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Nonequilibrium phase transition in a driven Potts model with friction
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We consider magnetic friction between two systems of q-state Potts spins which are moving along their
boundaries with a relative constant velocity v. Due to the interaction between the surface spins there is a
permanent energy flow and the system is in a steady state, which is far from equilibrium. The problem is treated
analytically in the limit v = ∞ (in one dimension, as well as in two dimensions for large-q values) and for v and
q finite by Monte Carlo simulations in two dimensions. Exotic nonequilibrium phase transitions take place, the
properties of which depend on the type of phase transition in equilibrium. When this latter transition is of first
order, a sequence of second- and first-order nonequilibrium transitions can be observed when the interaction is
varied.
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I. INTRODUCTION

Friction is a basic problem in physics with important
technical implications [1]. Friction between moving bodies
and thus energy dissipation may have magnetic contributions.
This type of phenomenon takes place, for example, in
magnetic force microscopy when, performing a measurement,
a magnetic tip is moved over the surface of a magnetic
material [2–4]. Recently, magnetic friction has been modeled
in a simple setup [5], where two Ising models are put in close
contact at their surfaces and move with a constant relative
velocity v. The spins in the surface layers interact through a
coupling Kf and the relaxation process due to phononic and
electronic degrees of freedom in the material are taken into
account via a heat bath, at a fixed temperature T , to which all
the spins are coupled. In this system magnetic friction takes
place and there is a permanent energy dissipation from the
surface to the heat bath. The macroscopic motion of the bodies
represents a permanent perturbation driving the system to a
steady state which is far from equilibrium. Properties of this
nonequilibrium state have been investigated by Monte Carlo
simulations and—in the limit v = ∞ —by analytical methods
in different geometries [5–7]. In the one-dimensional (1D) case
there is an order-disorder transition at v = ∞, but the system
stays disordered for any finite v in the thermodynamic limit.
Fluctuation effects introduced by a finite size at v = ∞ have
been recently studied by Hithorst [7]. In the two-dimensional
(2D) case, when the moving systems are in contact at their 1D
surfaces, the order-disorder transition persists for any v > 0.
In all cases the nonequilibrium phase transition is found to be
of the mean-field type.

The spin degrees of freedom, which are involved in the
friction, can have different symmetries and/or different types
of interactions. As a consequence, the equilibrium phase
transition of the system at v = 0 can be different from that of
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the Ising model, thereby influencing the behavior of the system
out of equilibrium, when v > 0. In particular, the properties
of the nonequilibrium phase transition could differ from those
of a mean-field transition. Therefore, it is of interest to study
other driven systems with friction and explore the singularities
of the corresponding nonequilibrium steady states.

In the present paper we consider a generalization of the Ising
model with a discrete symmetry, the q-state Potts model [8],
which is equivalent to the Ising model for q = 2 but displays
quite different critical behaviors when q is varied. In the
equilibrium case there are detailed analytical and numerical
information about the physical properties of this system.
The model has been solved in 1D for any q, in the large-q
limit in 2D, as well as on a fully connected lattice. In 2D,
exact results are available at the phase-transition point [9],
which is of second (first) order for q � qc(2) = 4 (q > 4). In
three dimensions (3D), the limiting value qc(3) < 3. Here we
investigate the q-state Potts model with friction and study the
behavior of the steady state as well as the properties of the
nonequilibrium phase transition for different values of q as
a function of the velocity v and the friction interaction Kf .
In 1D, a nonequilibrium phase transition is present only at
v = ∞ where the problem can be solved exactly. In 2D we
study the quasistatic limit, v → 0, in which case exact results
are known about the friction force and its singularity at the
equilibrium phase transition point. At the nonequilibrium case
a numerically exact treatment is given for v = ∞ in the large-q
limit. These results are compared with numerical simulations
which are performed at finite v and for different values of q.

The structure of the paper is the following. The model
is introduced in Sec. II, and the dissipation and the friction
force in the low v limit are studied in Sec. III. We treat the
model in the limit v = ∞ in Sec. IV. Numerical simulations
performed in the 2D case for v and q finite are presented in
Sec. V and the results are discussed in Sec. VI. The solution
of the self-consistency equation for the magnetization in 1D is
given in Appendix A and details about the calculation of the
equilibrium surface magnetization of the 2D Potts model in
the large-q limit are given in Appendix B.
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FIG. 1. (Color online) Driven interacting Potts models sliding on
each other in (a) 1D and (c) 2D, with a translation by two lattice
constants between interacting sites. For infinite relative velocities,
the system can be replaced by two decoupled Potts models in (b) 1D
and (d) 2D, interacting with a set of fluctuating variables, attached
to one layer of ghost sites [green (gray) circles]. These fluctuating
variables are equivalent to an effective surface field with strength hf .

II. MODEL

We consider two identical Potts models defined by the
Hamiltonians H(s) and H(s ′), respectively, which are coupled
at their free surface by a time-dependent interaction term V(t).
The reduced Hamiltonian of the composite system takes the
form

βH(t) = βH(s) + βH(s ′) + βV(t), (2.1)

with β = 1/kBT .
In 1D [Fig. 1(a)] we have

βH(s) = −K

N∑
i=1

δ(si − si+1), (2.2)

in terms of the Potts spin variables si = 0,1, . . . ,q − 1 and
δ(n) is the Kronecker delta function. In βH(s ′), si is replaced
by s ′

i . The interaction term is given by

βV(t) = −Kf

N∑
i=1

δ(si − s ′
i+�(t)), (2.3)

where �(t) = vt and periodic boundary conditions are used,
i + N ≡ i.

In 2D [Fig. 1(c)] the Potts variable s(i,j ) are attached to
the sites (i,j ) of a square lattice. The Hamiltonian of the Potts
model is then

βH(s) = −K1

N∑
i=1

L∑
j=1

δ(si+1,j − si,j ),

−K2

N∑
i=1

L−1∑
j=1

δ(si,j+1 − si,j ), (2.4)

and similarly for βH(s ′). The couplings in the horizontal and
in the vertical directions, K1 and K2, can be different and the

interaction term takes the form

βV(t) = −Kf

N∑
i=1

δ(si,1 − s ′
i+�(t),1). (2.5)

We set periodic boundary conditions in the horizontal di-
rection, si+N,j ≡ si,j , as well as in the vertical direction,
which means that there are two equivalent sliding interfaces
in the system. The problem is generally studied in the
thermodynamic limit. Note that the 2D problem with L = 1
(i.e., with one layer in each subsystem) is formally equivalent
to the 1D problem with s(i) ≡ s(i,1).

III. DISSIPATION AND THE FRICTION FORCE FOR v → 0

To see the relation of the above model with magnetic friction
we follow Ref. [5], couple the system to a heat bath of constant
temperature T , and study its nonequilibrium properties by
Monte Carlo simulations. In our case the relaxation kinetics
is governed by the heat-bath algorithm [10]. Measuring the
energy difference, �E = E′ − E, between the original (E)
and the flipped (E′) configurations it is found that �E < 0
(i.e., energy is dissipated to the heat bath, which shows the
presence of magnetic friction in our system). More detailed
investigations are performed for the 2D problem with L × L

spins (i.e., for N = L with two L × L/2 subsystems) and with
periodic boundary conditions, in which case the dissipated
energy per spin during time t , �Ebath(t)/L2, has been
measured for different relative velocities v, and temperatures
T . We illustrate the time dependence of �Ebath(t)/L2 in Fig. 2
for v = 1 and for Kf = K1 = K2 = 1/T at a temperature
T = 1.1Tc(q), above the bulk phase transition point Tc(q) =
1/[ln(1 + √

q )] for different values of q. As for the Ising
model [5] with q = 2 the dissipated energy grows linearly
in time �Ebath(t) = P t , and the dissipation rate P depends
linearly on the velocity for small v: P = Fv, where F is the
friction force. F is found proportional to the length of the cut
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FIG. 2. Accumulated energy per spin, which is dissipated by the
heat bath during time t in a 80 × 80 lattice for different values of q.
The sliding velocity is v = 1 and the temperature is T = 1.1Tc(q),
see the text.
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FIG. 3. The magnetic frictional shear stress F/L as a function
of temperature in a 80 × 80 lattice for different values of q and a
sliding velocity v = 1. In the thermodynamic limit for q = 2 and 3
the derivative of F/L is singular at Tc(q), whereas for q = 9 and 16,
F/L has a discontinuity, which is also indicated in the figure.

L so that the magnetic frictional shear stress F/L can be used
to characterize the magnetic friction.

We have measured the magnetic frictional shear stress at
different temperatures. Data are presented in Fig. 3 for q =
2,3,9, and 16. In a finite system with 80 × 80 spins F/L

shows some kind of extremal behavior in the vicinity of the
bulk phase-transition temperature T = Tc(q). For q = 2 and
3, having a second-order equilibrium transition, the derivative
of F/L with respect to T shows a maximum, whereas for
q = 9 and q = 16, having a first-order equilibrium transition,
F/L itself is maximal around that point. In reality one is
interested in the behavior of the system in the thermodynamic
limit, in which case we define f = limL→∞ F/L. In the limit
v → 0, the sliding velocity is so slow that the system has time
to relax to equilibrium between successive relative moves of
the two subsystems. Then one can express f as the difference
between two equilibrium spin-spin correlation functions [5]. In
the original configuration E/L is proportional to the nearest-
neighbor correlation function C1 = 〈δ(si,1 − s ′

i,1)〉, and after
the displacement E′/L is proportional to the next-nearest-
neighbor correlation function C2 = 〈δ(si,1 − s ′

i,2)〉 so that the
magnetic frictional shear stress is given by f = (C2 − C1)/2,
where the division by 2 is due to the two equivalent sliding
surfaces. For the Ising model these correlations are known
[11] and thus f (T ) can be calculated exactly. Its derivative at
T = Tc shows a logarithmic singularity

df

dT

∣∣∣∣
Tc

	 2Kc

πTc

(1 −
√

2) ln

∣∣∣∣1 − T

Tc

∣∣∣∣ . (3.1)

Comparing this result with the numerical findings in Fig. 3 we
can say that in the thermodynamic limit the slope of the curve
at T = Tc and q = 2 is divergent for v → 0. We expect that
some kind of divergency will stay for a finite v also and the
finite slope in Fig. 3 is a finite-size effect. One can generalize
this result for q = 3 and more generally for systems having a
second-order equilibrium transition. Since the near-neighbor

correlations have the same type of singularity as the energy
density, we obtain in the v → 0 limit

df

dT

∣∣∣∣
Tc

∼
∣∣∣∣1 − T

Tc

∣∣∣∣
−α

, (3.2)

where α is the specific heat critical exponent of the system
(for the q = 3 Potts model it is α = 1/3). On the contrary, for
q = 9 and q = 16, and more generally for systems with a first-
order equilibrium transition, the energy density and thus the
magnetic frictional shear stress has a discontinuity at T = Tc.
Consequently the true behavior in Fig. 3 for infinite systems
is a jump for q = 9 and 16, at least in the slow displacement
(v → 0) limit. This limiting behavior is indicated by the dashed
and vertical lines in Fig. 3.

In the experimentally relevant situation the sliding velocity
is finite and the system under investigation is out of equi-
librium. In this case, as already demonstrated for the Ising
model [6], a nonequilibrium phase transition takes place in
the system. The nonanalytical behavior of the friction force in
Fig. 3 strongly suggests the existence of a nonequilibrium
phase transition for q > 2 as well. In the following we
study this nonequilibrium phase transition, first in the infinite
velocity limit, in which case the mean-field treatment is exact,
and afterward for finite v by Monte Carlo (MC) simulations.

IV. SOLUTION AT INFINITE RELATIVE VELOCITIES

A. Potts model with a fluctuating variable

The solution of the problem becomes simple at v = ∞
as noticed already for the Ising model in Ref. [6]. Here we
use a generalization of the same argument for the q-state
Potts model. The basic observation is that at v = ∞, the
spin variables si,1 and s ′

i+�(t),1 in the interaction term of
Eqs. (2.3) and (2.5) are uncorrelated. Consequently, for the
subsystem (s), the spin s ′

i+�(t) can be replaced by a randomly
chosen spin from the surface layer of the subsystem (s ′). The
same effect on si,1 is obtained if the surface spin is coupled
to a fluctuating Potts variable μi = 0,1, . . . ,q − 1, with the
following constraints on the mean values

〈δ(μi −α)〉 = 〈δ(s ′
i,1 − α)〉 = [δ(α)q − 1]mf + 1

q
, (4.1)

where mf is the mean value of the magnetization in the two
interface layers and α = 0,1, . . . ,q − 1 is a Potts variable.
Thus the interaction term in Eq. (2.5) can be replaced by
the following effective interaction for the subsystem (s) (see
Fig. 1)

δ(si,1 − s ′
i+�(t),1) → δ(si,1 − μi), (4.2)

with the probability distribution

p(μi) = 1 − mf

q
+ δ(μi)mf , (4.3)

for the fluctuating variable.
In the next step we integrate out the fluctuating variable μi

and replace its effect by an external field acting on si,1.
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B. Effective external field

Here we consider a Potts model on a general lattice,
with Hamiltonian H0 involving the Potts variables sk . These
variables are interacting with a set of fluctuating Potts variables
μk through the couplings Kk . The total reduced Hamiltonian
is given by

βHμ = βH0 −
∑

k

Kkδ(sk − μk), (4.4)

where the μk are distributed as in Eq. (4.3) with a mean value
mk .

The fluctuating variables μk can be traced out from the
partition function Zμ. Making use of the identity

eKkδ(sk−μk) = 1 + (eKk − 1)δ(sk − μk), (4.5)

one obtains

Zμ = Trs,μe−βHμ = Trse
−βH0 Trμ

∏
k

eKkδ(sk−μk)

=
∏
k

c(Kk,mk)Trse
−βH0

∏
k

[1 + d(Kk,mk)δ(sk)], (4.6)

where

c(Kk,mk) =
[

1 + (eKk − 1)
1 − mk

q

]
,

(4.7)

d(Kk,mk) = q(eKk − 1)mk

q + (eKk − 1)(1 − mk)
.

The expression for the partition function in Eq. (4.6) can be
compared to that of a Potts model, coupled to a static magnetic
field hk , and defined by the Hamiltonian

βHeq = βH0 −
∑

k

hkδ(sk). (4.8)

For this model the partition function reads

Zeq = Trse
−βHeq = Trse

−βH0
∏
k

ehkδ(sk )

= Trse
−βH0

∏
k

[1 + (ehk − 1)δ(sk)]. (4.9)

If we fix the values of the field hk to h̃k such that eh̃k − 1 =
d(Kk,mk), that is

h̃k = ln

{
1 + q(eKk − 1)mk

q + (eKk − 1)(1 − mk)

}
, (4.10)

then the partition function in Eq. (4.6) can be expressed with
the equilibrium partition function as

Zμ =
∏
k

c(Kk,mk) × Zeq(h̃). (4.11)

C. Application to the driven Potts model

Now we turn back to our original problem where two
interacting Potts models are moving with a constant relative
velocity v and have a magnetization mf at the interface in
the stationary state. In the limit v = ∞, this system can be
replaced by two noninteracting Potts models interacting with
a set of fluctuating variables, attached to one layer of ghost

sites as shown in Fig. 1. Integrating out the degrees of freedom
associated with the ghost sites, the effect of one subsystem
on the other is equivalent to a static effective surface field
with strength hf . Using the formalism of Sec. IV B, we have
mk = mf and Kk = Kf for all surface sites k, whereas H0

is the Hamiltonian of the subsystem defined in Eqs. (2.2) and
(2.4). The effective surface field is also the same for all surface
sites h̃k = hf and follows from Eq. (4.10) so that

ehf = 1 + �(mf ,Kf ),
(4.12)

�(mf ,Kf ) = qτ (Kf )mf

1 − τ (Kf )mf

,

with

τ (Kf ) = eKf − 1

eKf + q − 1
. (4.13)

The surface magnetization in the equilibrium system is
obtained as

mf,eq =
q

N

∂ lnZeq

∂hf
− 1

q − 1
, (4.14)

and must satisfy the self-consistency equation

mf,eq[hf (Kf ,mf )] = mf , (4.15)

with the appropriate values of the subsystem interactions.
When the transition is of second order, the transition

point satisfies the condition ∂mf,eq/∂mf |mf =0 = 1 [6]. Using
Eqs. (4.12) and (4.15) we arrive at

χ
(0)
f,eq

∣∣
c
q τ (Kf c) = 1, (4.16)

where χ
(0)
f,eq = ∂mf,eq/∂hf |hf =0 is the zero-field surface sus-

ceptibility of the q-state Potts model.

D. Analytical solution in 1D

The magnetization of the 1D Potts model in the presence
of an external field hf can be calculated by the transfer-matrix
method. This is explained in Appendix A where, using the
relation of Eq. (4.12) between the magnetization mf and
the effective field hf , a closed form for the self-consistency
condition in Eq. (4.15) is derived. Besides the trivial solution

m
(0)
f = 0, (4.17)

the other solutions are given by two roots of the cubic equation

a3 m3
f + a2 m2

f + a1 mf + a0 = 0, (4.18)

with coefficients

a0 = −(q − 2)[2τ (eK − 1) + q(τ − 1)],

a1 = −2τ (q − 2)2(eK − 1) − q(q − 1)

+ τ 2{[q(eK − 1) + 4(q − 1)](eK − 1) + q(q − 1)},
a2 = τ (q − 2)(eK − 1) (4.19)

×{τ [q(eK − 1) + 4(q − 1)] + 2(q − 1)},
a3 = −(q − 1)τ 2(eK − 1)[q(eK − 1) + 4(q − 1)].

As explained in Appendix A, the third root does not satisfy
the self-consistency condition in Eq. (A5). We have discarded
this nonphysical root after a direct substitution into Eq. (A5).
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The structure of the cubic polynomial is different for q = 2
(Ising model) and for q > 2. For the Ising model, due to the
up-down symmetry, the even coefficients in Eq. (4.18) are
vanishing a0 = a2 = 0 and the nontrivial solutions are

m
(±)
f = ±

√
τ 2e2K − 1

τ 2(e2K − 1)
, K � Kc. (4.20)

We have checked that these solutions are the stable ones below
the critical temperature Tc which is given by the condition

τ (Kf c)eKc = 1. (4.21)

Note that for the Ising model τ (Kf ) = tanh(Kf /2), thus we
recover the result previously obtained in Ref. [6]. As the
critical point is approached the nonequilibrium magnetization
is vanishing continuously with a critical exponent β(q = 2) =
1/2. The temperature dependence of the nonequilibrium
magnetization for the symmetric case Kf = K is shown in
Fig. 4. Here we use the temperature parameter �q , defined as

�q = q√
2(eK − 1)

. (4.22)

For the symmetric Ising model at the critical point we have
�2c = 1 [see Eq. (4.21)].

Now we turn to the solution of the non-Ising case q > 2,
looking for those roots of the cubic polynomial in Eq. (4.18)
which are the nontrivial solutions of the self-consistency
equation. We know from Cardano’s formula that the structure
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0.8

Θqc−1

mfc

q=2 4 6 8

FIG. 4. (Color online) Temperature dependence of the magneti-
zation mf of the q-state Potts chain with friction in the limit v = ∞
for the symmetric model with K = Kf . The stable (unstable)
solutions of the self-consistency equation are denoted by full (broken)
lines. The transition is of second order for q = 2 (Ising model) and
first order for q > 2. In the latter case there is a hysteresis: on heating
(cooling) the transition is at �qc (�q1 = 1). The inset gives the
deviation of the transition point �qc from the Ising value �2c = 1, as
well as the value of the jump in the magnetization on heating, mf c,
as a function of q.

of the real solutions of a cubic polynomial depends on a
discriminant defined as Disc = Q2 + P 3, with

P = −1

9

(
a2

a3

)2

+ a1

3a3
,

(4.23)

Q = 1

27

(
a2

a3

)3

− a1a2

6a2
3

+ a0

2a3
.

For Disc > 0, which happens when �q > �qc, the polynomial
has one real root and there is no nontrivial solution of
the self-consistency equation. On the contrary, Disc < 0
in the low temperature region such that 0 < �q < �qc and
the polynomial has three real roots. For the two nontrivial
solutions, such that m

(+)
f > m

(−)
f , we have checked that

m
(+)
f > 0 in the whole region whereas m

(−)
f < 0 (m(−)

f > 0)
for �q < �q1 (�q1 < �q < �qc). Thus �q1 is defined by the
condition m

(−)
f = 0. The two nontrivial solutions annihilate at

the transition point �qc.
We have studied the stability of the solutions as well as

their domains of attraction by considering the self-consistency
Eq. (A5) and varying mf on its right-hand side. The solution
m

(−)
f is always unstable, on the contrary m

(+)
f is always stable.

The region of attraction of the latter solution is 1 > mf >

0 (1 > mf > m
(−)
f ) for �q < �q1 (�q1 < �q < �qc). The

trivial root m
(0)
f = 0 is unstable for �q < �q1 and stable for

�q > �q1 with the region of attraction mf < m
(−)
f (0 � mf �

1) for �q1 < �q � �qc (�q > �qc).
The magnetization of the symmetric model for different

values of q is shown in Fig. 4 as a function of �q . For
q > 2 the nonequilibrium phase transition is first order and the
magnetization shows a hysteresis. Starting from the ordered
phase with �q < �q1 and heating the system, the magnetiza-
tion remains given by the nontrivial stable solution m

(+)
f > 0

until �qc where it jumps to m
(0)
f = 0, the trivial solution. In

the reverse process, cooling the system from the disordered
phase with �q > �qc, the magnetization remains vanishing
(m(0)

f = 0) until �q1 where it jumps to the nontrivial solution

m
(+)
f > 0. The location of the transition point �qc and the value

of the magnetization jump mf c = mf (�qc|−) − mf (�qc|+)
are shown in the inset of Fig. 4 for the symmetric model as a
function of q > 2.

For q > 2, �q1 corresponds to a vanishing nontrivial
solution m

(−)
f , thus to a0 = 0 according to Eq. (4.18). Using

Eqs. (4.13) and (4.22) to express a0 in Eq. (4.19) leads to

(
1 + q√

2�q1

)Kf /K

=
(

1 + q�q1√
2

)
. (4.24)

It follows that in the symmetric case Kf /K = 1, one obtains
�q1 = 1 as shown in Fig. 4. When Kf /K increases, the
ordered phase becomes more stable and �q1 increases as well.

The influence of the coupling ratio Kf /K on the tempera-
ture dependence of the nonequilibrium magnetization is shown
in Fig. 5 for q = 6.
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FIG. 5. (Color online) Influence of the coupling Kf between the
two chains on the temperature dependence of mf for q = 6. The
stability of the ordered phase increases with Kf (from left to right).

We have the following asymptotics for the symmetric
model. When q is close to 2, the critical point and the
magnetization discontinuity behave as

�qc ≈ 1 + 1
8 (q − 2)2, mf c ∼ q − 2. (4.25)

When �q < �qc, the magnetization approaches the limiting
value mf c with a square-root singularity

mf − mf c ∼ √
�qc − �q. (4.26)

For large-q values the transition point is located at

�qc ≈
√

q

2
[1 − aq−1/6], eKc ≈ √

q[1 + aq−1/6], (4.27)

and the magnetization discontinuity is given by

mf c ≈ 1 − bq−1/6, (4.28)

with a ≈ 0.9447 and b ≈ 0.629, thus a/b ≈ 3/2.

E. Solution in 2D for large-q values

The key point of the solution of the driven system in
the limit v = ∞ is the knowledge of the equilibrium surface
magnetization as a function of temperature and surface field.
For the Potts model in 2D, analytic results about the surface
magnetization are known for q = 2 [11] (Ising model) as well
as in the large-q limit [12–14]. The analysis for the Ising model
has been performed in Ref. [6] and here we consider the Potts
model in the large-q limit.

The 2D Potts model is defined in Eq. (2.4) with the
time-dependent interaction term given in Eq. (2.5). We treat
the problem in the strongly anisotropic limit [15] where the
horizontal coupling K1 → ∞, the vertical coupling K2 → 0,
while the ratio J = K2/K

∗
1 remains constant. Here K∗

1 is the
dual coupling defined through

(eK1 − 1)(eK∗
1 − 1) = q. (4.29)

Then the column-to-column transfer matrix of the noninter-
acting system in Eq. (2.4) takes the form T = exp(−K∗

1 H),
where H is the quantum Hamiltonian [16]

H = −J

L−1∑
j=1

δ(sj − sj+1) − 1

q

L∑
j=1

q−1∑
k=1

Mk
j . (4.30)

In the last term, Mj is a spin-flip operator such that
Mk

j sj = sj + k,mod(q). The quantum Potts model defined in
Eq. (4.30) has a quantum phase transition at J = Jc = 1 in
the thermodynamics limit. This transition is of second order
for q � 4 and first order for q > 4. The interaction between
the two driven systems in the limit v = ∞ is represented by
a static surface field, the strength of which is obtained from
Eq. (4.12) as hf = Kf mf in the strongly anisotropic limit
Kf → 0. Thus, using the parametrization Kf = K∗

1 κ/
√

q,
the Hamilton operator in Eq. (4.30) is supplemented by a
surface-field term

V = −h δ(s1), h = hf

K∗
1

= mf

κ√
q

. (4.31)

The surface critical behavior of the quantum Potts model in
the large-q limit has been studied in Refs. [12–14] and the
results are summarized in Appendix B. In the large-q limit,
corrections of the order of q−1/2 are taken into account and the
distance from the critical point is defined as Jc − J = θ/

√
q,

where θ plays the role of a reduced temperature. Using these
results we can calculate the equilibrium surface magnetization
mf,eq[θ,hf (κ,mf )] and the nonequilibrium magnetization is
deduced from the self-consistency condition in Eq. (4.15).
We have solved the self-consistency equation for the interface
magnetization numerically exactly [17]. The dependence of
mf on the reduced temperature θ for different values of the
interface coupling κ is shown in Fig. 6.

For κ = 0 we recover the magnetization at a free surface,
which vanishes linearly at the bulk critical temperature
θc = 0. With increasing interaction κ the interface magnetiza-
tion increases for θ < 0, but it is always vanishing in the bulk
disordered phase, θ > 0. This behavior is due to the fact that
the equilibrium surface magnetization of the model m1 = 0
above θc, whatever the value of the surface field, as seen in
Appendix B. This is a peculiarity of the system in the large-q
limit which will be discussed further in Sec. V C.

In the ordered phase, the shape of the magnetization curve
qualitatively changes with increasing κ . At a critical value
κ ′

c = 2.104, its slope diverges when θ = θ ′
c = −0.130 37.

In the vicinity of this critical temperature the nonequilib-
rium interface magnetization shows a power-law singularity
m(κ ′

c,θ ) − m(κ ′
c,θ

′
c) ∼ |θ − θ ′

c|1/3. Increasing the strength of
the interface coupling further, κ > κ ′

c, a bistability occurs.
Here in a finite range of temperature, θ1 < θ < θ2 � 0, there
are three solutions of the self-consistency equation, which are
denoted by m

(1)
f < m

(2)
f < m

(3)
f . Among these m

(2)
f is unstable,

whereas m
(1)
f is stable for perturbations in the region mf < m

(2)
f

and m
(3)
f is stable for mf > m

(2)
f . Consequently, starting at

sufficiently low temperature, θ < θ1 and heating the system,
its interface magnetization will stay on the upper part of the
curve and follows the solution m

(3)
f in the range θ1 < θ < θ2.

At θ = θ2 it jumps to the lower part of the curve, which is the
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FIG. 6. (Color online) Temperature dependence of the interface
magnetization of the 2D Potts model with friction in the v = ∞ and
large-q limits, using the strongly anisotropic (Hamiltonian) version of
the problem, for values of the interface coupling κ increasing from left
to right. When the strength of the interface coupling increases, there
is a critical value κ ′

c above which the system becomes bistable with an
unstable solution (broken line) between two stable ones (full lines).
The interface magnetization always vanishes in the bulk disordered
phase θ > 0.

continuation of the solution m
(1)
f . This jump being finite the

transition is of the first order. When θ2 < 0, heating the system
further the interface magnetization vanishes at θc = 0 linearly.
In the reverse process we start in the disordered phase θ > 0
and cool down the system. Then the interface magnetization
increases linearly below θc = 0 and follows the solution m

(1)
f ,

in the range θ2 > θ > θ1. At θ = θ1 it jumps to the upper
part of the curve, which is the continuation of the solution
m

(3)
f . Consequently, there is a hysteresis in the temperature

dependence of the nonequilibrium magnetization.
The limiting value θ2 first increases with κ until κ = κ∗ =√

27
4 ≈ 2.598 above which it stays at θ2 = 0. For κ > κ∗

on heating the nonequilibrium interface magnetization jumps
directly from m

(3)
f (0) > 0 to mf = 0 at θ = 0 [18]. Thus, on

heating, for strong interaction κ > κ∗, there is a first-order
nonequilibrium transition at θ = 0. In the reverse process, on
cooling, the second-order transition at θ = 0 is followed by a
first-order one at θ = θ1.

V. MONTE CARLO SIMULATIONS OF THE 2D SYSTEM

In the present section the results obtained previously in
the limit v = ∞ are confronted with Monte Carlo simula-
tions. In particular, we want to see how the fluctuations,
introduced by a finite relative velocity between the two
driven systems, influence the properties of the nonequilibrium
interface magnetization and its singular behavior at the phase-
transition point. For the Ising model with q = 2 these questions
have been studied in Ref. [6]. In 1D the ordered phase is
suppressed for any finite value of v. On the contrary in

2D the nonequilibrium fluctuations introduced by the finite
velocity are found to be irrelevant and the nonequilibrium
phase transition is described by the same (mean-field) critical
exponents.

Concerning the Potts model in 1D the nonequilibrium
fluctuations should destroy the ordered phase for any finite
value of q, thus one does not expect any nonequilibrium
phase transition for v < ∞. However, the question is more
delicate in 2D, where the properties of the nonequilibrium
phase transitions in the limit v = ∞ are different for q = 2
and for large-q values. These changes are likely to be related
to the surface-field dependence of the surface magnetization in
the equilibrium systems [see the self-consistency condition in
Eq. (4.15)], which is known to depend on the order of the bulk
equilibrium phase transition. Therefore it is advisable to study
the two regimes in the Monte Carlo simulations. Thus we treat
successively the case q = 3, where the equilibrium transition
is second order, in Sec. V B, and the case q = 9, where it is
strongly first order, in Sec. V C.

A. Method of simulation

We simulate systems consisting of L × L spins (i.e., for
N = L with two L × L/2 subsystems), with L ranging from
80 to 320. We use symmetric couplings between pairs of
spins, with K1 = K2 = 1/T , but allow for a varying coupling
strength Kf across the cut separating our two Potts systems,
with Kf ranging from 0.25/T to 2/T . In the following,
we denote the ratio Kf /Ki = Kf T as κ . In the horizontal
direction (i.e., the direction parallel to the interface) periodic
boundary conditions are used. In the vertical direction we use
both periodic boundary conditions (yielding two interfaces)
and open boundary conditions and find that, in general, the
local quantities close to the interface are independent of the
vertical boundary condition. Small deviations, if any, only
show up for the smallest system size. The data discussed
in the following have been obtained with periodic boundary
conditions in both directions.

Our main focus is on the magnetization profile and, espe-
cially, on the magnetization close to the interface separating the
two q-state Potts systems that move with the relative constant
velocity v. The magnetization of row i is given by

〈m(i)〉 = (qNm/L − 1)/(q − 1), (5.1)

where Nm = max(N0,N1, . . . ,Nq). Here Nq is the average
number of spins in state q in row i. Obviously, we have that
mf = 〈m(1)〉 = 〈m(L/2)〉 = 〈m(L/2 + 1)〉 = 〈m(L)〉.

For the Monte Carlo updates we use the standard heat-bath
algorithm as our single-spin flip algorithm. For the correspond-
ing 2D Ising model [6] it was shown that qualitatively the
results obtained in simulations are independent of the update
scheme. This is different when looking at specific quantities,
as, for example, the phase transition temperature, which do
depend on the chosen algorithm. In the following we restrict
ourselves to a qualitative discussion of the properties of our
nonequilibrium system.

We implement the sliding of one half of the system with
respect to the other half in the same way as in Refs. [5,6].
When simulating a system with sliding velocity v we translate
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the upper half of our system by one lattice constant after L2/v

random sequential single spin updates. One Monte Carlo step
therefore consists of L2 single spin flips and v translations. In
our numerical study, we varied v between 1 and 80.

Based on the results discussed in the previous sections, we
expect to observe a discontinuous change of the magnetization
close to the cut for q > 4. To observe a possible hysteresis
we made both heating and cooling runs. Starting the heating
(cooling) runs with a fully ordered (disordered) initial state,
we typically let the system relax for 2 105 Monte Carlo steps
at the first temperature before starting the measurement. After
averaging over typically 105 steps, we changed the temperature
and let the system relax for a few 10 000 time steps before
starting the measurement at the new temperature. We carefully
monitored our system to detect the possible presence of a
hysteresis. This procedure was repeated at least ten times and
the data discussed in this section result from averaging over
these independent runs.

B. Results for q = 3

The equilibrium q = 3 Potts bulk system exhibits a
continuous phase transition at the temperature Tc(q = 3) =
1/ ln(1 + √

3) ≈ 0.995, similar to the Ising model which can
be viewed as the q = 2 Potts model. We show in Fig. 7 the
temperature dependence of the interface magnetization for
various coupling strengths κ and various sliding velocities v.
In all cases we observe a continuous boundary phase transition
at a critical temperature that depends on both v and κ . Thus
an increase of the coupling strength across the cut yields an
increasing strength of the effective surface field that stabilizes
the interface magnetization against thermal fluctuations. An
increase of the boundary phase transition temperature is also
observed when increasing the sliding velocity, which is similar
to what is observed for the Ising model [6]. In fact, the q = 3
Potts model behaves in every aspect like the Ising model. Both
models have a continuous bulk phase transition, in both models
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FIG. 7. (Color online) Interface magnetization for the q = 3
model, with (a) v = 10 and various values of κ and (b) κ = 2 and
various values of v. In all cases a continuous surface phase transition
is observed. The data shown here have been obtained for a system
containing 160 × 160 spins.
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FIG. 8. (Color online) Interface magnetization for the q = 9
model, with (a) v = 10 and various values of κ and (b) κ = 1 and
various values of v. The order of the surface transition changes from
continuous for weak interface couplings to discontinuous for strong
interface couplings. Note the changes of temperature scales. The
discontinuous character of the phase transition is revealed by the
presence of a thermal hysteresis [filled (open) symbols on heating
(cooling)].

the boundary phase transition is continuous and of mean-field
type [we checked the mean-field character of our transitions by
studying the effective exponent βeff = d ln mf /d ln(Tc − T )
and found that this exponent tends to 1/2 when approaching
Tc].

C. Results for q = 9

To see whether the scenario obtained for the v = ∞ and
large-q limits is generic for values of q > 4, we have studied
intensively the case q = 9. For that value of q the bulk system
undergoes a strong first-order transition at the temperature
Tc(q = 9) = 1/ ln(1 + √

9) ≈ 0.721.
Our main findings are summarized in Fig. 8. Fixing v

and changing the interface strength κ reveals two interesting
features, see Fig. 8(a). First we note that for small values of
κ the boundary phase transition is continuous and takes place
at a temperature that is comparable to the temperature of the
bulk transition. For larger values of κ , however, the boundary
transition is discontinuous as revealed by a thermal hysteresis.
We therefore have the interesting situation that a continuous
and a discontinuous surface transitions are separated by a
tricritical point. This behavior is in full agreement with
the v = ∞ and large-q scenario discussed in Sec. III D.
There is, however, also a remarkable difference between the
q = 9 system and the large-q case. Whereas in the large-q
case the interface magnetization is strictly zero above the
equilibrium phase transition temperature, irrespective of the
value of the interface coupling, for q = 9 we find for large
values of κ a finite surface magnetization above Tc(q = 9),
where the bulk is disordered, with a subsequent discontinuous
surface transition at some temperature Ts > Tc(q = 9). This
unexpected behavior can be understood by mentioning that
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the corresponding equilibrium semi-infinite system has a finite
surface magnetization in strong enough fields for temperatures
above Tc(q = 9) [19].

Interestingly, the surface transition temperature for a fixed
value of κ is largely independent of the magnitude of the sliding
velocity v. This is shown in Fig. 8(b) for κ = 1. Obviously, the
limit v = ∞ is approached very rapidly and already modest
values of v yield results that are very close to those expected
for large values.

VI. DISCUSSION

In this paper we have studied the magnetic contribution
to the friction in the q-state Potts model in which two
interacting systems are moving with a constant relative
velocity v. During the movement of the macroscopic bodies
there is a permanent energy flow into the heat bath, resulting
from the friction force. The system is thus driven into a
nonequilibrium steady state, which can show order-disorder
phase transitions as the temperature, the strength of the
interaction or the velocity are varied. The Potts model, with
its rich critical behavior at equilibrium, depending on the
value of q, is a suitable system to study under nonequilibrium
conditions.

We have studied the phase diagram and the phase transitions
in this nonequilibrium system for different values of q in 1D
and 2D by analytical and numerical methods. In 1D long-range
order is present only in the v = ∞ limit, where fluctuations are
completely suppressed, and the problem is solved exactly using
the mean-field method. For finite v in a system of finite extent
N < ∞, one expects crossover phenomena in analogy to the
q = 2 case [6]. The nonequilibrium phase transition in this
system is of second order for the Ising model (q = 2) but of first
order for q > 2. In the latter case there is a hysteresis: the jump
in the nonequilibrium magnetization takes place at different
temperatures on heating and cooling the system, respectively.
This type of behavior is expected to take place for other driven
1D models for v = ∞ also, provided the up-down symmetry
of the local order parameter is absent.

In 2D the nonequilibrium phase diagram is found to be
more interesting and more exotic. Here the quasistatic limit
v → 0 is different from the true nonequilibrium case v > 0.
In the quasistatic limit the friction force has the same type
of singularity at the equilibrium phase transition point as the
equilibrium energy density. On the contrary, for any finite
v > 0 the singularity in the steady state at the phase transition
point is controlled by another fixed point, in which the
critical exponents are mean-field-like. More detailed results
are obtained in the large-q limit, where for large-v the problem
is solved exactly using the mean-field method. Here the phase
transition is of second order for sufficiently weak interaction.
With increasing interaction a second phase transition takes
place, at a lower temperature, which is continuous for a
critical value of the coupling and discontinuous for larger
couplings. This latter transition is accompanied by a hysteresis.
Numerical studies of the q = 9 state Potts model with finite
velocity have shown a similar scenario as described above for
large q.

On the contrary, numerical results obtained for the q = 3
model have shown just one continuous transition for any

value of the couplings, which is of the mean-field type.
This is similar to the scenario found for the Ising model.
This difference in the phase diagram is expected to be
related to the nature of the corresponding equilibrium phase
transition. If the equilibrium phase transition is continuous,
which happens for q � 4, the surface phase transition is
continuous also and the zero-field surface susceptibility is
nonzero even above the bulk transition temperature. In this
case, a second-order nonequilibrium transition is expected to
take place at a temperature which is higher than the equilibrium
bulk transition temperature. On the contrary, if the equilibrium
phase transition is first order, which is the case for q > 4, the
surface transition is usually second order, a phenomenon which
is known as surface-induced disorder [20–24]. In this case,
the zero-field surface susceptibility is zero at and above the
bulk transition temperature and one needs a finite surface field
hs > hsc(q) > 0 to have a nonvanishing surface magnetization
at and above the transition point [19]. This noncontinuous
surface field dependence of the surface magnetization is
responsible for the different scenario in the nonequilibrium
system for q > 4, in particular, for the first-order transition.
The hysteresis, which accompanies the first-order transition,
is due to the nonequilibrium nature of the process and the area
of the hysteresis loop is proportional to the energy dissipated
during the transition.

Since the properties of surface-induced disorder are ex-
pected to have the same type of discontinuous surface field
dependence for any equilibrium first-order transitions in 2D
and 3D [21], the same type of nonequilibrium scenario, which
we have found for the 2D Potts model with q > 4, is expected
to take place in these systems.

We close our paper with some remarks about the possible
occurrence of nonequilibrium phases and phase transitions in
other driven systems. As we have seen in our study, there
is an intimate connection between the equilibrium surface
critical behavior of these systems and the nonequilibrium states
with friction. This relation is evident in the limit v = ∞,
but fluctuations caused by a finite velocity are expected
to be irrelevant provided there is a surface ordering in
equilibrium. The surface critical behavior at equilibrium is
a complicated phenomenon [25–27] in which one should
take into account the effect of enhanced or reduced surface
couplings and study the critical behavior at the different fixed
points (ordinary, extraordinary, special, surface, etc.). Also
different considerations should be made for systems having an
order parameter with continuous symmetry, such as the XY or
the Heisenberg model [28]. Finally, one could also think about
using different geometries, such as edges, wedges [29,30],
or parabolic shapes [30,31] to model a tip sliding on a flat
surface.
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APPENDIX A: SELF-CONSISTENCY EQUATION IN 1D

Here we consider the 1D Potts model in Eq. (2.2) in the
presence of a field

βH(s) = −K

N∑
i=1

δ(si − si+1) − hf

N∑
i=1

δ(si), (A1)

and use the periodic boundary condition sN+1 ≡ s1. The
transfer matrix of the problem is a q × q symmetric matrix
(q � 2)

T =

⎛
⎜⎜⎜⎜⎜⎝

eK+hf ehf /2 ehf /2 . . . ehf /2

ehf /2 eK 1 . . . 1
ehf /2 1 eK 1 1

...
... 1

. . . 1
ehf /2 1 . . . 1 eK

⎞
⎟⎟⎟⎟⎟⎠ , (A2)

in terms of which the partition function reads Zeq =
Tr{TN }. In the large-N limit Zeq = λN

m , where λm

is the leading eigenvalue of the transfer matrix
given by

λm = eK+hf + eK + q − 2

2

+
√

(eK+hf − eK − q + 2)2 + 4ehf (q − 1)

2
. (A3)

Thus, we have

∂ ln λm

∂hf

= 1

2

[
1+ eK+hf − eK − q + 2√

(eK+hf−eK−q+2)2+4ehf (q−1)

]
, (A4)

and the magnetization follows from Eq. (4.14).
Now taking the value of the static effective field in

Eq. (4.12) and using (A4) in Eq. (4.14) we obtain

2(q−1)mf,eq−q+2= q(eK� − q + 2)√
(eK�−q+2)2+4(q−1)(�+1)

,

(A5)

where � = �(mf ,Kf ) is defined in Eq. (4.12). To obtain a
self-consistent solution mf,eq = mf , we first take the square
of both sides of Eq. (A5) leading to

[(eK� − q + 2)2 + 4(q − 1)(� + 1)]

×[2(q − 1)mf − q + 2]2 = q2(eK� − q + 2)2, (A6)

which has always the trivial solution mf = 0. Then we
multiply Eq. (A6) by (1 − mf τ )2/qmf and obtain the cubic
polynomial which is given in Eq. (4.18). Note that this
polynomial has an extra root which is a solution of the squared
equation, but not of the original one.

APPENDIX B: SURFACE MAGNETIZATION OF THE
QUANTUM POTTS MODEL FOR LARGE- Q VALUES

In the following we consider the ground state of the quan-
tum Potts model defined in Eq. (4.30), extended by the surface
field term in Eq. (4.31). We use fixed-spin boundary conditions
at j = L and the surface at j = 1 is free. In the large-q limit,
at the critical point Jc = 1, the ground state of the system
is L-fold degenerate, having an energy E

(0)
0 = −J (L − 1).

In a first-order perturbative treatment [12–14], corrections of
the order of 1/

√
q are obtained through the solution of the

following secular eigenvalue problem hvα = εαvα . Here h is
a symmetric L × L matrix

h = − 1√
q

⎛
⎜⎜⎜⎜⎜⎜⎝

h 1 0
1 θ 1

1 2θ
. . .

. . .
. . . 1

0 1 (L − 1)θ

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B1)

where θ plays the role of a reduced temperature since
the coupling is parametrized as J = 1 − θ/

√
q. Using

the components of the ground-state eigenvector v0(k)
with k = 1, . . . ,L one can express the magnetization
profile as

mj =
j∑

k=1

[v0(k)]2, (B2)

and the surface magnetization m1 ≡ mf .
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FIG. 9. (Color online) Surface magnetization of the large-q state
Potts model as a function of the reduced temperature θ for different
values of the surface field h. In the disordered phase, θ > 0, the
surface magnetization vanishes for any finite value of h. For the
different curves h increases from left to right.
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The surface magnetization as a function of the reduced
temperature θ is shown in Fig. 9 for different values of the
surface field h.

At the critical point θ = 0, the surface magnetization is
vanishing for h � 1 and it starts linearly for small θ as

m1(θ,h) = −θ

(1 − h)2
+ O[θ2ξ (θ )], h < 1. (B3)

The second derivative, ∂2m1(θ,h)/∂θ2 ∼ ξ (θ ), diverges as
ξ ∼ θ−1/3. For h > 1, there is a finite surface magnetization
at the critical point and a small-θ behavior given by

m1(θ,h) = 1 − 1

h2
+ 2h

(h2 − 1)2
(−θ ) +O(θ2), h > 1. (B4)

In the disordered phase, θ > 0, the surface magnetization
vanishes for any finite value of h. Consequently, there is a
first-order surface phase transition at h = 1.
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