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Diffusion over a fluctuating barrier in underdamped dynamics
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We apply a Langevin model by imposing additive and multiplicative noises to study thermally activated
diffusion over a fluctuating barrier in underdamped dynamics. The barrier fluctuation is characterized by Gaussian
colored noise with exponential correlation. We present the exact solutions for the first and second moments.
Furthermore, we use direct simulations to calculate the asymptotic probability for a Brownian particle passing
over the fluctuating barrier. The results indicate that the correlation of the fluctuating barrier is crucial for barrier
crossing dynamics.
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I. INTRODUCTION

The problem of thermally activated diffusion over various
subsets of barrier potential is ubiquitous in physical contexts,
chemical reactions, and biological transport [1,2]. Dynamic
processes across a fluctuating barrier potential have attracted
much attention for many decades (for a review see Ref. [2]).
In many complex environments, e.g., dye lasers with pump
noise [3] and chemical reactions in contact with a fluctuating
environment [4], the barrier height of the potential fluctuates
stochastically over time instead of remaining static. Within
the Langevin equation description, the dynamics across a
fluctuating barrier is usually modeled as an open system driven
simultaneously by additive and multiplicative noises [1,2,5–9].
The internal thermal fluctuation is described by the additive
noise and the fluctuation in the barrier height is characterized
by multiplicative noise. Unlike the presence of additive noise
only, the multiplicative noise with various correlation times
may induce nontrivial results such as a noise-induced nonequi-
librium phase transition [10,11], anomalous diffusion [12],
and stochastic activation in stochastically fluctuating barrier
systems [13].

It is noteworthy that much of work mentioned above
focuses mostly on the dynamic process in an overdamped
limit for the sake of simplicity [2,5–9,11,13]. However,
barrier crossing dynamics have shown a significant difference
between low- and high-friction limits [14–17]. In a heavy-
ion fusion reaction, a compound nucleus can be formed
if two colliding nuclei surmount the Coulomb barrier. The
fusion probability increases with increasing friction at the
low-friction limit, while it decreases with increasing friction
in the overdamped case because of fast thermal equilibration
and slow diffusion [16,17]. This leads to an evident peak
value of fusion probability in the intermediate friction regime
that divides two distinct dynamic behaviors. In the present
work we study analytically and numerically the problem of
diffusion over a fluctuating barrier potential at an underdamped
limit. Barrier crossing processes in linear systems with time-
dependent potential have been studied theoretically by several
authors [18–20]; anomalous diffusion and an interesting
probability distribution have been shown in the overdamped
region.
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In addition to its theoretical extension, our model has a
more practical consideration. Recently, experimental data on
the synthesis of superheavy nuclei have shown remarkable
enhancement of fusion cross sections at energies below
and near the barrier potential, which has been explained
by the coupled-channel models by introducing a barrier
distribution [21–24]. It was found that the barrier height
encountered by each fusion event is stochastically distributed
as a consequence of couplings of the relative motion to
other degrees of freedom such as nuclear shape deforma-
tions [23,24]. Due to the complex factors in heavy-ion
collisions, such as neck fluctuation during neck formation [25],
a time-dependent coupling that may lead to a fluctuating barrier
is conceivable. Motivated by this assumption, in this work we
consider a Langevin system similar to the one investigated in
Ref. [16], except here we examine a time-dependent barrier
with random fluctuation illustrated by Gaussian colored noise
with exponential correlation. This more general description
provides a better understanding of barrier crossing dynamics
in heavy-ion fusion reactions.

This paper is organized as follows. In Sec. II we present
a Langevin system subjected to additive and multiplicative
noises to model the dynamics over a fluctuating barrier. In
Sec. III we use direct simulations for various situations to
study the stationary probability surmounting the fluctuating
barrier. Finally, the conclusion is given in Sec. IV.

II. STOCHASTIC DYNAMICS OVER A
FLUCTUATING BARRIER

The dynamics of a Brownian particle in a fluctuating barrier
potential is governed by the Langevin equation

d2x

dt2
+ γ

dx

dt
− [1 + η(t)]�2x = ξ (t), (1)

where γ is the damping parameter. The additive noise ξ (t)
comes from the environment in thermal equilibrium, satis-
fying the fluctuation-dissipation theorem with the statistical
properties [16]

〈ξ (t)〉 = 0, 〈ξ (t)ξ (t ′)〉 = 2Dδ(t − t ′), (2)

where D = γ kBT /m. The multiplicative noise η(t) represents
a time-dependent fluctuation in barrier height with

〈η(t)〉 = 0, 〈η(t)η(t ′)〉 = Q exp (−|t − t ′|/τ ), (3)
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where τ is the correlation time and Q is the variance of the
colored noise. Equation (3) defines an exponentially correlated
Gaussian noise, which is typically considered for barrier
fluctuation [7,9,14,26,27]. Here Gaussian colored noise η(t)
is assumed to be uncorrelated with Gaussian white noise ξ (t).

The stochastic variable η(t) can be described by the
auxiliary stochastic equation [7,9,14,26–28]

dη(t)

dt
= − 1

τ
η(t) +

√
2Q

τ
ζ (t), (4)

where ζ (t) is a standard Gaussian white noise with
〈ζ (t)ζ (t ′)〉 = δ(t − t ′). The probability distribution has the
form

P [η(t)] = 1√
2πQ

exp

(
−η(t)2

2Q

)
, (5)

which corresponds to a fluctuating barrier in the Gaussian
distribution. The variance Q and the correlation time τ

dominate the power spectrum of the colored noise,

Sη(ω) = Qτ

π (1 + τ 2ω2)
. (6)

For the case of small τ , a Gaussian white noise with weak noise
intensity is obtained. The barrier height fluctuates fast within
a finite interval; hence the moving particle experiences an
average barrier height. In contrast, the limit τ → ∞ [Sη(ω) →
Q

π
δ(ω)] characterizes a slow fluctuation in the barrier height

of the potential.

A. Exact solutions

To obtain the first moment of x, we rewrite Eq. (1) as two
first-order differential equations

ẋ = v, v̇ = −γ v + �2[1 + η(t)]x + ξ (t). (7)

By taking the average of these equations over the ensemble we
obtain

˙〈x〉 = 〈v〉, ˙〈v〉 = −γ 〈v〉 + �2〈x〉 + �2〈ηx〉, (8)

which contains a new correlator 〈ηx〉. To find this correlator,
we use the Shapiro-Loginov theorem [29,30], which reads

d〈ηg〉
dt

=
〈
η
dg

dt

〉
− λ〈ηg〉 (9)

for exponentially correlated noise η(t), where λ = 1/τ . Here
g is any differential function relevant to η(t). Thus, by
substituting g = x or g = v into Eq. (9), we obtain the linear
matrix equation

dF
dt

= A · F, (10)

with

F =

⎛
⎜⎜⎜⎝

〈x〉
〈v〉
〈ηx〉
〈ηv〉

⎞
⎟⎟⎟⎠ , A =

⎛
⎜⎜⎜⎝

0 1 0 0

�2 −γ �2 0

0 0 −λ 1

�2Q 0 �2 −(γ + λ)

⎞
⎟⎟⎟⎠ .

(11)

Thus a closed system is found for four variables of the first
moment and it is solvable for given initial conditions. A similar
scheme was used in Refs. [31–33] to complete the system
dynamics. To simplify the procedure, here we use the simplest
version of the splitting of high-order correlators, i.e., 〈η2x〉 =
〈η2〉〈x〉 = Q〈x〉.

The second moments can be obtained by using a similar
procedure. Starting from Eq. (7) and making the appropriate
transformation, the differential equations for the second
moments and cross correlation are written as

d〈x2〉
dt

= 2〈xv〉,
d〈v2〉
dt

= −2γ 〈v2〉 + 2�2〈xv〉 + 2�2〈ηxv〉 + 2〈ξv〉,
d〈xv〉

dt
= −γ 〈xv〉 + �2〈x2〉 + 〈v2〉 + �2〈ηx2〉 + 〈ξx〉.

(12)

Notice that there are high-order correlators 〈ηxv〉 and 〈ηx2〉 in
these equations, which can been found by using the Shapiro-
Loginov theorem, just like in the previous case. Similarly, two
new correlators 〈ξx〉 and 〈ξv〉 need to be supplemented. We
apply the Shapiro-Loginov theorem again and find 〈ξx〉 = 0
and 〈ξv〉 = D for Gaussian white noise ξ . The details of the
derivation are provided in the Appendix. Hence the resulting
dynamic system is a six-component linear matrix equation in
the form

dG
dt

= B · G + K, (13)

where

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈x2〉
〈v2〉
〈xv〉
〈ηx2〉
〈ηv2〉
〈ηxv〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

2D

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

and B is a 6 × 6 drift matrix

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 2 0 0 0

0 −2γ 2�2 0 0 2�2

�2 1 −γ �2 0 0

0 0 0 −λ 0 2

0 0 2�2Q 0 −(2γ + λ) 2�2

�2Q 0 0 �2 1 −(γ + λ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(15)

The formal solutions of the linear matrix equations [Eqs. (10)
and (13)] are given by

F(t) = eAtF(0), (16)

G(t) = eBtG(0) − [I − eBt ]B−1 · K, (17)

where I is a 6 × 6 unit matrix.
As an example we discuss the special case of a static barrier

potential with no barrier fluctuation (Q = 0). In this situation
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the system is driven by the additive noise only. Equation (10)
is reduced to

d

dt

( 〈x〉
〈v〉

)
=

(
0 1

�2 −γ

) ( 〈x〉
〈v〉

)
, (18)

which is linear and exactly solvable. The first component of
the vector in Eq. (18) is given by

〈x〉 = a1e
p1t + a2e

p2t , (19)

where p1 > 0 and p2 < 0 are eigenvalues of the drift matrix
in Eq. (18),

p1 = 1

2
(γ ′ − γ ), p2 = −1

2
(γ ′ + γ ), (20)

and

a1 = −p2x0 + v0

γ ′ , a2 = p1x0 − v0

γ ′ . (21)

Here γ ′ =
√

γ 2 + 4�2 and x0 and v0 are the initial position
and velocity of the particle. For time t → ∞, the mean position
〈x〉 is dominated mostly by the first term of Eq. (19) due to
positive p1.

Similarly, Eq. (13) in a static potential field reads

d

dt

⎛
⎜⎝

〈x2〉
〈v2〉
〈xv〉

⎞
⎟⎠ =

⎛
⎜⎝

0 0 2

0 −2γ 2�2

�2 1 −γ

⎞
⎟⎠

⎛
⎜⎝

〈x2〉
〈v2〉
〈xv〉

⎞
⎟⎠ +

⎛
⎜⎝

0

2D

0

⎞
⎟⎠ .

(22)

To determine the variance of the motion of the particles we
use the covariance matrix [34,35]

σ =
(

σxx σxv

σvx σvv

)
=

( 〈x2〉 − 〈x〉2 〈xv〉 − 〈x〉〈v〉
〈xv〉 − 〈x〉〈v〉 〈v2〉 − 〈v〉2

)
.

(23)

The linear equation for the elements of the covariance matrix
from Eqs. (18) and (22) takes the form

d

dt

⎛
⎜⎝

σxx

σvv

σxv

⎞
⎟⎠ =

⎛
⎜⎝

0 0 2

0 −2γ 2�2

�2 1 −γ

⎞
⎟⎠

⎛
⎜⎝

σxx

σvv

σxv

⎞
⎟⎠ +

⎛
⎜⎝

0

2D

0

⎞
⎟⎠ .

(24)

The component of interest in this equation is

σxx = kBT

m�2
(c1e

q1t + c2e
q2t + c3e

q3t − 1), (25)

where q1 > 0, q2 < 0, and q3 < 0 are eigenvalues of the drift
matrix in Eq. (24), with

q1 = −γ + γ ′, q2 = −γ − γ ′, q3 = −γ, (26)

and

c1 = γ 2 + γ γ ′

2γ ′2 , c2 = γ 2 − γ γ ′

2γ ′2 , c3 = 4�2

γ ′2 . (27)

In Eq. (25) the first term on the right-hand side is the leading
one since q1 > 0, which is divergent in the large-time limit.
Equations (19) and (25) are in good agreement with the results
in Ref. [16]. Other components such as 〈v〉, σvv , and σxv are
easily obtained if needed.

In the following we discuss the probability density function
(PDF) of the particle position. For the case where the system
is subjected to additive noise only, namely, Q = 0, the time-
evolutionary PDF has a Gaussian form [10,16,20,36]

p(x,t ; x0,v0) = 1√
2πσxx(t)

exp

(
− [x(t) − 〈x(t)〉]2

2σxx(t)

)
,

(28)

with the initial condition p(x,t = 0) = δ(x − x0)δ(v − v0).
When the barrier fluctuation cannot be neglected, we restrict

our consideration to the overdamped case for simplicity. Thus
the stochastic system in the large-γ limit reads

γ
dx

dt
= [1 + η(t)]�2x + ξ (t). (29)

According to the result given by Refs. [9,37], we obtain the
effective Fokker-Planck equation corresponding to Eq. (29) in
the form

∂

∂t
p(x,t) = −�2

γ

∂

∂x
xp(x,t) + D0

∂2

∂x2
p(x,t)

+D1
∂

∂x
x

∂

∂x
xp(x,t), (30)

where

D0 = D

γ 2
= kBT

γm
, D1 = Qτ�4

γ 2
. (31)

Here D0 and D1 are attributed to additive and multiplicative
noises, respectively. At this point it is difficult to find the exact
expression for the PDF in Eq. (30), especially a nonstationary
solution [10].

B. Numerical simulations

In order to find the nonstationary PDF of a system
subjected to additive and multiplicative noises we perform
numerical integration of Eq. (1) by Heun’s method [38,39]. The
exponentially correlated noise η(t) is generated by integrating
Eq. (4), which is driven by a Gaussian white noise ζ [40]. The
time step �t is set to 0.001 for simulations. The Brownian
particles start at the left of the fluctuating barrier potential
x0 = −2 and the simulations are performed by averaging over
200 000 trajectories to calculate the dynamical properties. For
simplicity we have set the Boltzmann constant kB = 1, the
particle mass m = 1, and the parameter � = 1. The friction
coefficient γ = 0.1 in the simulations, unless stated otherwise.

The numerical results of the nonstationary PDF are shown
in Fig. 1. A non-Gaussian distribution is evident even in
this linear Langevin system, but it is driven by additive and
multiplicative noises simultaneously [9,41]. The non-Gaussian
PDF indicates that it cannot be determined by the first and
second moments only.

We calculate the time-evolutionary ratio of the average
position and the variance, r = −〈x〉/√σxx . For the Gaussian
distribution the ratio approaches a constant value at large
times, which indicates a stable spreading with respect to
the center of the Gaussian distribution. As expected, this
non-Gaussian distribution results in an unstable ratio that
decreases monotonically, as shown in Fig. 2. For the case
of a large correlation time and low-friction coefficient, the
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FIG. 1. (Color online) Normalized PDF in the presence of
additive and multiplicative noises. The initial position x0 = −2 and
initial velocity v0 = 1.5. B = 1

2 m�2x2
0 is the barrier height measured

from the initial position. Here T/B = 0.5, γ = 0.1, Q = 0.1, and
τ = 1. (a) t = 5. (b) t = 10.

ratio allows a fast decay, implying a wide spreading of the
distribution.

III. PROBABILITY OF PASSING OVER A BARRIER

A. Static barrier

The barrier crossing problem has been considered as a
simplified model that describes the fusion mechanism of the
synthesis of heavy elements in heavy-ion reactions [16,36,42].
For the static barrier potential with Q = 0, Eq. (1) results
in a Gaussian PDF [Eq. (28)] for the particle position. The
asymptotic probability for a particle passing over the static
barrier is given, as in Refs. [16,17,20,43–45], by

P (t → ∞) =
∫ ∞

0
p(x,t ; x0,v0) dx

= 1

2
erfc

(
− 1√

T
√

1 − y2
(
√

B − y
√

K)

)
, (32)

where y = p1/� is a dimensionless parameter, with p1 the
positive eigenvalue in Eq. (20). Here B = 1

2m�2x2
0 is the

barrier height measured from the initial position and K =
1
2mv2

0 is the initial kinetic energy.

FIG. 2. (Color online) A log-log plot of the time-dependent
ratio r = −〈x〉/√σxx in the system with a static barrier Q = 0
and fluctuating barriers Q = 0.1, τ = 0.1 and Q = 0.1, τ = 1,
respectively. The lines are the analytical results of Eqs. (16) and
(17) and the scatters denote numerical integration results. Other
parameters are the same as in Fig. 1.

The critical kinetic energy Kc, which is defined as the
energy necessary for half of the particles to pass over the
barrier, has the form [16,42]

Kc

B
= 1

y2
=

[
γ̃

2
+

√(
γ̃

2

)2

+ 1

]2

. (33)

Notice that the ratio of the critical kinetic energy to the
barrier height is determined just by the dimensionless fric-
tion coefficient γ̃ = γ /�, regardless of the environment
temperature T .

We are interested in the effect of temperature on the
overpassing probability. The asymptotic probability [Eq. (32)]
as a function of the environment temperature T is shown
in Fig. 3. In the weak-friction-coefficient regime there are
three distinct behaviors. For low initial kinetic energy K <

Kc, a monotonically increasing probability with increasing
temperature is observed close to the asymptotic value P = 0.5
in the high-temperature limit. For K > Kc, the overpassing
probability decreases as the temperature increases, which is
not expected intuitively. In fact, all particles with initial kinetic
energy larger than the barrier height will pass over the barrier
in a nondissipative system of γ̃ = 0. For the system with
small γ̃ , most of the particles can surmount the barrier due to
low-energy dissipation and thus a large overpassing probability
P > 0.5 is exhibited. When the environment temperature
T increases, on average some of the particles that have
passed over the barrier potential will return to the starting
side, resulting in a reduced overpassing probability, namely,
negative dP/dT . When K = Kc, the asymptotic probability
takes the uniform value P = 0.5 regardless of the environment
temperature. Thus the energy regimes can be divided into
three parts, as shown in Fig. 4: dP/dT < 0 for K > Kc,
dP/dT > 0 for K < Kc, and dP/dT = 0 for K = Kc.
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FIG. 3. Temperature dependence of the probability [Eq. (32)] for
the weak-friction case of γ = 0.1. Here the critical kinetic energy
Kc/B = 1.1051. The initial kinetic energies from top to bottom
correspond to K/B = 1.5625,1.1051, and 0.5625, respectively. The
barrier height B = 2. For a fluctuating barrier, Q = 0.1 and τ = 0.1.

B. Fluctuating barrier

Now we consider the probability of particles passing over
a fluctuating barrier [their motion is described by Eqs. (1)–
(3)].The fluctuating barrier has a Gaussian distribution dom-
inated by two parameters: the variance Q and the correlation
time τ . For Q = 0 the barrier remains static, corresponding to
the situation of no barrier fluctuation. A large Q, such as Q ∼
1, might lead to a temporary harmonic-oscillator potential. The
correlation time τ → 0 corresponds to a Gaussian white noise;
therefore a moving particle experiences a fast fluctuation in the
barrier height. In contrast, a slow fluctuation of barrier height
is shown for τ → ∞. In the latter case, each particle starting
at an initial position experiences an almost fixed barrier when

FIG. 4. (Color online) Energy regimes with completely different
characteristics for the temperature dependence. The solid line is the
result of Eq. (33), acting as the boundary of the two regimes. The
barrier height B = 2.

moving along its trajectory, which is stochastically distributed
in the form

P (η) = 1√
2πQ

exp

(
− η2

2Q

)
. (34)

Here η is a time-independent stochastic value. Initially, one
might take it for granted that Eq. (34) is intuitively the same
as Eq. (5). In fact, Eq. (5) is true for a wide range of τ , leading
to a time-dependent barrier, while Eq. (34) is appropriate
only for τ → ∞, implying that a time-independent barrier
is encountered by each particle.

We now turn to numerical simulations to study the overpass-
ing probability. We have investigated the time-evolutionary
probability extensively and have demonstrated a stationary
probability after a period of time for either small Q or small τ ,
as shown in Fig. 5(a). In addition, for large Q and large τ , the
probability evolves to the asymptotic value of P = 0.5 after a
very long time, as plotted in Fig.5(b).

The asymptotic probability as a function of Q for
small τ in the low-friction regime is shown in Fig. 6. If the
initial kinetic energy is below or near the barrier potential,
K < B, the overpassing probability is less than 0.5 and
increases slowly with increasing variance Q. In contrast,
for K > B the probability is larger than 0.5, implying that
an overwhelming majority of particles have surmounted the
fluctuating barrier, as expected. Furthermore, larger Q, and
hence a large barrier fluctuation, will not help more particles
pass over the fluctuating barrier. On the contrary, some of the
particles return to the starting point if Q increases; hence a

FIG. 5. (Color online) Probability of passing over a fluctuating
barrier as a function of time. The temperature T/B = 0.5 and friction
γ = 0.1 in the simulations. (a) Stationary probability obtained after a
time for either small Q or small τ . From bottom to top the three lines
indicate Q = 0.1 and τ = 0.1 (small Q and small τ ), Q = 0.1 and
τ = 10 (small Q), and Q = 1.0 and τ = 0.1 (small τ ), respectively.
The initial kinetic energy K/B = 0.5. (b) Nonstationary probability
for large Q and large τ . Notice that the time scale is much greater
than that in (a).
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FIG. 6. (Color online) Asymptotic probability of passing over a
fluctuating barrier as a function of the variance Q for three cases.
A small correlation time τ = 0.1 is taken to ensure a stationary
probability within the simulation time. Other parameters are the same
as in Fig. 5.

decreasing probability with increasing Q is observed for large
K and low γ .

In the following we restrict our consideration to the case
of Q 	 1 to ensure a barrier potential, thus avoiding a
harmonic oscillator, even temporarily. Extensive numerical
simulations show completely distinct behaviors in the three
energy regimes with respect to the case of a static barrier: the
enhanced probability in the energy area K < Kc, a suppressed
probability for K > Kc, and an invariable probability for
K = Kc, as shown in Fig. 3. It is interesting that the energy
regimes in Fig. 4 are still in effect even in the presence of a
fluctuating barrier. As a result we come to the conclusion that

FIG. 7. (Color online) Semilogarithmic plot of the overpassing
probability as a function of the initial kinetic energy. The temperature
T/B = 0.5. The solid line is the result of Eq. (32), which corresponds
to the static barrier potential (Q = 0), and the scatters from bottom
to top correspond to the fluctuating barrier with variance Q = 0.1
and correlation times τ = 0.1,1.0, and 10.0, respectively. The arrow
indicates the average barrier height. Inset: Probability at higher
energies on a linear scale.

neither the temperature of the environment nor the fluctuating
barrier will affect the critical kinetic energy.

Finally, it is instructive to study the effect of correlation
time τ on asymptotic probability. A wide range of correla-
tion times has been used in our simulations to obtain the
characteristics. The overpassing probability as a function of
initial kinetic energy is shown in Fig. 7. Large τ leads to
great enhancement of the probability at energies well below
the barrier. At energies near the barrier, probability increases
noticeably with increasing τ . In contrast, a slight decrease
in probability occurs at high energies, even for the case of
large τ (see the inset of Fig. 7). The results are qualitatively
consistent with those of previous work on the enhanced fusion
cross sections for heavy-ion synthesis by introducing a barrier
distribution, especially at low, subbarrier energies [21–24,46];
while a decreased probability at high energies is reported in
Ref. [47]. Indeed, the fusion cross section is dominated by
the fusion probability [42,48] and a realistic fusion reaction
includes a more complex potential and specific parameters.
Our results have demonstrated that both enhancement and
suppression of the fusion probability are relevant to not
only the barrier distribution, but the correlation time of the
fluctuating barrier as well.

IV. CONCLUSION

In conclusion, we have proposed a Langevin model
subjected to additive and multiplicative noises to describe
thermally activated diffusion over a fluctuating barrier. The
analytical predictions of the first and second moments and
relevant dynamical characteristics have been obtained by
using two linear matrix equations. Numerical analysis of
the Langevin model provides a nonstationary PDF in a non-
Gaussian form. Our results can also be applied to stochastically
modulated harmonic oscillators (e.g., a Kubo oscillator) only
if the inverted parabolic barrier is replaced by a harmonic-
oscillator potential.

We also showed interesting dynamics in the underdamped
region where the exchange of energy with the environment
is limited due to low friction. For the case of a static
barrier with Q = 0, there are three regimes that depend on
the initial kinetic energy with respect to the critical energy
[Eq. (33)]. For K < Kc, the asymptotic probability P of
passing over a static barrier is less than 0.5 and increases with
increasing temperature. In contrast, the asymptotic probability
is greater than 0.5 and decreases with increasing temperature
for K > Kc. This indicates that, contrary to expectation, higher
temperatures do not always help the particles surmount the
barrier. At energy K = Kc, the probability remains unchanged
at P = 0.5 for various temperatures of the environment.
Furthermore, the simulations showed that this holds true even
for a fluctuating barrier. Consequently, the implication is that
the critical kinetic energy Kc has nothing to do with the
temperature of the environment or the stochastic modulation of
the barrier.

We have explored the influence of barrier fluctuation (in
relevant scales of correlation time) on the probability of pass-
ing over fluctuating barriers. For a large correlation time τ , the
overpassing probability is enhanced remarkably at subbarrier
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energies, while a slight decrease in probability occurs at high
energies, as compared to the case of the static barrier. A
similar enhancement of fusion cross sections has been found
in previous work on experimental studies in heavy-ion fusion
reactions and was explained by a theoretical analysis of the
coupled-channel effect using a barrier distribution. It should
be noted that our model presents a qualitative prediction of
the dynamics in the fluctuating barrier with various scales
of correlation. Our results indicate that the correlation time
of the fluctuating barrier plays an important role in barrier
crossing dynamics. We hope this model will provide a better
understanding of the barrier crossing problem in heavy-ion
fusion reactions, particularly at energies below and near the
Coulomb barrier.
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APPENDIX

For the stochastic variables x and v described by the
two-component Langevin equation [Eq. (7)], the correla-
tors 〈ξx〉 and 〈ξv〉 cannot be found directly by using
the Shapiro-Loginov theorem for Gaussian white noise
ξ . In the Stratonovich representation, which supposed a
δ-correlated process as an approximation to a colored process
with zero mean and finite correlation time, 〈ξ (t)ξ (t ′)〉 =
(D/τG) exp(−|t − t ′|/τG). On the very small time scale τG,
Gaussian white noise ξ with noise intensity D is obtained
[10,27,28,49]. This is considered an appropriate interpretation
for most physical situations. With such an assumption, appli-
cation of the Shapiro-Loginov theorem yields two differential
equations

d〈ξx〉
dt

= −(1/τG)〈ξx〉 + 〈ξv〉,
d〈ξv〉

dt
= �2〈ξx〉 − [γ + (1/τG)]〈ξv〉 + D/τG, (A1)

where the approximation 〈ξηx〉 = 〈ξη〉〈x〉 = 0 has been used.
Equation (A1) is exactly solvable, but in a very complicated
form. Here we give the concise results 〈ξx〉 → 0 and 〈ξv〉 →
D in the limit τG → 0.
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