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I. INTRODUCTION

Nonzero ground state entropy (per lattice site), S0 �= 0, is an
important subject in statistical mechanics, as an exception to
the third law of thermodynamics and a phenomenon involving
large disorder even at zero temperature. Since S0 = kB ln W ,
where W = limn→∞ W

1/n
tot and n denotes the number of lattice

sites, S0 �= 0 is equivalent to W > 1, i.e., a total ground state
degeneracy Wtot that grows exponentially rapidly as a function
of n. One physical example is provided by H2O ice, for
which the residual entropy per site (at 1 atm pressure) is
S0 = (0.41 ± 0.03)kB , or equivalently, W = 1.51 ± 0.05 [1]
(a recent theoretical study is [2], which gets W = 1.50738 ±
0.00016). In ice, the ground state entropy occurs without
frustration; that is, each of the ground state configurations
of the hydrogen atoms on the hydrogen bonds between water
molecules minimizes the internal energy of the crystal. This is
in contrast to systems where nonzero ground state entropy is
associated with frustration, including the Ising antiferromagnet
on the triangular lattice and spin glasses.

A model that exhibits ground state entropy without frus-
tration and hence provides a useful framework in which to
study this phenomenon is the q-state Potts antiferromagnet
(PAF) [3–5] on a given lattice � or, more generally, a graph
G, for sufficiently large q. An interesting question concerns
how this ground state entropy, or equivalently, the ground
state degeneracy per site, W , depends on properties of the
graph. One can study this using such methods as Monte Carlo
simulations, calculations of rigorous upper and lower bounds,
and large-q series. One can also gain considerable insight from
exact solutions for W on n → ∞ limits of certain families of
graphs.

A particular question is how W changes when one inserts
new vertices on certain bonds of the graph. In mathematical
graph theory, this insertion process is called a homeomorphic
expansion of the graph (and the opposite process, removing
degree-2 vertices from bonds of a graph, is called a home-
omorphic reduction). It is useful to answer this question in
simple cases such as lattice strips, since one can get exact
explicit analytic results for these cases [6,7]. In this paper we
shall continue this line of study, extending the results of earlier
work that one of us did with Tsai [6,7]. We shall calculate exact
expressions for the chromatic polynomial and resultant ground
state degeneracy per site of the q-state Potts antiferromagnet on
lattice strips that are homeomorphic expansions of a strip graph
of the kagomé lattice. Our results and their comparison with
analogous exact calculations for the kagomé strips without

homeomorphic expansion in [8–10] and with homeomorphic
expansions of square-lattice ladder graphs in [7] add to our
understanding of the effect of homeomorphic expansions on
the per-site ground state degeneracy and entropy of the Potts
antiferromagnet.

II. GENERALITIES AND CONNECTION WITH
CHROMATIC POLYNOMIALS

Let us consider a graph G = (V,E), defined by its vertex
(site) set V and its edge (bond) set E. The number of vertices
of G is denoted n(G) = |V | ≡ n, as above, and the number
of edges of G is denoted e(G) = |E|. We use the symbol {G}
for the limit limn(G)→∞ G of a given family of graphs, such
as the infinite-length limit of a strip graph. The q-state Potts
model partition function at a temperature T = 1/(kBβ) on the
graph G is Z(G,q,T ) = ∑

{σi } e−βH, with Hamiltonian H =
−J

∑
eij

δσiσj
, where J is the spin-spin interaction constant,

i and j denote vertices on G, eij is the edge connecting
them, and σi are classical spins taking on values in the set
{1, . . . ,q}. For the Potts antiferromagnet, J < 0 so that, as
T → 0, βJ = −∞; hence, in this limit, the only contributions
to the partition function are from spin configurations in which
adjacent spins have different values. The resultant T = 0
PAF partition function is therefore precisely the chromatic
polynomial P (G,q) of the graph G:

Z(G,q,T = 0)PAF = P (G,q), (2.1)

where P (G,q) counts the number of ways of assigning q colors
to the vertices of G subject to the condition that no two adjacent
vertices have the same color (reviews include [11–13]). This
is called a proper q-coloring of (the vertices of) G. Thus,

W ({G},q) = lim
n→∞ P (G,q)1/n. (2.2)

The determination of W ({G},q) is thus equivalent to the
determination of S0({G},q), and we shall generally give results
in terms of W ({G},q). The minimal integer value of q for
which one can carry out a proper q-coloring of G is the
chromatic number, χ (G). In general, for certain special values
of q, denoted qs , one has the following noncommutativity of
limits [14]:

lim
n→∞ lim

q→qs

P (G,q)1/n �= lim
q→qs

lim
n→∞ P (G,q)1/n, (2.3)

and hence it is necessary to specify which order of limits one
takes in defining W ({G},q). Here, by W ({G},q) we mean the
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function obtained by setting q to the given value first and
then taking n → ∞. For the families of graphs considered
here, the set {qs} = {0,1,2}. The noncommutativity (2.3) will
not be important for our discussion, since we will restrict our
calculations of W ({G},q) to q � 3. For lattice strips that are
m-fold repetitions of some basic subgraph, one can take a limit
n → ∞ by taking the limit m → ∞.

The family of homeomorphically expanded graphs of
the kagomé lattice strip that we consider are denoted
[Hk(kag)]m,BC, where H , kag, and BC stand for homeomorphic
expansion, kagomé, and longitudinal boundary conditions,
free (f) or cyclic (c). A member of this family is defined as
follows. We start with a minimal-width kagomé strip graph, a
portion of which is shown in Fig. 1(f) of Ref. [8], comprised
of m subgraphs, each of which consists of a hexagon with
its two adjoining triangles. We then insert k vertices on
each longitudinal edge of a hexagon in this original kagomé
strip graph. Thus, the graph [Hk(kag)]m,BC is a strip of m

subgraphs each of which consists of two triangles and a p-gon
with

p = 6 + 2k. (2.4)

The graph [H1(kag)]m,BC involves subgraphs with two trian-
gles and an octagon, and so forth for higher values of k. The
kagomé strip itself is the case k = 0. The chromatic number
of the free and cyclic kagomé strips is χ = 3, and this remains
true for the homeomorphic expansions [Hk(kag)]m,BC:

χ ([Hk(kag)]m,f ) = χ ([Hk(kag)]m,c) = 3. (2.5)

We shall sometimes use the abbreviations kagk,m,BC ≡
[Hk(kag)]m,BC with BC = f or BC = c and, for the family
as a whole, suppressing the m index, kagk,BC ≡ [Hk(kag)]BC.

For the relevant range, q � 3, of interest here, the W ({G},q)
functions computed via the infinite-length limits of the
[Hk(kag)]m,BC strips with free and cyclic (and Möbius)
longitudinal boundary conditions are all the same. Since
the calculation is easiest if one uses strip graphs with free
longitudinal boundary conditions, we shall do this. It is also
of interest to calculate the chromatic polynomials for the
corresponding strip graphs with cyclic boundary conditions
and we will do this. The m → ∞ limits for these families of
homeomorphically expanded kagomé strips will be denoted
{[Hk(kag)]BC} and, for the W function, which is independent
of the boundary conditions, W ({Hk(kag)},q).

As noted above, our exact results for the infinite-length
homeomorphically expanded kagomé strip graphs comple-
ment other methods of studying W functions on lattices,
such as rigorous bounds, large-q series, and Monte Carlo
measurements [15–18]. Other homeomorphic expansions of
this kagomé strip graph are also of interest, e.g., expansions
in which additional vertices are added to edges of the
triangles, but here we shall restrict ourselves to studying the
specific homeomorphic expansion defined above. In passing,
we mention that chromatic polynomials of homeomorphic
expansions of other types of graphs have been studied in, e.g.,
Refs. [6,12,19–24].

III. CALCULATIONAL METHOD

The chromatic polynomial P (G,q) can be calculated in
several ways. One is via the deletion-contraction relation. For a
graph G, let us denote G − e as the graph obtained by deleting
the edge e and G/e as the graph obtained by deleting the edge
e and identifying the two vertices that were connected by this
edge of G. The latter operation is called a contraction of G

on e. Then the chromatic polynomial satisfies the deletion-
contraction relation

P (G,q) = P (G − e,q) − P (G/e,q). (3.1)

P (G,q) can also be determined via the cluster formula [25]

P (G,q) =
∑
G′⊆G

qκ(G′) (−1)e(G′), (3.2)

where G′ is a spanning subgraph, G′ = (V,E′) with E′ ⊆ E,
and κ(G′) denotes the number of connected components in G′.

The numbers of vertices and edges on the [Hk(kag)]m,f and
[Hk(kag)]m,c graphs are

n([Hk(kag)]m,c) = n([Hk(kag)]m,f ) − 3 = (5 + 2k)m, (3.3)

and

e([Hk(kag)]m,c) = e([Hk(kag)]
m,f ) − 2 = (8 + 2k)m. (3.4)

(For the cyclic strip with m = 1 some of these are double
edges; this does not affect the chromatic polynomial.) The
graph [Hk(kag)]m,c has vertices with degrees 3, 4, and, for
k � 1, also 2. For reference, the infinite two-dimensional (2D)
kagomé lattice has vertices of uniform degree 4. Defining, as
in Ref. [17], an effective vertex degree,

�eff ≡ lim
n→∞

2e(G)

n(G)
, (3.5)

we have

�eff = 4(4 + k)

5 + 2k
for {Hk(kag)}. (3.6)

Because χ ([Hk(kag)]m,f ) = 3, it follows that
P ([Hk(kag)]m,BC,q) = 0 for q = 0, 1, 2 for free or
cyclic BC. Since P ([Hk(kag)]m,BC,q) is a polynomial, this
implies that

P ([Hk(kag)]m,BC,q) contains the factor q(q − 1)(q − 2).

(3.7)

IV. STRIPS WITH FREE LONGITUDINAL
BOUNDARY CONDITIONS

For the family [Hk(kag)]f of strip graphs [Hk(kag)]m,f ,
it is convenient to use a generating function formalism, as
before [6,8,21]. For arbitrary k, this generating function is

	([Hk(kag)]f ,q,x) =
∞∑

m=0

P ([Hk(kag)]m+1,f ,q)xm. (4.1)

The generating function is a rational function in x and q of the
form

	([Hk(kag)]f ,q,x) = ak,0 + ak,1x

1 + bk,1x + bk,2x2
. (4.2)

041109-2



GROUND STATE ENTROPY OF THE POTTS . . . PHYSICAL REVIEW E 83, 041109 (2011)

We write the denominator as

1 + bk,1x + bk,2x
2 =

2∏
j=1

(1 − λkagk ,0,j x). (4.3)

By means of an iterative use of the deletion-contraction
relation and induction on the homeomorphic expansion pa-
rameter k, we have calculated 	([Hk(kag)]f ,q,x) and hence
P ([Hk(kag)]m,f ,q) for arbitrary k and q. Recall that the
chromatic polynomial of the circuit graph Cn is P (Cn,q) =
(q − 1)n + (q − 1)(−1)n. Since this has a factor q(q − 1), it
is convenient to define

Dn = P (Cn,q)

q(q − 1)
=

n−2∑
s=0

(−1)s
(

n − 1

s

)
qn−2−s , (4.4)

so that D2 = 1, D3 = q − 2, D4 = q2 − 3q + 3, etc. (Where
it appears, we shall write D3 simply as q − 2.) We find [with
p = 6 + 2k as given in Eq. (2.4)]

ak,0 = q(q − 1)(q − 2)2Dp, (4.5)

ak,1 = −q(q − 1)5+2k(q − 2)3, (4.6)

bk,1 = −(q − 2)(Dp − Dp−1 + 1), (4.7)

and

bk,2 = (q − 1)3+2k(q − 2)3. (4.8)

It is readily checked that for the special case k = 0, these
results reduce to the generating function for the kagomé strip
given in Ref. [8].

Substituting the results for bk,1 and bk,2 in Eq. (4.3) and
solving for λkagk ,0,j , we find

λkagk ,0,j = 1
2 (q − 2)(Dp − Dp−1 + 1 ± √

Rkkd0 ), (4.9)

where p = 6 + 2k as given in Eq. (2.4), j = 1,2 correspond
to the ± signs, and

Rkkd0 = (Dp − Dp−1 + 1)2 − 4(q − 1)3+2k(q − 2). (4.10)

Using the general methods of [6] for expressing the chromatic
polynomial in terms of the coefficients in the generating
function, we find that P ([Hk(kag)]m,f ,q) is given by

P ([Hk(kag)]m,f ,q) =
(
ak,0λkagk ,0,1 + ak,1

)
(
λkagk ,0,1 − λkagk ,0,2

) (
λkagk ,0,1

)m−1

+
(
ak,0λkagk ,0,2 + ak,1

)
(
λkagk ,0,2 − λkagk ,0,1

) (
λkagk ,0,2

)m−1
.

(4.11)

(Note that this is symmetric under the interchange λkagk ,0,1 ↔
λkagk ,0,2.) For the relevant range of q, λkagk ,0,1 > λkagk ,0,2.
Therefore, in the limit m → ∞, the ground state degeneracy
per vertex of this family of lattice strips is

W ({Hk(kag)},q) = (λkagk ,0,1)
1

5+2k , (4.12)

where the λkagk ,0,j for j = 1,2 were given in Eq. (4.9). This
and Eq. (4.11) are the main results of the present paper.

From the analytic result (4.12), there follow two mono-
tonicity properties: (i) for a given k, W ({Hk(kag)},q) is a
monotonically increasing function of q in the range q �

χ = 3; and (ii) for a given q � 3, W ({Hk(kag)},q) is a
monotonically increasing function of k for k � 0. The fact
that W ({G},q) is an increasing function of q for q � χ (G)
is quite general and is a consequence of the greater freedom
in performing proper q-colorings of G for larger q. Property
(ii) can be understood as a result of the fact that a proper
q-coloring of a graph G involves a constraint on the coloring
of adjacent vertices of G, and this, in turn, gives rise to a
constraint from circuits in G. Since the minimum length of
a circuit is the girth, increasing the girth tends to reduce
the severity of this latter constraint. (Here, the girth of a
graph G is defined as the number of edges that one traverses
in a minimum-length circuit on G.) Although the girth of
[Hk(kag)]m,BC (ignoring the double edges that occur for m = 1
with cyclic BC) is equal to 3, independent of k, the girth of
the polygons with p = 6 + 2k sides in the strip does increase
with k. Hence, for a fixed q � χ (G) = 3, this increase in
the girth of the p-gons increases the possibilities for proper
q-colorings, and this, in turn, increases the W function. These
monotonicity properties are reflected in the large-q Taylor
series expansions of the W functions. As q → ∞, the leading
terms of the large-q series expansions of q−1W ({Hk(kag)},q)
are of the form q−1W ({Hk(kag)},q) = 1 − αk/q + · · ·,
where · · · represents higher order terms in 1/q, and the
coefficients for k = 0, 1, 2 are α0 = 8/5, α1 = 10/7, and
α2 = 4/3, so that α0 > α1 > α2, and so forth for higher k.

In Table I we list values of W ({kag},q) ≡ W ({H0(kag)},q),
W ({H1(kag)},q), and W ({H2(kag)},q) for 3 � q � 10. The
two general monotonicity properties stated above are evident in
the table. As is also evident, W ({Hk(kag)}) is an approximately
linear function of q for values of q moderately above the
chromatic number, χ = 3.

It is of interest to compare these results for the ground
state degeneracy and entropy on infinite-length limits of
homeomorphic expansions of the kagomé strip with those
obtained for homeomorphic expansions of the square-lattice
ladder strip in Ref. [7]. The strip graphs considered in Ref. [7]
were constructed by starting with a free or cyclic (or Möbius)
square-ladder strip of m squares and adding k − 2 vertices
to each longitudinal edge, with k � 2. Thus, the parameter
k − 2 of Ref. [7] corresponds to the parameter k in our present
notation, and the resultant strip is (with our present notational
convention for k) [Hk(sq)]m,BC. This graph is thus a ho-
mopolygonal strip of p′-gons, where p′ = 2k + 4. We denote
the m → ∞ limit of this strip as {[Hk(sq)]BC}. For {[Hk(sq)]c},
qc = 2 (independent of k) and, for q � qc, W is the same
for the free and cyclic (and Möbius) longitudinal bound-
ary conditions; W ({[Hk(sq)]f },q) = W ({[Hk(sq)]c},q) ≡
W ({Hk(sq)},q). Converting the result of Ref. [7] to our present
notation by the replacement k − 2 → k, one has

W ({Hk(sq)},q) = (D2k+4)
1

2k+2 . (4.13)

In general, for even p′ = 2k + 4, (i) Dp′ = 1 if q = 2
and hence W ({Hk(sq)},2) = 1; (ii) Dp′ is a monotonically
increasing function of q, and hence so is W ({Hk(sq)},q);
(iii) for a given q > 2, W ({Hk(sq)},q) is a monotonically
increasing function of k. This monotonic increase as a function
of the homeomorphic expansion parameter k is understandable
in a manner analogous to that explained above, with the
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TABLE I. Values of W ({kag},q) ≡ W ({H0(kag)},q), W ({H1(kag)},q), and W ({H2(kag)},q) for 3 � q � 10. For comparison, we also show
W ({sq},q) ≡ W ({H0(sq)},q), W ({H1(sq)},q), and W ({H2(sq)},q) for the square-lattice ladder strips. To save space, we omit the argument q in
these W functions below. See text for further details.

q W ({kag}) W ({H1(kag)}) W ({H2(kag)}) W ({sq}) W ({H1(sq)}) W ({H2(sq)})
3 1.409 1.550 1.639 1.732 1.821 1.872
4 2.410 2.564 2.655 2.646 2.795 2.860
5 3.410 3.569 3.660 3.606 3.784 3.854
6 4.410 4.571 4.663 4.583 4.778 4.850
7 5.409 5.571 5.664 5.568 5.773 5.848
8 6.408 6.572 6.665 6.557 6.770 6.846
9 7.407 7.572 7.665 7.550 7.768 7.844
10 8.407 8.572 8.665 8.544 8.766 8.843

difference that whereas the girth of the [Hk(kag)]m,BC strip
is 3, independent of k, the girth of [Hk(sq)]m,BC is p′.

The comparison of the exact analytic result (4.13) for
W ({Hk(sq)},q) from Ref. [7] for homeomorphic expansions
of the square-lattice ladder strip with our result (4.12) for
homeomorphic expansions of the kagomé strip yields another
inequality, namely, that for q � 3 (so that one can perform a
proper q-coloring of the [Hk(kag)]m,BC strip),

W ({Hk(kag)},q) < W ({Hk(sq)},q). (4.14)

This inequality can be understood heuristically as follows.
As before, it will suffice to use free longitudinal boundary
conditions and hence the graphs [Hk(sq)]m,f and [Hk(kag)]m,f

for the m → ∞ limits that define the respective W functions.
Roughly speaking, for a given k, the larger q − χ (G) is for
a given graph G, the more freedom there is in performing
proper q-colorings of this graph. Now, for any k, the chromatic
number χ is larger (namely, 3) for [Hk(kag)]m,f than for
[Hk(sq)]m,f (namely, 2). Hence, for q greater than the larger
of the two chromatic numbers on these strips, q − χ (G) is
larger for the homeomorphic expansion of the square strip
than for the homeomorphic expansion of the kagomé strip. The
resultant greater freedom in performing proper q-colorings of
[Hk(sq)]m,f than of [Hk(kag)]m,f makes the inequality (4.14)
understandable.

V. CYCLIC STRIP [Hk(kag)]m,c

Using similar methods, we have calculated the chro-
matic polynomial for the homeomorphically expanded cyclic
kagomé strip, P ([Hk(kag)]m,c,q). We find that (using the
abbreviation kagk = [Hk(kag)]c here)

P ([Hk(kag)]m,c,q) =
2∑

d=0

c(d)
nP (kagk ,d)∑

j=1

(
λkagk ,d,j

)m
, (5.1)

where c(0) = 1, c(1) = q − 1, and c(2) = q2 − 3q + 1, and

nP (kagk,0) = 2, nP (kagk,1) = 3, nP (kagk,2) = 1, (5.2)

independent of k. Hence, the total number of λ terms that enter
into Eq. (5.1) is

NP,[Hk (kag)]c,λ = 6, (5.3)

independent of k. Our structural result (5.1) showing the
role that the coefficients c(d) play for these homeomorphic
expansions of a cyclic kagomé strip graph generalizes what
had been established earlier, namely, that they occur for the
corresponding homeomorphic expansions of a square-lattice
strip graph [7] and for (nonhomeomorphically expanded)
cyclic strips of the square [26,27], triangular [27], and hon-
eycomb [28] strip graphs, with the maximal d corresponding
to the width Ly . Although it is not needed here, we recall the
general formula

c(d) =
d∑

s=0

(−1)s
(

2d − s

s

)
qd−s . (5.4)

We give the λ terms that enter into Eq. (5.1) next. As is true
in general for these recursive strip graphs [29], the λ’s that
occur for the strip with free longitudinal boundary conditions,
λkagk ,0,j [given in Eq. (4.9)], are the same as the λ’s with d = 0
in Eq. (5.1) for the cyclic strip. Note that

λkagk ,0,1 λkagk ,0,2 = bk,2 = (q − 1)3+2k(q − 2)3. (5.5)

At q = 0,

(λkagk ,0,j )q=0 = −2(p − 1 ±
√

p2 − 2p − 1). (5.6)

For the λ’s with d = 1, we find, first,

λkagk ,1,1 = (−1)k(q − 1)1+k(q − 2)2. (5.7)

Let us define

Sk,1 = q − 4 + (−1)k(q − 2)(Dk+4 − 2Dk+3 + Dk+2) (5.8)

and

Pk,1 = (−1)k(q − 1)1+k(q − 2)3. (5.9)

Then

λkagk ,1,j = 1

2

(
Sk,1 ±

√
S2

k,1 − 4Pk,1
)
, (5.10)

where j = 2,3 corresponds to the ± sign. Thus,

λkagk ,1,2 λkagk ,1,3 = Pk,1, (5.11)
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so that
3∏

j=1

λkagk ,1,j = (q − 1)2(1+k)(q − 2)5. (5.12)

For the λ with d = 2, we calculate

λkagk ,2 = q − 4, (5.13)

independent of k. It is easily checked that the k = 0 special
case of these general results agrees with the calculation
of the chromatic polynomial for the cyclic kagomé strip
in [9].

VI. LOCUS B

From Eq. (3.2), it follows that P (G,q) can be written in
terms of its zeros (called chromatic zeros) qzj , j = 1, . . . ,n,
as P (G,q) = ∏n

j=1(q − qzj ). These zeros are a natural topic
for study in the context of chromatic polynomials. For a strip
graph such as the ones considered here, as m → ∞, chromatic
zeros merge to form an asymptotic accumulation set (locus)
consisting of various curves. As in our earlier work, we denote
this locus as B. This locus is the solution to the equation of
degeneracy in magnitude of the dominant λ’s (i.e., the λ’s with
the largest absolute value in the complex q plane [30]).

A. Case of Free Longitudinal Boundary Conditions

For the m → ∞ limit of the free strip [Hk(kag)]m,f , the
locus B involves a set of curves forming arcs. For the kagomé
strip itself (i.e., the case k = 0), these were shown in Fig. 7
of Ref. [8], and we find a similar arc-like structure for k � 1.
The arc endpoints occur at the zeros of the polynomial Rkkd0

given in Eq. (4.10). For example, for the actual kagomé strip
itself, this is a polynomial of degree 8, with zeros at

q1, q∗
1 = 0.41 ± 0.955i, q2, q∗

2 = 1.18 ± 1.14i,
(6.1)

q3, q∗
3 = 1.80 ± 1.19i, q4, q∗

4 = 2.62 ± 0.15i.

In this case, B consists of four arcs, forming two complex-
conjugate pairs, namely, an arc connecting q1 and q2, an arc
connecting q3 and q4, and the complex-conjugate arcs. For
general k, Rkkd0 is a polynomial in q of degree

deg(Rkkd0) = 8 + 4k. (6.2)

For this case of m → ∞ limit of [Hk(kag)]m,f with general
k, the locus B consists of 4 + 2k arcs consisting of 2 + k

complex-conjugate pairs, with endpoints at the 8 + 4k zeros
of Rkkd0.

B. Case of Cyclic Longitudinal Boundary Conditions

The analysis of the locus B is more complicated for the
m → ∞ limit of the cyclic [Hk(kag)]m,c strips because of
the presence of more λ’s, namely, six in all. Again, the
locus is determined by the equality in magnitude of two
dominant λ’s. For the infinite-length limit of a given family of
graphs {G}, the maximal point at which B crosses the real axis
is denoted qc({G}). As our previous work showed, for families
of graphs with free longitudinal boundary conditions, B does
not necessarily cross the real axis. However, for families of

graphs with cyclic boundary conditions, B always crosses the
real axis, so a qc is defined. For the m → ∞ limit of the
[Hk(kag)]m,c graphs, considered here, denoted as {[Hk(kag)]c},
qc is determined by the equality of the dominant λ’s∣∣λkagk ,0,1

∣∣ = ∣∣λkagk ,2

∣∣ = |q − 4|. (6.3)

For the infinite-length limit of the cyclic kagomé strip,
{kagc} [9],

qc({kagc}) � 2.62. (6.4)

In the thermodynamic limit of the 2D kagomé lattice, previous
work suggests that qc(kag,2D) = 3 [3]. Hence, one sees that
the qc value for this kagomé strip is already within about 13%
of the value for the infinite 2D lattice. For the [Hk(kag)]m,c

graphs, as k increases, the effect of the p-gons with p = 6 + 2k

becomes greater, so one expects that qc will decrease as k

increases, since qc = 2 for the m → ∞ limit of the circuit
graph Cm. Our exact results confirm this expectation. For
example, for the infinite-length limits of the [Hk(kag)]m,c strips
with k = 1, k = 2, and k = 3, we find

qc({[H1(kag)]c}) � 2.52, (6.5)

qc({[H2(kag)]c}) � 2.44, (6.6)

qc({[H3(kag)]c}) � 2.38. (6.7)

The boundary B crosses the real q axis at q = 0, q = 2, and
q = qc. The degeneracy of λ magnitudes at qc was given above
in Eq. (6.3). At q = 0 there is a degeneracy in magnitude
between λkagk ,0,1 and the dominant λkagk ,1,j , j = 2,3. At q = 2,
there is a degeneracy in magnitude between this dominant
λkagk ,1,j and λkagk ,2, with both having magnitude equal to 2.
There are thus three regions that include parts of the real axis.
Region R1 includes the two semi-infinite line segments q > qc

and q < 0 and extends outward infinitely far from the origin.
In region R1, λkagk ,0,1 is the dominant λ (i.e., the one with the
largest magnitude). Region R2 includes the interval 2 � q �
qc. In region R2, λkagk ,2 = q − 4 is the dominant λ. Region
R3 includes the real interval 0 � q � 2, and in this region, the
dominant term is the maximal-magnitude λkagk ,1,j for j = 2,3.
Other complex-conjugate bubble phases are also present, as
was found in Refs. [7,9]. Indeed, as is evident from Fig. 2
of Ref. [9], for the infinite-length strip of the cyclic kagomé
lattice itself, the boundaryB encloses two very small complex-
conjugate phases centered at approximately q � 2.53 ± 0.50i.

VII. CONCLUSIONS

In conclusion, we have presented exact calculations of
the chromatic polynomial and ground state degeneracy and
entropy per site of the q-state Potts antiferromagnet on lattice
strips that are homeomorphic expansions of a free or cyclic
strip of the kagomé lattice. These results show how W and
hence S0 increase as functions of the homeomorphic expansion
parameter k. We have also compared the values of W computed
for the infinite-length limits of these homeomorphically
expanded kagomé strips with corresponding calculations for
kagomé strips without homeomorphic expansion given in
Refs. [9,10] and for homeomorphic expansions of square-
lattice ladder strips given in Ref. [7]. Our present results yield
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further interesting insights into the effect of homeomorphic
graph expansions on nonzero ground state entropy in the Potts
antiferromagnet.
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