walker has taken exactly N − M upward
steps in which 1 � M � N .

In order to find the partition function of the model in this
case, let us have a closer look at the role of the fugacity z. The
weight associated with a horizontal or downward movement
is proportional to z; therefore the coefficient of zM−1 in (4)
is equal to the partition function of the walk model ZN,M (p)
which consists of exactly N − M upward steps. One can easily
use (4) to obtain the coefficient of zM−1 in ZN (p,z). For M �= 1
the result is

ZN,M (p) =
N−M∑
j=0

(
N − j − 2

M − 2

)
p−j (5)

and obviously for M = 1 one finds

ZN,1(p) = 1

pN−1
. (6)

The partition function (5) has a simple explanation in terms
of the weighted paths in our walk model. It is the sum of the
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weights of the paths of length N − 1 which precisely contain
N − M upward steps (or equivalently M − 1 horizontal and
downward steps).

As a relevant quantity, one can investigate the mean height
of the random walker h̄. The probability of being at the height
j under the above mentioned conditions is given by

PN,M (j ) = 1

ZN,M (p)

(
N − j − 2

M − 2

)
p−j . (7)

Now the height of the random walker averaged over all the
steps of each walk and over all the walks is given by

h̄ =
N−M∑
j=0

jPN,M (j ) = −p
∂ ln ZN,M (p)

∂p
. (8)

It turns out that in thermodynamic limit N → ∞ with M =
Nρ, the mean height of the random walker is given by

h̄ �
⎧⎨
⎩

N
(
1 − ρ

1−p

)
for p < 1 − ρ,

1−ρ

p−1+ρ
for p > 1 − ρ.

(9)

As can be seen, there is a phase transition in the thermodynamic
limit from a phase in which the mean height of the random
walker is of order N to another phase where it is a constant.

In what follows we show that the partition function of the
walk model (5) is exactly equal to that of a driven-diffusive
system with periodic boundary conditions. It is known that this
driven-diffusive system is equivalent to a zero-range process
in which a real-space Bose-Einstein condensation occurs.

III. AN EQUIVALENT DRIVEN-DIFFUSIVE SYSTEM

In [11] the author introduces a one-dimensional driven-
diffusive system of classical particles with hardcore interac-
tions. The system consists of a particle of type A and M − 1
particles of type B moving on a one-dimensional lattice of
length N with periodic boundary conditions. The particle of
type A hops from the lattice site i to i + 1 with rate p provided
the target lattice site is empty. The particles of type B hop from
lattice site i to lattice site i + 1 with rate 1 provided that the
target lattice site is empty. If an empty lattice site is represented
by ∅, then the dynamical rules are simply as follows:

A ∅ → ∅ A with rate p, B ∅ → ∅ B with rate 1.

A similar model has also been introduced in [9] and studied
in detail in [10]. In this model the particle of type A is called
an impurity while the particles of type B are called the normal
particles. The normal particles can overtake the impurity. The
model can be exactly solved using a matrix product method.
It turns out that the phase diagram of the model consists of
four different phases. In one of the phases the model presents
a shock, that is, a sharp discontinuity between a region of high
density of normal particles and a region of low density.

It is shown that the probability distribution of the above
mentioned system (the one without overtaking) can also be
obtained using a matrix product method [11]. Let us label the
particle of type A with 1 and the particles of type B with
2,3, . . . ,M − 1, respectively. According to the matrix product
formalism, in the steady state the probability of finding the

system in the configuration {n} = {n1,n2, . . . ,nM} in which
ni empty lattice sites lie in front of the ith particle is given by

P ({n}) = 1

ZN,M (p)
Tr(D′En1DEn2 · · · DEnM ) (10)

in which the operators D′, D, and E are associated with
the presence of a particle of type A, a particle of type B,
and an empty lattice site, respectively. The denominator in
(10) is the normalization factor (which is called the canonical
partition function) and should be calculated by considering
the conservation of number of empty lattice sites, that is,∑M

i=1 ni = N − M . Expression (10) describes the steady state
of the system provided that operators D′, D, and E satisfy the
following quadratic algebra [11]:

pD′E = D′, DE = D. (11)

The partition function ZN,M (p) in (10) has been calculated
in [11] and it turns out that it is exactly equal to that of
our walk model given in (5). In the same reference the
critical behaviors of this driven-diffusive system have been
investigated. In the thermodynamic limit N → ∞ and by
defining the density of particles ρ as M = Nρ the system
undergoes a phase transition from a low-density phase to a
high-density phase. In the low-density phase p < 1 − ρ the
number of the empty lattice sites in front of the particle of
type A is of order N . In [12] the author has shown that the
above mentioned driven-diffusive system can be mapped to
a zero-range process by converting the particles into boxes
and the empty lattice sites into particles. The low-density
phase in the driven-diffusive system now corresponds to a
Bose-Einstein condensate phase in the equivalent zero-range
process. In contrast, in the high-density phase p > 1 − ρ

the empty lattice sites are uniformly distributed between the
particles [11]. It is now easy to compare these results with
those presented in (9) for the walk model. It turns out that
the mean height of the random walker h̄ is equivalent to the
number of empty lattice sites in front of the particle of A in
the driven-diffusive system.

Now we explain (from a mathematical point of view) why
the partition function of the walk model obtained using the
transfer matrix method is equal to that of the driven-diffusive
system obtained using the matrix product method. Let us start
with the driven-diffusive system and the matrix representation
of its quadratic algebra. It can be easily verified that the
following infinite-dimensional matrix representation satisfy
the algebra (11)

D′ =
∞∑
i=0

|0〉〈i|, D =
∞∑
i=0

pi |0〉〈i|, E = 1

p

∞∑
i=0

|i + 1〉〈i|

(12)

in which |i〉j = δi,j for i,j = 0,1, . . . ,∞. Another matrix
representation for the algebra (11) is given in [5]. Although
the number of particles in the driven-diffusive system does not
change by the dynamical rules, it is much easier to calculate
the grand canonical partition function of the driven-diffusive
system by defining z as the fugacity of the particles of type B.
Later we will fix this fugacity by the density of the particles
of type B. For a system consisting of a single particle of
type A, the unnormalized weight associated with an arbitrary
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configuration is proportional to Tr(D′Xτ1 · · · XτN−1 ) in which
we have defined Xτi=0 = E and Xτi=1 = D associated with the
presence of an empty lattice site and a particle of type B at the
lattice site i, respectively. Note that in the canonical ensemble
one has

∑N−1
i=1 τi = M − 1. Now the grand canonical partition

function is given by

ZN (p,z) =
∑
{τi }

zM−1Tr
(
D′Xτ1 · · · XτN−1

)
=

∑
{τi }

Tr
(
D′zτ1Xτ1 · · · zτN−1XτN−1

) = Tr(D′CN−1)

(13)

in which we have defined C = E + zD. The density of the
particles of type B is related to their fugacity through the
following relation:

ρ = lim
N→∞

z

N

∂ ln ZN (p,z)

∂z
. (14)

Using the matrix representation (12), the grand canonical
partition function (13) can be written as follows:

ZN (p,z) = Tr

( ∞∑
i=0

|0〉〈i|CN−1

)
=

∞∑
i=0

〈i|CN−1|0〉. (15)

Using (12) it can be seen that the matrix C is exactly equal with
the transfer matrix T given in (2); therefore the grand canonical
partition function of the driven-diffusive system (13) is equal
to the partition function of the walk model (4) where we define
the ad hoc fugacity z for the horizontal and downward steps.
If we try to impose particle number conservation and adopt a
canonical ensemble, then we have to select the coefficient of
zM−1 in (15) which is exactly (5), that is, the partition function

of the walk model in the case where the number of upward
steps is equal to N − M .

IV. SUMMARY AND OUTLOOK

It seems that the connection between the two-dimensional
walk models and one-dimensional driven-diffusive systems is
of a more general validity than a couple of examples studied
thus far. The ASEP with open boundaries is an example which
has been studied in detail [9]. In [7] the authors have studied
the ASEP in the case that its steady states can be written in
terms of a superposition of multiple shocks with random walk
dynamics. It turns out that the partition function of the system
in this case is related to that of a walk model consisting of
multiple Dyck paths.

In this paper we introduced a two-dimensional walk model
and calculated its partition function using the transfer matrix
method. The paths start from the origin, but in contrast with
the perviously introduced walk models, they do not necessarily
end on the horizontal axis. We showed that this walk model is
closely related to a one-dimensional driven-diffusive system
defined on a closed lattice which can be mapped to a zero-range
process [11,12]. As it is pointed in [12] a real-space Bose-
Einstein condensation can occur in this zero-range process by
fine tuning of the microscopic hopping rates. The zero-range
processes have been extensively studied in related literatures
[14]; therefore how the zero-range processes and the walk
models are related still remains an open question.
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