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In this work we propose a statistical characterization of a linear stochastic volatility model featuring inverse-
gamma stationary distribution for the instantaneous volatility. We detail the derivation of the moments of the
return distribution, revealing the role of the inverse-gamma law in the emergence of fat tails and of the relevant
correlation functions. We also propose a systematic methodology for estimating the parameters and we describe
the empirical analysis of the Standard & Poor’s 500 index daily returns, confirming the ability of the model to
capture many of the established stylized facts as well as the scaling properties of empirical distributions over
different time horizons.
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I. INTRODUCTION

A large number of empirical studies has shown that financial
time series exhibit statistical features strongly departing from
the Gaussian behavior. This finding dates back to the work
of Mandelbrot [1] whose attention was mainly focused on
recognizing realizations of stable processes, and to the analysis
of Fama [2] concerning the long-tailed nature of the Dow Jones
Industrial Average single components. Since these fundamen-
tal contributions, the modeling of financial returns has grown
considerably and very heterogeneous models able to reproduce
the degree of asymmetry and the excess of kurtosis of the mea-
sured distributions have been proposed. A nonexhaustive list
includes approaches developing from specific distributional
assumptions, as it is the case of the Lévy flights [3–5], the
generalized Student-t , or Tsallis distributions [6–8] and the
exponential one [9]. Past empirical analysis have also proved
the existence of nontrivial scalings of higher order correlations
between returns at different times, pointing toward the exis-
tence of a secondary stochastic process as fundamental as that
of the price governing the volatility of returns. Many effective
mechanisms allowing us to reproduce the observed correlation
structures where the stochastic nature of the volatility plays
a central role were proposed. Discrete time models include
AutoRegressive Conditional Heteroskedasticity (ARCH) and
Generalized ARCH (GARCH) processes [10,11] and mul-
tifractal models [12,13] inspired by the cascades originally
introduced by Kolmogorov in the context of turbulent flows.
As far as continuous time approaches are concerned, fractional
Brownian motion and stochastic volatility models have been
extensively analyzed. For a review of the latter approach we
suggest [14] and the discussion in Sec. II. Focusing on the
continuous time stochastic volatility framework, in this work
we aim at reproducing many of the above mentioned facts
which are generally accepted as universal evidences shared
among different markets in different times.
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The structure of the paper is the following. After introduc-
ing a general class of stochastic models driving the evolution
of the volatility, in Sec. II we concentrate on a linear one able
to reproduce an inverse-gamma distribution in the long run. In
Sec. III we detail the derivation of the moments of the proba-
bility density function p(x; t) of the returns over the time lag t ,
taking into account explicitly the time at which the secondary
process has started and rigorously deriving the stationary limit
of the volatility. We describe the mechanism through which the
power law distribution of σ induces fat tails on p(x; t) for all
the finite time lags. In Secs. IV and V we derive the analytical
expressions of the leverage correlation and the volatility
autocorrelation functions, respectively. In Sec. VI we propose a
systematic methodology for estimating the model parameters,
and we apply it to the time series of the daily returns of the
Standard & Poor’s 500 index. The relevant conclusions, along
with possible perspectives, will be summarized in Sec. VII.

II. THE MODEL

We consider a model where the asset price

St = S0 exp (μ t + Xt )

is a function of the stochastic centered log-return Xt and μ is
a constant drift coefficient. We assume that Xt can be modeled
with the following stochastic differential equation (SDE):

dXt = σt dW1,t , (1)

where σt is the instantaneous volatility of the price and
dW1,t is the increment of a standard Wiener process. Since
X0 = 0 from the above assumption we have that 〈Xt 〉 = 0 and
〈ln(St/S0)〉 = μt for all t . In the context of stochastic volatility
models (SVMs) the instantaneous volatility is assumed to
be a function of an underlying driving process Yt , that is,
σt = σ (Yt ). Typically the dynamics chosen for Yt corresponds
to a particular case of the following general multiplicative
diffusion process:

dYt = (aYt + b) dt +
√

c Y 2
t + d Yt + e dW2,t , (2)
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with suitable constraints on the parameters in order to ensure
the well definiteness of the process. Moreover, the two standard
Wiener processes W1,2 are possibly correlated:〈

dW1,t1 dW2,t2

〉 = ρ δ(t1 − t2) dt, (3)

with ρ ∈ [−1,1], which is necessary to account for skewness
effects and for the return-volatility correlation. For instance,
in the Stein-Stein model [15,16] the volatility is linear,
σt ∝ Yt , and Yt follows a mean reverting Ornstein-Uhlenbeck
dynamics corresponding to a < 0, b > 0, c = d = 0. Under
the same Y dynamics but with σt ∝ exp (Yt ) we obtain the
exponential Ornstein-Uhlenbeck model [17,18]. In the Heston
model [19,20] σt = √

Yt and Yt evolves according to a
Cox-Ingersoll-Ross dynamics, stemming from (2) by taking
a < 0, b > 0 with c = e = 0. Finally, in the Hull-White
model the volatility has the same functional dependence as in
Heston, but Yt has a log-normal (nonmean reverting) dynamics
corresponding to a > 0 and b = d = e = 0.

In the econophysics literature several studies have been
devoted to assessing the statistical properties of the volatility
(see for instance Chap. 7 in [6] and [21]), especially its
distribution, and it has been recognized that the instantaneous
volatiliy, measured by suitable proxies, distributes in good
agreement with a log-normal or an inverse-gamma law. The
best fit being obtained with the latter [6] which is able to better
capture the heavy tail of the empirical distribution. None of the
previously cited models feature an inverse-gamma probability
density function (PDF) for σt , even though this distribution
has been considered previously in different contexts. For
instance, the inverse-gamma was introduced in the context
of an ARCH-like evolution of the variance in [22], and in the
statistical modeling of financial data the marginalization of
normally distributed returns conditionally on inverse-gamma
variance was widely exploited since it generates generalized
Student-t distributions (see [23,24]). However, as clarified
by the empirical analysis performed in [21], where intraday
returns are used to estimate a proxy for the daily volatility, an
inverse-gamma PDF for σ 2

t leads to an overweighting of the
tail region.

Here we propose the statistical characterization of the
simplest linear SVM able to account for this stylized fact about
the volatility. The process (2) has been extensively studied and
characterized in [25] where exact solutions for the moments
of the associated PDF have been obtained allowing us to study
its relaxation modes toward a stationary distribution, if any. In
particular, when a < 0 and d = e = 0, with c > 0, process (2)
has indeed an inverse-gamma stationary distribution, whose
support is [0, + ∞) as long as b > 0. Thereby we consider the
following SVM:

dXt = √
c Yt dW1,t , X0 = 0,

(4)
dYt = (aYt + b) dt + √

c Yt dW2,t , Yt0 = yt0 ,

where t0 � 0, yt0 may be a fixed constant or randomly sampled,
and the constant factor in the expression of the instantaneous
volatility σt = √

c Yt has been added for later convenience. As
explained in [25] the stationary PDF of σt is

�st(σ ) = λν

�(ν)

exp (−λ/σ )

σ ν+1
, (5)

where the shape parameter ν and the scale parameter λ are
given by

ν = 1 − 2a

c
and λ = 2b√

c
. (6)

III. EMERGENCE OF FAT TAILS

A major point to be discussed before presenting a detailed
derivation of our results is the different role played by the
initial time conditions for the X and Y processes. Since Xt

represents the detrended logarithmic increment of the price
over the time lag t , it can be directly measured from real
time series, and in a natural way we can assume as starting
point for this process the spot time t = 0. On the other hand,
the secondary process cannot be observed directly but some
of its statistical properties have been measured by means of
suitable proxies. In particular, for intraday frequencies there is
no clear evidence of mean reversion, that is, the high frequency
volatility is very close to its asymptotic value [26,27]. In order
to capture this evidence, we assume that the process Y , driving
the returns from 0 to t , started in the past at t0 < 0 and we will
perform the limit t0 → −∞ at the end. The assumption of
stationarity for the σt process in (1) allows us also to consider
the returns dXt as identically distributed and uncorrelated,
even though not independent variables, by virtue of the i.i.d.
property of the Wiener increments.

The structure of the model (4) allows us to compute
the moments of the PDF of Xt at all times t recursively.
Application of the Itô Lemma to the function Xn

t readily
provides

〈
Xn

t

〉 = 1

2
n(n − 1)c

∫ t

0

〈
Xn−2

s Y 2
s

〉
ds,

and the same Lemma proves that the correlation functions
between X and Y satisfy the following differential equation:

d

dt

〈
X

p
t Y

q
t

〉 = Fq

〈
X

p
t Y

q
t

〉 + Aq

〈
X

p
t Y

q−1
t

〉
+ c ρ p q

〈
X

p−1
t Y

q+1
t

〉
+ 1

2
p(p − 1)c

〈
X

p−2
t Y

q+2
t

〉
, (7)

where we defined Fk = ka + k(k − 1)c/2, Ak = kb for every
k ∈ N, and p,q ∈ N. The previous equation is a linear
ordinary differential equation (ODE) for every p and q, which
can be solved recursively starting from the lowest order of
p and q,1 and whose solution involves integration of the
moments 〈Yn

t 〉 .= μn(t ; t0) of the Y process. For every n and
every time t the latter can be expressed as a linear superposition
of exponential functions

μn(t ; t0) =
n∑

j=0

K
(n)
j exp [Fj (t − t0)] . (8)

1It is worth mentioning that a similar equation holds for the
more general dynamics (3) after defining the volatility as σt =√

c Y 2
t + d Yt + e.
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The explicit expressions of the coefficients in the above
expansion can be computed as explained in [25], and it turns
out that K

(n)
j involves the values μk(t0; t0) for k = 1, . . . ,j ,

while K
(n)
0 does not. This implies that whenever the constants

Fj are all negative, the only term surviving in the limit
t0 → −∞ is K

(n)
0 and the process loses all information about

the distribution of yt0 . It is worth noticing that even though the
moments μn(t ; t0) are homogeneous functions of time when
t0 is finite this is not true for the solution of Eq. (7) which is
obtained by integration from 0 to t with boundary condition
〈Xp

0 Y
q

0 〉 = 0 for every p > 0.2

From the analysis of Eq. (7) it can be verified that the
moments of X can always be expressed as a superposition of
exponential functions of the starting time of the volatility as
follows:

〈
Xn

t

〉 =
n∑

j=0

H
(n)
j (t) exp (−Fj t0). (9)

The coefficients H
(n)
j depend on the time lag t and, more

precisely, by virtue of the linearity of the ODEs (7) they
correspond to a combination of exponential terms weighted
by polynomial functions of t . In Appendix A we report the
explicit expressions of the coefficients H

(n)
j (t) for the cases

n = 2 and n = 3, from which it can be readily verified that
the skewness of the PDF converges to zero asymptotically for
t → +∞. A messy calculation would show that an analogous
behavior holds for kurtosis. Thus the scaling of the lowest order
moments is in full agreement with the one of the empirical
distributions over long time horizons [3,6]. When t is finite
the coefficients H

(n)
j are finite quantities themselves, and all

the relevant information about the behavior of 〈Xn
t 〉 in the

stationary limit of Y is retained by the t0 exponentials in Eq. (9).
Two cases are possible here: if all the Fj are negative (j 	= 0),
〈Xn

t 〉 is finite in the stationary limit t0 → −∞, otherwise it
diverges3 indicating the emergence of fat tails in the PDF
of Xt . The latter case applies when n > ν = 1 − 2 a/c, as
can be checked directly from the definition of Fn. Since
Fn+1 > Fn, when Fn > 0, the divergence of 〈Xn

t 〉 implies
the divergence of all the higher order moments.4 The same
condition is responsible for the divergence of the moments
μn(t) of the volatility for n > ν [see Eq. (8)] in agreement
with the fact that the stationary distribution of the volatility (5)
is an inverse-gamma distribution with tail index ν. Here we
see at work a mechanism in which the power law tail of the
stationary distribution of the volatility induces fat tails in the
return distribution for every time lag t , and its scaling for large
|x| is compatible with a power law assumption

p(x) ∼
x→±∞

1

|x|1+β
.

2From now on we will drop the dependence on t0 from the moments
μn.

3Since Fj 	= Fk for every j,k > 1 with j 	= k, no cancellation of
the divergent terms can take place in the limit t0 → −∞.

4The case ρ = 0 represents an exception since, due to symmetry
arguments, all the odd moments vanish identically.
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FIG. 1. (Color online) Scaling as a function of t0 of the second
and third moment of X at t = 1 day for a = −16.06 yr, b = 0.86 yr,
c = 17.84 yr, and ρ = −0.51, |a|/c = 0.6. Yearly units (1 yr = 250
trading days).

This is in agreement with empirical studies about the distribu-
tion of returns over daily or intraday time scales [3,6,28–30],
and from the previous considerations we are able to constrain
the tail index in the following range:

n∗ < β � n∗ + 1, (10)

where n∗ > 0 is the largest integer satisfying n∗ < ν. As an
example, in Fig. 1 it is shown the scaling of 〈X2

t 〉 and of the
absolute value of 〈X3

t 〉 as a function of the starting time of
the volatility for t = 1 day and for a choice of the parameters
corresponding to |a|/c = 0.6. For this value of the ratio the tail
index of the return distribution is 2 < β � 3 and consequently
the third moment of the stationary distribution of the volatility
diverges as t0 becomes more and more negative, while 〈X2

t 〉
approaches its finite stationary value.

IV. LEVERAGE EFFECT

For the linear model (4) the leverage measuring the corre-
lation between returns and volatility can be computed exactly.
Since the squared increment dX2 provides an estimation of the
instantaneous volatility, it can be defined through the following
function:

L(τ ; t)=
〈
dXt dX2

t+τ

〉
〈
dX2

t

〉2 . (11)

Empirically, for arbitrary t ,L(τ ; t) is found to be exponentially
decaying for positive τ and approximately zero otherwise,
meaning that a correlation exists between past returns and the
volatility in the future and not vice versa. Empirical analysis
shows that it is a short-range correlation; more precisely, the
decay time of L(τ ; t) is found to be of approximately 69 days
for U.S. stocks and even smaller, about 10 days, for indexes [6].

The numerator (11) can be rewritten as〈
dXt dX2

t+τ

〉 = c3/2
〈
ζ1,t Yt Y

2
t+τ

〉
dt2,

expressing the Wiener increment as ζt dt , where ζt is a
Gaussian noise with zero mean and 1/dt variance. The
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Novikov theorem [31,32] allows us to compute the expectation
involving ζ1,t , giving us〈

dXt dX2
t+τ

〉 = 2ρ c2H (τ )exp (aτ )

× 〈
Y 2

t Yt+τ exp [
√

c�tW2(τ )]
〉
,

where we defined �tW (τ )
.= ∫ t+τ

t
dWs . We took into account

the correlation structure (3) and we used the following
expression of the functional derivative of Y :

δYt+τ

δζ1,t

= ρ
δYt+τ

δζ2,t

= ρ
√

cH (τ ) exp (aτ )Yt exp [
√

c�W2,t (τ )],

with the Heaviside step function H (τ ) defined as zero
if τ � 0 and one otherwise. The expectation f (τ ; t,Y )
.= 〈Y 2

t Yt+τ exp [
√

c �tW2(τ )]〉 satisfies an integral Volterra
equation of the second kind, whose derivation is detailed
in Appendix B, and the final expression of the leverage
correlation reads

L(τ ; t) = 2 ρ H (τ )

μ2(t)2

{[
μ3(t) + b

a + c
μ2(t)

]

× exp

[(
2a + 3

2
c

)
τ

]
− b

a + c
μ2(t)

× exp

[(
a + c

2

)
τ

]}
, (12)

which inherits the explicit dependence on t from the moments
of Y . In order to compare the previous expression with real
data, following the discussion at the beginning of Sec. III, we
take the limit t0 → −∞ so that we can replace μ2(t) and μ3(t)
with their asymptotic values, whose general expression, valid
for n < ν, is

μn,st = K
(n)
0 =

n∏
k=1

(−1)k
Ak

Fk

. (13)

Substitution in Eq. (12) reveals that the first term vanishes and
the leverage correlation reduces to

L(τ ) = −ρ H (τ )
a(2a + c)

b(a + c)
exp

(
− τ

τL

)
, (14)

where the leverage decay time reads

τL = 2

2|a| − c
.

So, the model correctly forecasts the exponential decay ofL(τ )
and its vanishing for negative correlation times.

V. VOLATILITY AUTOCORRELATION

The volatility autocorrelation provides an estimate of how
much the volatility at time t + τ depends on the value it had
at time t and it is usually defined as

A(τ ; t) =
〈
dX2

t dX2
t+τ

〉 − 〈
dX2

t

〉 〈
dX2

t+τ

〉
√

Var
[
dX2

t

]
Var

[
dX2

t+τ

] . (15)

It is a well known stylized fact [18,33,34] that A decays with
multiple time scales and in particular it shows a long-range
memory effect vanishing over a time scale of the order of a
few years for stock indexes.

For the model under investigation, the volatility autocor-
relation can be computed exactly too. Recalling again the
Novikov theorem and the fact that δ dW1,t /δζ1,t = 1, the
correlation entering the numerator of (15) becomes〈

dX2
t dX2

t+τ

〉 = c2
〈
Y 2

t Y 2
t+τ

〉
dt2 + 2 ρc5/2H (τ )

× 〈
Y 2

t Yt+τ exp [
√

c �tW2(τ )] dW1,t

〉
dt2,

but, due to the presence of dW1,t , the second term results to be
of order O(dt3) and therefore it can be discarded. The exact
expression of the autocorrelation function 〈Y 2

t Y 2
t+τ 〉 can be

obtained as explained in Appendix C, leaving us with

A(τ ; t) = exp (aτ )

3μ4(t) − μ2(t)2

{
2b

a + c
[μ1(t)μ2(t)−μ3(t)]

+ exp [(a + c)τ ]

[
μ4(t)+ 2b

a + c
μ3(t)

−μ2(t)

(
μ2(t) + 2b

a + c
μ1(t)

)]}
,

where the denominator of Eq. (15) has been approximated with
Var[dX2

t ] = c2[3μ4(t) − μ2(t)2] dt2 in view of the stationary
limit for Y . After replacing the moments μn(t) with their
asymptotic expressions (13) we end with

A(τ ) = 1

D

(
N1e

−τ/τA
1 + N2e

−τ/τA
2
)
, (16)

where the coefficients read

D = (4a2 − 2ac − 3c2)(a + c)

c2
,

N1 = − (2a + 3c)(2a + c)

c
,

N2 = a,

and we also defined the two volatility autocorrelation time
scales as

τA
1 = 1

|a| and τA
2 = 1

2|a| − c
.

At this point it is crucial to notice that in deriving
Eqs. (14) and (16) we assumed implicitly that the moments of
Yt up to the order n = 4 do converge asymptotically. Recalling
the expression of the shape parameter ν in (6), we see this
assumption imposes

|a|
c

>
3

2
, (17)

which has to be interpreted as a consistency relation for the
model. This constraint imposes the following strict ordering
between the time scales of the model:

τA
2 < τA

1 < τL, with τA
1 >

2

3
τL, (18)

where the second inequality for τA
1 follows from the conver-

gence of third moment of Yt which requires |a|/c > 1.
The expression obtained for A fails to capture the persis-

tence of this correlation identified in several analysis reviewed
in [35]. The lacking of power law scaling would not be, in
principle, a serious drawback as long as one of the two time
scales involved in (16) was sufficiently long. However, the
ordering (18), which is peculiar to the considered model,
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TABLE I. Estimates from return sample averages. We compute
the value of the estimators A, B, C, and D for the daily log returns
of the S&P500 index during the period 1970–2010, exploiting the
means of |�X|, �X2, and |�X|3.

Estimators S&P500 daily returns

A 0.1457 yr−1/2

B 0.0295 yr−1

C 0.0107 yr−3/2

|a|/c 1.7895

makes these scales too close to each other and the volatility
autocorrelation to decay as fast as L, an undesired feature
shared with other models such as the Stein-Stein one. The
persistence of A can be accounted for by introducing a
nonlinear volatility, as it is for the exponential Ornstein-
Uhlenbeck model [18] or coupling a third stochastic equation
driving the dynamics of the long run value of Yt as in [33].
A further possibility to induce a nonexponential time decay
would be to consider a nonlinear drift term for the dynamics
of Yt , even though the analytical tractability of the present
model will not be preserved.

VI. ESTIMATION OF PARAMETERS

Now we provide a systematic methodology for estimating
the model parameters, which are the constants a, b, c entering
the dynamics of Yt , plus the correlation coefficient ρ. We per-
form the estimation over the Standard & Poor’s 500 (S&P500)
index daily returns from 1970 to 2010, approximating dXt

with �Xt = Xt+�t − Xt :

dXt ≈ �Xt = ln

(
St+�t

St

)
−

〈
ln

(
St+�t

St

)〉
,

where �t = 1/250 yr (one trading day). Taking into account
that dW1,t is independent of σt and that |�W1| is distributed
accordingly to a folded normal law, the following relations
hold for the model (4):

A
.= 〈|�X|〉

〈|�W1|〉 =
√

π

2�t
〈|�X|〉 = −√

c
b

a
,

B
.= 〈�X2〉〈

�W 2
1

〉 = 〈�X2〉
�t

= c
2b2

(2a + c)a
,

C
.= 〈|�X|3〉

〈|�W1|3〉 =
√

π

(2�t)3
〈|�X|3〉

= − 2b3 c3/2

(a + c) (2a + c) a
.

TABLE II. Estimation of the leverage time scale and its limit for
τ → 0, obtained from the fit of the empirical leverage correlation
(11) for the daily log- returns of the S&P500 index, with the model
predicted expression (14).

Estimators S&P500 daily returns

τL 0.0864 yr
L(0+) −30.9515

TABLE III. Model parameters estimated from the daily log-
returns of the S&P500 index during 1970–2010 through the relations
(19)–(22).

Parameter Estimate from S&P500

a −16.0608 yr−1

b 0.8627 yr−1

c 8.9749 yr−1

ρ −0.5089

The constants A and B can be measured directly from the data,
providing us an estimation of the ratio a/c through the relation

D
.= B

2(A2 − B)
= a

c
.

The value of these quantities extracted from the series of the
daily returns of the S&P500 index are reported in Table I.
It is crucial to observe that the value obtained for the ratio
|a|/c is compatible with the constraint (17), supporting the
consistency of our model and the convergence of the volatility
autocorrelation. Moreover, the same ratio provides an estimate
of ν = 4.579 [see Eq. (6)] implying that the order of the
highest converging moment is n∗ = 4. Consequently, relation
(10) indicates the following range for the tail index of p(x):

4 < β � 5.

The leverage correlation (14) provides a way of obtaining the
two further relations needed to fix the four free parameters
of the models. Indeed, a two parameters fit of the function
L(τ ) gives estimates for the time scale τL and for the limit
τ → 0+,

L(0+)
.= −ρ

a(2a + c)

b(a + c)
,

with the results reported in Table II and Fig. 2. In particular,
the value obtained for the leverage time scale τL ≈ 21 days
and for its amplitude L(0+) are consistent with those quoted in
past analysis of different stock indexes such as the Dow Jones

−50

−40

−30

−20

−10

0

10

−40 −20 0 20 40 60 80

L(
τ)

τ (days)

S&P500 data
Model best fit

FIG. 2. (Color online) Best fit of the empirical leverage correla-
tion with the model prediction (14) as a function of the two parameters
τL and L(0+).
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FIG. 3. (Color online) Theoretical prediction for the volatility
autocorrelation function of the daily returns of the S&P500 index
1970–2010, Eq. (16).

Industrial Average [16,33], and confirm the short range nature
of this effect.

At this point all the parameters can be recovered through
the following relations:

c = −
[
τL

(
D + 1

2

)]−1

, (19)

a = c D, (20)

b = −a + c√
c

C

B
, (21)

ρ = − b (a + c)

a (2a + c)
L(0+). (22)

The final results, reported in Table III, show a negative
correlation coefficient in agreement with the known leftward
asymmetry of daily return distributions. Moreover, our calibra-
tion provides for the relaxation time of the volatility process
a finite value τσ .= −1/a ≈ 15 days, implying that from a
practical point of view the limit t0 → −∞ is equivalent to
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FIG. 4. (Color online) Linear plot showing the comparison
between the return PDFs predicted by the model (lines) and the data
for the S&P500 index for different time scales.
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FIG. 5. (Color online) In log-linear scale, return probabilities for
the model (lines) vs S&P500 returns (points). Curves have been
shifted for sake of readability.

t0 
 −τσ . The fitted values of τL and L(0+) provide a good
description of real data (as shown in Fig. 2). On the other
hand, Fig. 3 shows that the theoretical volatility autocorrelation
for the estimated values of the parameters Eq. (16) does not
capture the long range persistence of the empirical volatility, as
expected from the constraints (18) while it describes correctly
the exponential decay for small values of τ .

Finally, it is important to compare the return PDF predicted
by the model with the data sample from which the model pa-
rameters were estimated. Since we model the return dynamics
for increasing t , it is even more important to assess to which
extent the diffusion process (4) is able to capture the scaling
properties of the empirical distribution over different time
horizons. For this aim, with the parameters fixed from the daily
S&P500 series, we reconstruct the theoretical PDFs simulating
the process at different time scales (t = 1, 3, 7, 14 days)
and we compare them with the corresponding empirical
distributions obtained aggregating the daily returns. This
comparison is shown in Figs. 4 and 5. The daily distribution is
very well reproduced by the theoretical PDF, which is able to
fully capture the leptokurtic nature of the daily data. The
plots also confirm that the diffusive dynamics (4), once the
parameters have been fixed at the daily scale, follows closely
the evolution of the empirical curves for larger t . In particular,
it captures the progressive convergence in the central region
to a distribution with vanishing skewness and kurtosis.

VII. CONCLUSIONS

In this work we have introduced a class of SVMs where the
volatility is driven by the general process with multiplicative
noise analyzed in detail in [25]. More specifically, we focused
on the set of parameters resulting in an inverse-gamma station-
ary distribution for the σt process. We provided an analytical
characterization of the moments of the return distribution,
revealing the role played by the power law behavior of the
inverse-gamma in the emergence of fat tails. Nevertheless,
even though the highest order moments of X diverge for every
time lag, the analytical expressions we obtained reveal the
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vanishing of both the skewness and the kurtosis, in agreement
with the normality of returns for long horizons. As far as
the estimation procedure is concerned, it is worth noticing
that we do not exploit directly the statistical properties of
the instantaneous volatility which is a hidden process, but
on the contrary we infer the inverse-gamma parameters from
well established robust stylized facts holding at the daily
scale. Indeed our model correctly predicts zero autocorrelation
for the returns and the short-range exponential decay of the
leverage. The persistence of the volatility autocorrelation over
yearly horizons is not captured, and in this perspective we
would like to explore the possibility of coupling a third
SDE in the same spirit of [33]. Moreover, we expect that
relaxing the time homogeneity of the processes, as done
in [25], we may induce time scalings more general than the
exponential one. We also expect the proposed dynamics to be
a good candidate to describe the price and volatility dynamics
even at higher frequencies. This belief is supported by the
empirical analysis discussed in the literature [6] concerning
the statistical properties of volatility proxies for intraday data.
A further perspective would be to explore possible ways to
characterize analytically the PDF associated to the process (4)
or its characteristic function. This task requires us to solve the
Fokker-Planck equation for the PDF or its equivalent version
in the Fourier space, analogously to what has been done
in [20] for the Heston case. Such a result would also allow
for an application of the model in the context of market risk
evaluation, possibly exploiting efficient Fourier methodologies
such as those proposed in [36,37].
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APPENDIX A: COEFFICIENTS OF 〈X2
t 〉 AND 〈X3

t 〉
Here we report the explicit expressions of the coefficients

H
(n)
j (t) entering the expansion (9) of the moments of Xt for the

cases n = 2 and n = 3. They were used to plot the analytical
curves in Fig. 1:

H
(2)
0 (t) = c K

(2)
0 t,

H
(2)
1 (t) = c K

(2)
1

[
exp (F1t) − 1

F1

]
,

H
(2)
2 (t) = c K

(2)
2

[
exp (F2t) − 1

F2

]
,

H
(3)
0 (t) = 3 ρ c2

{
t

F2

[
A2

K
(2)
0

F1
− 2K

(3)
0

]

+ 2 K
(3)
0

[
exp (F2t) − 1

F 2
2

]

+A2
K

(2)
0

F2 − F1

[
exp (F2t) − 1

F 2
2

− exp (F1t) − 1

F 2
1

] }
,

H
(3)
1 (t) = 3 ρ c2

{
1

F2 − F1

[
A2

K
(2)
1

F2 − F1
+ 2K

(3)
1

]

×
[

exp (F2t) − 1

F2
− exp (F1t) − 1

F1

]

+A2
K

(2)
1

(F2 − F1)F1

[
exp (F1t) − 1

F1
− t exp (F1t)

] }
,

H
(3)
2 (t) = 3 ρ c2

{
− A2

K
(2)
2

(F2 − F1)2

[
exp (F2t) − 1

F2

− exp (F1t) − 1

F1

]

− 1

F2

[
A2

K
(2)
2

F2 − F1
+ 2K

(3)
2

]

×
[

exp (F2t) − 1

F2
− t exp (F2t)

]}
,

H
(3)
3 (t)=6 ρ c2 K

(3)
3

F3 − F2

[
exp (F3t) − 1

F3
− exp (F2t) − 1

F2

]
,

where the coefficients K
(2)
j and K

(3)
j , entering the expansion

(8) of the moments of Yt , read

K
(2)
0 = A2A1

F2F1
,

K
(2)
1 = − A2

F2 − F1

[
μ1(t0) + A1

F1

]
,

K
(2)
2 = μ2(t0) + A2

F2 − F1

[
μ1(t0) + A1

F2

]
,

K
(3)
0 = −A3A2A1

F3F2F1
,

K
(3)
1 = A3A2

(F3 − F1)(F2 − F1)

[
μ1(t0) + A1

F1

]
,

K
(3)
2 = − A3

F3 − F2

{
μ2(t0) + A2

F2 − F1

[
μ1(t0) + A1

F2

]}
,

K
(3)
3 = μ3(t0) + A3

F3 − F2

×
{
μ2(t0) + A2

F3 − F1

[
μ1(t0) + A1

F3

]}
.

APPENDIX B: DERIVATION OF EQ. (12)

After expressing Yt+τ in terms of its integral solution form
t to t + τ , the function f (τ,t ; Y ) can be rewritten in the
form

f (τ,t ; Y )=
〈
Y 2

t

(
Yt +

∫ t+τ

t

(aYs + b) ds

)
exp [

√
c�tW2(τ )]

〉

+
〈
Y 2

t

(√
c

∫ t+τ

t

YsdW2,s

)
exp [

√
c�tW2(τ )]

〉
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= 〈exp [
√

c�tW2(τ )]〉[μ3(t) + bτμ2(t)]

+ a

∫ t+τ

t

〈
Y 2

t Ys exp [
√

c�tW2(τ )]
〉
ds

+√
c

∫ t+τ

t

〈
Y 2

t Ys exp [
√

c�tW2(τ )] dW2,s

〉
.

Taking into account that for t � s � t + τ we can always split
�tW2(τ ) as

�tW2(τ ) = W2,t+τ − W2,t = W2,t+τ − W2,s + W2,s − W2,t

= �sW2(t + τ − s) + �tW2(s − t),

the function f (τ,t ; Y ) becomes

f (τ,t ; Y ) = 〈exp [
√

c�tW2(τ )]〉[μ3(t) + bτμ2(t)]

+ a

∫ τ

0

〈
Y 2

t Yt+τ ′ exp [
√

c�tW2(τ ′)]
〉

×〈exp [
√

c�t+τ ′W2(τ − τ ′)]〉dτ ′

+√
c

∫ τ

0

〈
Y 2

t Yt+τ ′ exp [
√

c�tW2(τ ′)]
〉

×〈exp [
√

c�t+τ ′W2(τ − τ ′)] dW2,t+τ ′ 〉, (B1)

where we changed the variable of integrations to τ ′ = s − t .
Since the process

√
c �t+τ ′W2(τ − τ ′) is normally distributed

with zero mean and variance c(τ − τ ′), and recalling the
expression of the Gaussian characteristic function φG, we can
write

〈exp[
√

c�t+τ ′W2(τ − τ ′)]〉 = φG(ω)|ω=−i

= exp

[
c

2
(τ − τ ′)

]
.

Application of the Novikov theorem also gives

〈exp [
√

c�t+τ ′W2(τ − τ ′)] dW2,t+τ ′ 〉

=
〈

δ exp
(√

c
∫ t+τ

t+τ ′ ζ2,sds
)

δζW2 (t + τ ′)

〉
dτ ′ = √

c exp

[
c

2
(τ − τ ′)

]
,

where we expressed the Wiener variation in terms of a
Gaussian white noise ζ2,t as dW2,t = ζ2,t dt . Replacing the
previous expressions in Eq. (B1) we conclude that f (τ,t ; Y )
has to satisfy

f (τ,t ; Y ) − (a + c)
∫ τ

0
f (τ ′,t ; Y ) exp

[
c

2
(τ − τ ′)

]
dτ ′

= exp

(
c

2
τ

)
[μ3(t) + bτμ2(t)],

which is a Volterra equation of the second kind, whose solution
leads to Eq. (12).

APPENDIX C: COMPUTATION OF 〈Y 2
t Y 2

t+τ 〉
With reference to the model (4), the cross correlation

〈Ym
t Y n

t+τ 〉 can be computed exactly. Provided to express Yn
t+τ

as integral solution from t to t + τ

Y n
t+τ = Yn

t +
∫ t+τ

t

(
FnY

n
s + AnY

n−1
s

)
ds +

∫ t+τ

t

· · · dW2,s

it is straightforward to check that 〈Ym
t Y n

t+τ 〉 satisfies the
following equation:

d

dτ

〈
Ym

t Y n
t+τ

〉 = Fn

〈
Ym

t Y n
t+τ

〉 + An

〈
Ym

t Y n−1
t+τ

〉
, (C1)

which is an ODE provided that the correlation
〈
Ym

t Y n−1
t+τ

〉
has

been computed at the lower order n − 1. In particular, for the
case m = n = 2 we need the following correlation:〈

Y 2
t Yt+τ

〉 = exp (aτ )μ3(t) − b

a
[1 − exp (aτ )]μ2(t)

whose substitution in Eq. (C1) provides the solution〈
Y 2

t Y 2
t+τ

〉 = exp (F2τ )μ4(t)

+ A2

a − F2
[exp (aτ ) − exp (F2τ )]μ3(t)

− b

a

{
A2

F2
[exp (F2τ ) − 1]

− A2

a − F2
[exp (aτ ) − exp (F2τ )]

}
×μ2(t).
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