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Statistics of reciprocal distances for random walks of three particles in one dimension
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We investigate the collective properties of three particles performing both independent and interacting random
walks on an infinite line by studying the problem on the corresponding distance graph. In the large times limit,
we obtain the asymptotically exact behavior of several probability functions regarding maximum and minimum
mutual distances among particles. Finally, we suggest possible applications of our results.
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I. INTRODUCTION

The collective properties of several random walkers have
been studied in some detail since the 1980s; although a
thorough account of the results achieved in the last 30 years
is beyond the scope of this article, a short summary of the
main directions of research is in order. In a short review by
Fisher [1] several results are sketched, for both noninteracting
and interacting walkers; other authors focused on more specific
topics: vicious walkers, who cannot pass one another [2–6],
osculating walkers, who can sit on the same site but will never
go along the same link [7,8], n-friendly walkers, who can go
along the same path for no more than n links [3,4,9], as well
as other types of models [10–12].

In this paper we are going to present several results on some
collective properties of three independent random walkers on
an infinite line. In particular, we have calculated the probability
that minimum and maximum distances among the walkers are
in a given range, and we have also derived the asymptotic
behavior of the probability that the three particles first meet at
time t , for large times.

We have performed the calculation in the graph of the
interparticle distances, which displays several advantages: It
reduces the problem to a two-dimensional lattice, which is
a quite classical trick when dealing with multiple random
walkers, it has a simple and intuitive geometric form, it
discards the useless details concerning the absolute position
of the particles while retaining all the meaningful interparticle
relations, and it allows for a straightforward introduction of
interparticle attraction or repulsion.

For large times, the asymptotic behavior of the probability
distributions of maximum and minimum mutual distances d,
which are strictly nonlinear functions, displays to first order
a diffusion-like scaling as d2/t , when d is large. At higher
orders, this scaling breaks down, and for intermediate distances
a richer behavior is revealed.

We have also studied two different models for vicious
interacting walkers, which we have been able to map onto
the model for independent walkers; the aforementioned results
thus hold in these cases as well.

The paper is organized as follows: First, we define the
system under study and introduce the interparticle distance
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graph; next we compute the exact t → ∞ asymptotic form of
the probability P (�x,t) of finding the walkers at a point �x in the
distance graph, and then we infer the behavior of the first-return
probabilities. In the following sections we first compute
the probability that the minimum and maximum distances
between pairs of adjacent particles are smaller than some d,
then focus on the probability that the walkers are no closer
than dinf and no farther than dsup. We then study two models
for vicious random walkers, and finally we analyze our results.

II. THREE PARTICLES ON A LINE

A simple discrete random walk on a one-dimensional lattice
is a process in which, at discrete time steps t = 1,2, . . . ,

a particle located at position i(t) ∈ Z moves to an adjacent
vertex on the lattice with equal probability:

pi→(i+1)(t) = pi→(i−1)(t) = 1

2
∀t.

Let P lin
ij (t) be the probability that a walker starting from i is at

position j after t steps.
We now take three independent walkers on the same lattice,

leaving from i at time 0: The probability P
(3)
1D (t) for all of them

to meet at a time t is

P
(3)
1D (t) =

∑
j

[
P lin

ij (t)
]3

.

A good choice of coordinates to tackle this problem is the
following: Let x be the distance between the leftmost walker
and the central one, and let y be the distance between
the rightmost walker and the central one. A straightforward
analysis of the transition probabilities gives the following
results:

(i) If the position at time (t − 1) is (0,0):

p ((0,0) → (0,0)) = 1

4
,

p ((0,0) → (0,2)) = p ((0,0) → (2,0)) = 3

8
;

(ii) If the position at time (t − 1) is (x,0) or (0,y):

p ((x,0) → (x,0)) = p ((x,0) → (x − 2,2))

= p ((x,0) → (x,2)) = 1

4
,

p ((x,0) → (x + 2,0)) = p ((x,0) → (x − 2,0)) = 1

8
,
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FIG. 1. The distance graph for the random walk of three particles
on a line is a two-dimensional lattice with diagonals.

and

p ((0,y) → (0,y)) = p ((0,y) → (2,y − 2))

= p ((0,y) → (2,y)) = 1

4
,

p ((0,y) → (0,y + 2)) = p ((0,y) → (0,y − 2)) = 1

8
;

(iii) If the position at time (t − 1) is (x,y):

p ((x,y) → (x,y)) = 1

4
,

p ((x,y) → (x + 2,y)) = p ((x,y) → (x − 2,y)) = 1

8
,

p ((x,y) → (x,y + 2)) = p ((x,y) → (x,y − 2)) = 1

8
,

p ((x,y) → (x +2,y −2)) = p ((x,y) → (x −2,y +2)) = 1

8
.

The end result is that P
(3)
1D (t) corresponds to the probability

of return to the origin, for a simple random walk with waiting
probability 1

4 , on a two-dimensional structure with diagonals,
as depicted in Fig. 1, or equivalently on a slice of a triangular
lattice, as in Fig. 2. On both structures each step corresponds
to a change of two for the reciprocal distances of the
particles.

Since the graph we have now obtained is inhomogeneous,
a natural way to tackle it is by transforming it into a full
triangular lattice (Fig. 3). This feat is accomplished by noting
that, at (0,0), the probability of departing from the origin—
which is 6/8—corresponds to a choice of one among the six
axes; on the axes of Fig. 2, on the other hand, the probability
1/4 of departing from the current axis corresponds to the
choice between two adjacent slices in the full triangular lattice.
A cogent interpretation of the full triangular lattice is obtained
by noting that each of the six slices corresponds to the possible
orderings of the walkers on a one-dimensional lattice, and that
each crossing of an axis implies a change in this order (see
Fig. 3).

FIG. 2. The two-dimensional lattice with diagonals is equivalent
to a triangular lattice.

The graphs in Figs. 1, 2, and 3 can all be defined as distance
graphs of the multiple random walk we are considering. It is
just for computational simplicity that we will stick to the latter
henceforth.

This reduction to a two-dimensional problem is a quite
classical trick, but it should be stressed that it is not guaranteed
to succeed for multiple random walks in inhomogeneous
graphs, as it can prove impossible to construct a distance graph;
in such cases, interesting phenomena regarding the probability
of meeting can arise.

The full triangular lattice is a homogeneous graph, and in
every point the transition probabilities are 1

8 for each of the six
first neighbors, with probability 1

4 of not moving at all.
The return probabilities for this lattice can be computed via

a straightforward Fourier transform:

P (�x,t) = 9

16π2

∫
d2 �Kei 3

2

∑
j Kj nj

{
1

4

[
1 + cos

(
3

2
K1

)

+ cos

(
3

2
K2

)
+ cos

(
3

2
K3

)]}t

,

FIG. 3. (Color online) The full triangular lattice. Each slice
corresponds to an ordering of the three particles, as indicated in
the picture; crossing an axis corresponds to swapping two particles.
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where k1 + k2 + k3 = 0, �x =∑j nj �ej is a site on the full
triangular lattice, and �ej is one of the three first-neighbor
vectors

�e1 = (1,0),

�e2 =
(

1

2
,

√
3

2

)
.

The asymptotic behavior of the function can be obtained
exactly as t → ∞ by the steepest descent method: The
maximum value of the expression

1

4

[
1 + cos

(
3

2
K1

)
+ cos

(
3

2
K2

)
+ cos

(
3

2
K3

)]
is obtained for K1 = K2 = 0. The integral is then well
approximated by

9

16π2

∫
d2 �Kei 3

2

∑
j Kj nj e− 9

16 t[K2
1 +K2

2 +K1K2].

The Gaussian integral is straightforwardly solved by the
following change of variables:

l1 = K1 + K2,

l2 = K1 − K2,

which yields

P (�x,t) ∼ 9

32π2

∫
d2�l exp

{
i

[
l1 + l2

2
(n1 − n3)

+ l1 − l2

2
(n2 − n3)

]
− 9

64
t
(
3l2

1 + l2
2

)}

= 2√
3π

1

t
exp

(
−4

3

�x2

t

)
, (1)

where �x2 = n2
1 + n2

2 + n1n2 and is valid for every point on the
lattice as t → ∞.

Taking into account the fact that each step in the distance
graph corresponds to a distance 2 in the original lattice, the
following holds:

Pline(x,y,t)

=

⎧⎪⎪⎨
⎪⎪⎩

6P
(

x
2 �e1 + y

2 �e2,t
) {x,y 	= 0}

3P
(

x
2 �e1 + y

2 �e2,t
) {x = 0,y 	= 0} ∪ {x 	= 0,y = 0}

P
(
�0,t
)

{x = 0,y = 0}
.

(2)

III. NORMALIZATION OF THE ASYMPTOTIC
PROBABILITY

The probability in Eq. (1) is asymptotically exact as t → ∞,
and the normalization provided is the correct one for the exact
initial formula. It proves useful, however, to compute in an
approximate way the normalization factor, as a way to test both
the saddle point method and the technique we will use later to
compute various probability functions. Without further ado,
the result is once again Eq. (1), as we now proceed to prove.

We look for N in the following equation:

1 =
∑

�x
P (�x,t) = N

t

∑
�x

exp

(
−4

3

�x2

t

)
.

We now restrict our attention to one of the six slices, which
is described by the base vectors �e1 and �e2. The sum over the
lattice can be written as follows:∑

�x
= 6

∑
slice

−6
∑
axis

−5P (�0,t),

where the second and third terms are necessary as the axes and
the origin are considered multiple times in the first term. As a
first step, we can evaluate the weight of these terms:

∑
axis

P (�x,t) = N

t

∞∑
i=0

e− 4
3

�x2

t

satisfies∑
axis

P (�x,t) >
N

t

∫ ∞

0
dx e− 4

3
x2

t = N

t

1

2

√
3πt

4
= N

4

√
3π

t

and∑
axis

P (�x,t) <
N

t

(
1 +

∫ ∞

1
dx e− 4

3
(x−1)2

t

)
=
(

N

t
+ N

4

√
3π

t

)

so that ∑
axis

P (�x,t) = N

4

√
3π

t
+ O(t−1) = O(t−

1
2 )

and

6
∑
axis

P (�x,t) + 5P
(
�0,t
)

= O(t−
1
2 ).

The next step consists of computing the sum over each slice
of the exponential. This sum is best performed using the
variables

l = n1 + n2

m = n1 − n2
.

In this base the exponential reads

exp

[
−4
(

3
4 l2 + 1

4m2
)

3t

]
= exp

(
− l2

t
− m2

3t

)
.

The sum over the points of the slice,
∑

n1

∑
n2

, is converted
into the following sum:

∑
l=0,1,...

l∑
m=−l,−l+2,...,l−2,l

;

the sum can now be split into two terms, for even and odd l,∑
�x P (�x,t) = S + T

S =∑l=0,2,... e
− l2

t

∑
m=−l,−l+2,...,l e

− m2

3t

T =∑l=1,3,... e
− l2

t

∑
m=−l,−l+2,...,l e

− m2

3t .

Using as a sum indices q = l
2 and v = m

2 , S becomes

S = 2
∑

q=0,1,...

e− 4q2

t

∑
v=0,1,...,q

e− 4v2

3t −
∑

q=0,1,...

e− 4q2

t ; (3)

as we have already seen, the second term is O(t
1
2 ), so we will

drop it and focus on the double sum, which has now to be
bound as we did earlier.
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FIG. 4. The sum in Eq. (3), over the set of points in region R, can
be bounded from below by an integral over R̃, and from above by an
integral over ˜̃R.

It is easily seen that

∑
q=0,1,...

e− 4q2

t

∑
v=0,1,...,q

e− 4q2

3t >

∫
R̃

dq dv exp

(
−4q2

t
− 4v2

3t

)

=
√

3t

4

∫ ∞

0
R dR

∫ π
6

0
dφ e−R2 = π

16
√

3
t,

where the regions R and R̃ are as in Fig. 4.
As to the other bound

∑
q=0,1,...

e− 4q2

t

∑
v=0,1,...,q

e− 4v2

3t =
∑

q

e− 4q2

t +
∞∑

q=1

∞∑
v=1

exp

(
−4q2

t
− 4v2

3t

)

< [1 + O(
√

t)] +
∞∑

q=0

q∑
v=0

exp

[
−4(q + 1)2

t
− 4(v + 1)2

3t

]

<

∫
˜̃R
dq dv exp

[
−32(q + 1)2

27t
− 32(v + 1)2

27t

]
+ O(t

1
2 )

=
√

3t

4

∫ ∞

0
dr R

∫ π
6

0
dφ e−R2 + O(t

1
2 ) = π

16
√

3
t + O(t

1
2 ),

which together with the previous result implies

S = 2
π

16
√

3
t + O(t

1
2 ) = π

8
√

3
t + O(t

1
2 ).

The computation of T is perfectly analogous, with some
complications in the division of the integration regions into
subregions. In the end we get the result that, as above,

T = π

8
√

3
t + O(t

1
2 ),

and

1 = 6N

[
π

8
√

3
t + π

8
√

3
t + O(t

1
2 )

]
,

N = 2√
3π

+ O(t−
1
2 ).

The normalized form of the probability is then proved to be as
in Eq. (1).

IV. FIRST-RETURN PROBABILITY

It is also easy to give an estimate for the asymptotic
probability F (�0,t) of first return to the origin: The generating
functions satisfy

F̃ (�0,λ) = 1 − 1

P̃ (�0,λ)
.

From Eq. (1),

P̃ (�0,λ) =
∑

t

λtP (�0,t) ∼ 2√
3π

ln(1 − λ),

as λ ∼ 1, so

F̃ (�0,λ) ∼ 1 −
√

3π

2

1

ln(1 − λ)
.

Standard asymptotic series analysis yields

F (�0,t) ∼ 1

t (ln t)2

as t → +∞.
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V. EUCLIDEAN DISTANCE FROM THE ORIGIN

While not physically meaningful for the three-particles
problem, the probability that a random walker on the triangular
lattice is inside a circle of radius ρ in the two-dimensional plane
will be useful later. By definition

Qρ(t) =
∑

{�x: |�x|<ρ2}
P (�x,t) .

The calculation is a straightforward generalization of the steps
taken earlier: The regions R̃ and ˜̃R are now of finite radii,
respectively, ρ and ρ + √

2. As to the details, for S the
following holds:

√
3πt

2
S >

3
√

3

2
t
π

3

∫ 2ρ√
3t

0
dR Re−R2 + O(t

1
2 )

=
√

3πt

4

(
1 − e− 4ρ2

3t

)
+ O(t

1
2 ),

√
3πt

2
S <

3
√

3

2
t
π

3

∫ 2(ρ+√
2)√

3t

0
dR Re−R2 + O(t

1
2 )

=
√

3πt

4

[
1 − e− 4(ρ+√

2)2

3t

]
+ O(t

1
2 ).

Let now

E(ρ) =
√

3πt

4
e− 4ρ2

3t

(
1 − e− 8

3t
(
√

2 ρ+1)
)

.

As we will be mostly interested in the case 1 � ρ � t , we
can write

E(ρ) = 2
√

2πρ√
3

e− 4ρ2

3t

and
√

3πt

2
S =

√
3πt

4

{
1 − e− 4ρ2

3t

[
1 + O

(ρ

t

)]}
.

The same procedure holds for T . The contribution of the
points on the edges of each slice is O(t−

1
2 ), and it can be

dropped as long as ρ � 1; one then obtains

Qρ(t) = 1 − e− 4ρ2

3t [1 + O(ρ/t)] . (4)

VI. MINIMUM DISTANCE BETWEEN PARTICLES

We have previously defined x and y as the distance between
the central particle and, respectively, the leftmost particle
and the rightmost one. What are the chances that, at some
time t , the minimum between x and y, dmin = min {x,y}, is
lower than some given value 2d? This type of quantity can
be of interest, e.g., when investigating chemical kinetics, as
reactions happen at a limited range.

In the complete triangular lattice, dmin is the distance to the
nearest of the three axes, so the probability that dmin(t) < d is

P (dmin < 2d,t) =
∑
�x∈Rd

P (�x,t) ,

FIG. 5. (Color online) The shaded area is Rd , the region of
summation for P (dmin < d,t).

where Rd comprises the lattice points in a region similar to the
one shaded in Fig. 5.

The region Rd can be divided into two main subregions:
a circle of radius

√
3d and six identical infinite beams, each

collinear to one of the three main axes. The weight of the
circle is given by Q√

3d (t), while the contribution of the infinite
beams is to be computed now.

We make now two approximations: to start, we divide one
beam into two pieces, one comprising all the points at distance
greater than

√
3d, the other one the remaining points. The con-

tribution of the latter is ≈ e− 4d2

t O(t−1), and in hindsight we can
safely ignore it. The former piece gives the main contribution,
to both the beam and the P (dmin < 2d,t): we approximate it in
a rather crude way, which can be justified for 1 � d � t1/2,
of considering the distance fixed and equal to R2 for all the
lattice points orthogonal to a given point on the axis.

A procedure analogous to the one employed earlier yields,
for 1 � d � t−1/2,

P (dmin < 2d,t)

= 1 − e−4d2/t + 6d√
πt

[
1 − Erf

(
2d√

t

)]
[1 + O(d−1)]

= 1 − e−4y2 + 6y√
π

[1 − Erf (2y)] [1 + O(d−1)]

= 6d√
πt

[1 + O(d−1)]

−4(6 − π )d2

πt
[1 + O(d−1)] + O

(
d2

t

)3/2

= 6y√
π

[1 + O(d−1)]

−4(6 − π )y2

π
[1 + O(d−1)] + O(y3), (5)

where we have set y =
√

d2/t ; it is worthwhile to explicitly
note that the leading terms of the probability are a function
of d2/t , which thus describes the time evolution of a fixed
probability surface. This regular diffusion-like behavior, unlike
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in the two-particle case, is not trivial: even though the
probability of meeting at a given point is led, for long times,
by a Gaussian propagator, the minimum distance is a strictly
nonlinear function of the positions of the particles, so that
a priori it is hazardous to guess this behavior. Furthermore,
the diffusion-like behavior is not guaranteed to hold at higher
orders because of the O(d−1) error that one introduces when
approximating the sums with integrals.

VII. MAXIMUM DISTANCE BETWEEN PARTICLES

Another quantity of interest is the probability that at any
given moment the maximum distance between two adjacent
particles is lower than 2d: the set of points satisfying dMax

< 2d corresponds to the shaded area R in Fig. 6:

P (dMax < 2d,t) =
∑
�x∈R

P (�x,t) .

Such a quantity can be of interest, e.g., when investigating the
robustness of a dynamic network of wireless devices, whose
nodes can move randomly in space [13].

Instead of computing sums, we compute integrals, as we
did in the previous sections: By doing so we introduce errors
which are O(d−1), so that we can safely ignore them as long
as 1 � d � t ; we now divide R into two regions, the circle of
radius d, Cd , and R \ Cd , and write

P (dMax < 2d,t) = Qd (t) +
∑

�x∈R\Cd

P (�x,t) .

The second piece can be written by substituting

l = n1 + n2

2
,

m = n1 − n2

2
and approximated with an integral over the slices as follows:

∑
�x∈R\Cd

P (�x,t) =
(

1

2π

)
12
∫ 2d/

√
t

2d/
√

3t

dq̄
π

3

( 2d√
t
− q̄

√
3 − 1

)
e−q̄2

[1 + O(d−1)].

The result can be stated in an analytic, if somewhat unclear, formula as follows:

P (dMax < 2d,t) = 1 +
{

−
√

3√
3 − 1

e− 4d2

3t + 1√
3 − 1

e− 4d2

t + 2
√

π√
3 − 1

d√
t

[
Erf

(
2d√

t

)
− Erf

(
2d√

3t

)]}
[1 + O(d−1)].

A straightforward computation leads, in the same limits as before, 1 � d � t1/2, to

P (dMax < 2d) = 4√
3

d2

t
[1 + O(d−1)] − 8

27
[3 + 4

√
3 + O(d−1)]

(
d2

t

)2

+ 32

405
[12 + 13

√
3 + O(d−1)]

(
d2

t

)3

+ O

(
d2

t

)4

.

FIG. 6. (Color online) The shaded area is R, the region of
summation for P (dMax < 2d,t).

VIII. PARTICLES WITH BOUNDED MAXIMUM AND
MINIMUM DISTANCE

To complete the picture, we next compute the probability
that the pairs of adjacent particles are not closer than 2dinf, and
not farther apart than 2dsup:

P (dmin > 2dinf,dMax < 2dsup,t) =
∑
Rm

P (�x,t),

where Rm is the shaded region in Fig. 7. This quantity is of
interest in reactions involving a catalyst, e.g., in a cell, as it
is known [14] that an optimal distance exists at which the
reaction is favored.
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As in the previous section, we approximate the sum with
an integral and obtain

P (dmin > 2dinf,dMax < 2dsup,t) = 12√
3π

[ ∫ (dinf+dsup)/
√

t

2dinf/
√

t

dq

(
q − 2dinf√

t

)
e−q2

+
∫ 2dsup/

√
t

(dinf+dsup)/
√

t

(
2dsup√

t
− q

)
e−q2

](
1 + O

[
d−1

inf )

]

= 6

⎧⎨
⎩e− 4d2

inf
t + e− 4d2

sup
t − 2e− (dinf+dsup)2

t√
3π

+
2
[
Erf
[

2dinf√
t

]
dinf + Erf

[
2dsup√

t

]
dsup − Erf

[
dinf+dsup√

t

]
(dinf + dsup)

]
√

3πt

⎫⎬
⎭[1 + O

(
d−1

inf

)]
. (6)

This exact result is quite cumbersome, but one can extract
the leading terms in the expansion under the conditions
1 � dinf < dsup � t1/2:

P (dmin > 2dinf,dMax < 2dsup,t)

= 12
(
d2

inf − 2dinfdsup + d2
sup

)
√

3πt

[
1 + O(d−1

inf )
]

−6
7d4

inf − 4d3
infdsup − 6d2

infd
2
sup − 4dinfd

3
sup + 7d4

sup

3
√

3πt2

× [1 + O(d−1
inf )
]
.

As soon as we set dsup = kdinf, the asymptotic diffusion-like
behavior becomes apparent:

P (dmin > 2dinf,dMax < 2dsup,t)

= 12√
3πt

(k − 1)2d2
inf

[
1 + O(d−1

inf )
]
.

FIG. 7. (Color online) The region of summation for P (dmin

> 2dinf,dMax < 2dsup,t) is the shaded area.

IX. INTERACTING MULTIPLE RANDOM WALKS

It is indeed possible to extend the previous results to two
different types of interacting multiple random walks.

First, consider a random walk, on an infinite line, for three
particles that can stay on the same vertex but never change
their ordering. Let x be the distance between the leftmost
particle and the central one, and let y be the distance between
the central particle and the rightmost one. The motion of the
particles can be easily represented on the slice in Fig. 2.
As long as x and y are both greater than zero (everywhere
outside the axes and the origin), the most straightforward
choice for the transition rates is the same as in the case of
noninteracting particles. When x = 0 or y = 0, instead, the
probability distribution for the outcoming configurations are
arbitrary, depending on what physical sense we give to the
encounters among particles.

For the probability of transition on the axes (excluding the
origin), we decide that when two particles try to cross one
another they bounce back. This immediately entails the same
probability of transition as in the noninteracting case, and we
can once again describe the problem in a graph such as the one
in Fig. 3. The difference is that each triangular slice is a mirror
copy of the adjacent ones, while in the first case each slice
carries a specific ordering of the particles. The probability
P nc(�x,t) of finding the three noncrossing particles at given
distances (2x,2y) is then obtained by summing the probability
for noninteracting particles over all the corresponding points:

P nc(�x,t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

6P (�x,t) x,y > 0,

3P (�x,t) x = 0,y > 0,

3P (�x,t) x > 0,y = 0,

P (�x,t) x = y = 0.

(7)

The other quantities, which are already summed over equiva-
lent points, are the same as in the noninteracting case.

A slightly more complex case is when the three walkers
are solid and can neither sit on the same vertex nor cross each
other. In this case the motion can be described on the interior
of the slice in Fig. 2, i.e., on sites of the form

�x = x

2
�e1 + y

2
�e2,
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FIG. 8. (Color online) In panels (a)
to (c), the black dashed lines show the
asymptotic behavior, and solid red lines
are the results of simulations for dinf = 30,
dsup = 100. In panels (d) the solid regular
black line shows the asymptotic behavior,
while the jagged red line is the results of
simulations with the same parameters. (a)
P (dmin < 2dinf,t) is plotted together with
the first two terms of Eq. (5). (b) P (dMax

< 2dsup,t) and (c) P (dinf < 2dmin,dMax

< 2dsup,t) are also plotted together with
the second-order behavior. (d) The expres-
sion for P (dinf < 2dmin,dMax < 2dsup,t)
from Eq. (6) is plotted at intermediate
times together with simulation results.
Other choices for dinf and dsup give similar
results.

with x,y � 2, which correspond to distances (x,y). Whenever
x,y > 2, the probability of transition is the same as in the
noninteracting case. When two particles are adjacent (x = 2
or y = 2, but not both), our choice about bouncing yields the
following probabilities of transition:

p ((2,y) → (2,y)) = 1

4
,

p ((2,y) → (2,y − 2)) = p ((2,y) → (2,y + 2)) = 1

8
,

p ((2,y) → (4,y − 2)) = p ((2,y) → (4,y)) = 1

4
.

When the particles are all adjacent (x = y = 2), the probabil-
ities are as follows:

p ((2,2) → (2,2)) = 1

4
,

p ((2,2) → (2,4)) = p ((2,2) → (4,2)) = 3

8
.

If we now send (x,y) to (x − 2,y − 2), we can immediately
recognize that all these probability are the same as in the case
of noncrossing particles. Thus for solid random walkers the
probability function P srw(�x,t) satisfies

P srw(�x,t) = P nc(�x − �e1 − �e2),t), (8)

and analogously for the other quantities we have computed.
While the choice we have made for the transition probability

of adjacent particles can be justified, from an intuitive point of
view, by calling up independence of the Brownian motion of
different particles and momentum conservation in collisions, it

should be stressed that it is nevertheless an arbitrary position,
and different choices will yield different results.

X. DISCUSSION

The present paper explores an area that up to now has
been just grazed by research; we have been able to compute
the leading terms of several probability functions, all related
to collective properties of the random walks of three parti-
cles, namely the minimum and maximum distances among
particles. These quantities are not of mere academic interest,
as they have possible applications in diverse fields, from the
study of dynamic wireless networks [13] to reaction kinetics
involving catalysts [14].

The asymptotic behaviors for the three main quantities
computed have been verified by means of simulations, as
exemplified in Fig. 8: after a transient, the asymptotic behavior
sets in for times of the order t � d2, as expected.

For large times t and large distances d, our results highlight
that such probability distributions display a diffusion-like
scaling as d2/t , although they regard nonlinear functions
of mutual distances. This regularity, which is hinted at by
the Gaussian shape of the probability of meeting but is
nevertheless nontrivial because of the nonlinearity of the
minimum and maximum distances, breaks down for interme-
diate distances, where a richer behavior is revealed as the
integral approximation of the sum over lattice sites no longer
holds.

The procedure we followed also allows for the computation
of other interesting quantities, related to collective properties
of the random walks, which we neglected; furthermore it lets
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one straightforwardly introduce interparticle interactions as
biases in the distance graph. In particular, we have examined
two different models for vicious interacting walkers, and we
have shown their relation to the noninteracting case.

The extension to four and more walkers of our results
involves random walks in multiple dimensions on structures
analogous to the triangular lattice in Fig. 3, and will be the
object of further research.
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