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The transport of quantum electrons through hierarchical lattices is of interest because such lattices have some
properties of both regular lattices and random systems. We calculate the electron transmission as a function of
energy in the tight-binding approximation for two related Hanoi networks. HN3 is a Hanoi network with every
site having three bonds. HN5 has additional bonds added to HN3 to make the average number of bonds per
site equal to five. We present a renormalization group approach to solve the matrix equation involved in this
quantum transport calculation. We observe band gaps in HN3, while no such band gaps are observed in linear
networks or in HN5. We provide a detailed scaling analysis near the edges of these band gaps.
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I. INTRODUCTION

Understanding and controlling the transport of electrons is
central to the operation of all electrical and electronic devices
[1]. In many cases of interest in nanomaterials, the electron
transport is coherent, and therefore must be analyzed using
the Schrödinger equation. Interference effects can then lead
to a metal-insulator transition and Anderson localization [2].
Even more than fifty years after Anderson’s publication of his
celebrated paper, the effect remains an active area of study
[3–9]. The main goal is to calculate the transmission probabil-
ity as a function of energy, E, for an incoming electron, i.e.,
the probability that an electron that comes in from x = −∞
can be observed at x = +∞.

The starting point to quantum calculations of (spinless)
electrons through a material is often a tight-binding model [10].
In such a model each node can be considered an atom, the
on-site energy at a node is associated with a potential energy
at the site, and there is a hopping term which comes from
discretization of the kinetic energy term of the Schrödinger
equation [10]. The electron transport calculation via the
Schrödinger equation thus reduces to the solution of an infinite
matrix equation. The solution of the matrix equation is often
accomplished using a Green’s function method [6,10–15]. In
this paper we instead use an ansatz approach introduced by
Daboul, Chang, and Aharony [16], which is simpler to describe
at an undergraduate level [17]. The ansatz reduces the size of
the matrix equation to that of the number of tight-binding
sites in the scattering volume, plus one for both the incoming
lead and the outgoing lead. This approach has been used
by other authors [7,18]. We find that the ansatz approach
is particularly well suited to our calculations of transport
through hierarchical structures. To perform the calculation we
construct a decimation renormalization group (RG) procedure
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to reduce the number of sites of the hierarchical structure. Our
RG is related to that utilized by others for tight-binding models
[19–22]. However, our RG has been explicitly constructed
for the calculation of the transmission probabilities. We find
that our RG procedure greatly simplifies the calculation,
albeit only for certain select networks that have hierarchical
structures. Although our RG does not significantly simplify
the calculation of associated wave functions, we nevertheless
give a recipe for their calculation.

The specific models we solve here for quantum transport are
motivated by four considerations. One is to understand how
hierarchical models, in particular the Hanoi networks [23],
affect quantum transport. The second is that such hierarchical
models provide an intermediate between regular lattices and
ones that have a small-world property [24], and would be
of interest to understand quantum transport of nanomaterials
that have a small-world property [6,25–28]. The third is that
often phase transitions such as the metal-insulator transition
or a ferromagnetic transition have some universal quantities
that depend only on the dimension. Hierarchical models
then sometimes provide insight into how these universal
quantities behave as a function of the dimension [20,29–32].
Lastly, experimental realizations of hierarchical materials may
possess novel physical properties [33–37].

The hierarchical models we study are the Hanoi networks
HN3 and HN5. These networks have particularly interesting
properties. First, they are both planar and consequently could
be experimentally constructed on a surface. Second, both
networks have typical “paths” (defined precisely in Sec. II)
that grow more slowly with system size than do paths in
regular lattices. Finally, Anderson localization is associated
with randomness in the system, while randomness in the
Hanoi networks depends on the scale. For example, for HN3
locally every site has three bonds connecting it with other sites;
choosing sites from HN3 at random, the connections to other
sites seem random, but these connections are actually from a
hierarchical arrangement and hence at the larger scale there is
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regularity to the network. Therefore studying electron trans-
port and Anderson localization in these lattices is of interest.

In Sec. II we provide a brief description of the Hanoi
networks. For transport properties, these networks can be
connected to the leads in many ways, but we choose to
present results only for symmetric linear and symmetric ring
lead attachments. In Sec. III we develop the RG equations
for calculating the transmission through these networks, with
details of the RG presented in Appendix A. In Sec. IV we
analyze these RG equations for these networks. This involves
iterating the RG until the system is comprised only of a few
lattice points, and these small lattice solutions are presented
in Appendix B. Section V contains our conclusions and a
discussion of our results. The appendices contain the basic
matrix algebra used to develop the RG equations.

II. NETWORK STRUCTURE

Each of the networks considered in this paper possesses a
simple geometric backbone, a one-dimensional line of N = 2k

sites formed into a ring as depicted in Fig. 1 for HN3 and k = 5.
Alternatively, we can connect the network to the incoming
and outgoing leads in a linear arrangement with 2k + 1 sites,
as depicted in Figs. 2 and 3. Each site is at least connected
to its nearest neighbor left and right on the backbone. For
consistency, we call the ordinary one-dimensional ring HN2
(for Hanoi network of degree 2). For example, HN2 is the
linear lattice in Fig. 3 formed by only the black bonds.

To generate the small-world hierarchy in these networks,
consider parametrizing any number n < N (except for 0)
uniquely in terms of two other integers (i,j ), i � 1 and
1 � j � 2k−i , via

n = 2i−1 (2j − 1) . (1)

FIG. 1. Depiction of the 3-regular network HN3 with a one-
dimensional periodic backbone forming a ring, here with k = 5. The
top and bottom sites n = 0 and n = 2k−1 require special treatment
and are connected to external leads. With these connections, the entire
network becomes 3-regular. Note that the graph is planar.

FIG. 2. (Color online) Depiction of the planar network HN5.
Black lines demarcate the original HN3 structure; the green-shaded
lines are added to make HN5. Note that sites on the lowest level of the
hierarchy have degree 3, then degree 5, 7, . . ., making up a fraction
of 1/2, 1/4, 1/8, . . ., of all sites, thereby making for an average degree
5 of this network.

Here, i denotes the level in the hierarchy whereas j labels
consecutive sites within each hierarchy. To generate the
network HN3, we connect each site n = 2i−1(4j − 3) also
with a long-distance neighbor n′ = 2i−1(4j − 1) for 1 � j �
2k−i−1. (In the ring, if an index n equals or exceeds the system
size N , we assume that the site n mod N is implied.)

For the linear arrangement, the sites zero and 2k + 1 are
connected to the input/output leads, and site 2k−1 will not be
connected to any other site or to the input/output leads (see, for
instance, HN5 in Fig. 2). For the ring arrangement, the sites
with number zero and 2k−1 are connected to the input/output
leads (see Fig. 1), and site zero is connected to site 2k − 1 to
form the ring.

Previously [23], it was found that the average “chemical
path” between sites on HN3 scales as

dHN3 ∼
√

l (2)

with the distance l along the backbone. In some ways, this
property is reminiscent of a square-lattice consisting of N

lattice sites with diagonal ∼√
N .

While the preceding networks are of a fixed, finite degree,
we can extend HN3 in the following manner to obtain a new
planar network of average degree 5, hence called HN5, at
the price of a distribution in the degrees that is exponentially
falling. In addition to the bonds in HN3, in HN5 we also
connect all even sites to both of its nearest neighboring sites

FIG. 3. (Color online) Scattering a quantum electron off a linear
version of HN3, here drawn as a branched Koch curve. The incoming
electron on the left gets scattered into an outgoing transmitted portion
(right) and reflected portion (left) on the attached external leads
(blue shaded). In this form of HN3, the one-dimensional backbone
is marked by black links while the small-world links are shaded in
red. Note, for instance, that the shortest end-to-end path here is the
baseline of the Koch curve.
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within the same level of the hierarchy i > 1 in Eq. (1).
The resulting network remains planar but now sites have a
hierarchy-dependent degree, as shown in Fig. 2. To obtain
the average degree, we observe that 1/2 of all sites have
degree 3, 1/4 have degree 5, 1/8 have degree 7, and so
on, leading to an exponentially falling degree distribution
of P {α = 2i + 1} ∝ 2−i for i = 1,2,3, · · ·. Then, the total
number of bonds L in the (linear) system of size N = 2k + 1 is

2L = 2(2k − 1) +
k−1∑
i=1

(2i + 1) 2k−i = 5 × 2k − 4; (3)

thus, the average degree is

〈α〉 = 2L

N
∼ 5. (4)

In HN5, the end-to-end distance is trivially 1, see Fig. 2.
Therefore, we define as the diameter the largest of the shortest
paths possible between any two sites, which are typically
odd-index sites furthest away from long-distance bonds. For
the N = 33 site network depicted in Fig. 2, for instance, that
diameter is 5 as measured between site 3 and 19 (0 is the
leftmost site), although there are many other such pairs. It is
easy to show recursively that this diameter grows strictly as

dHN5 = 2 	k/2
 + 1 ∼ log2 N (5)

with 	x
 the integer portion of x. We have checked numerically
that the average shortest path between any two sites also
increases logarithmically with system size N .

III. MATRIX RG FOR HANOI NETWORKS

At each RG step, we decimate all the odd sites. Take site
0 to be at level i = k + 1 in a linear geometry and at level
i = k in a ring geometry. As the odd sites each have only one
small-world-type bond, we can divide the network into blocks
containing five sites and decimate the pairs of two odd sites
block by block. Let us start with the first block which contains
sites 0, 1, 2, 3, and 4. This decimation process for a linear geom-
etry is shown in Fig. 4. Thus, here (see Appendix A) we have

A =

⎛
⎜⎝

κk+1 λ1 λ2

λ1 κ2 λ1

λ2 λ1 κ3

⎞
⎟⎠ (6)

and

D =
(

κ1 τ1

τ1 κ1

)
, B =

⎛
⎜⎝

τ0 0

τ0 τ0

0 τ0

⎞
⎟⎠ = τ0

⎛
⎜⎝

1 0

1 1

0 1

⎞
⎟⎠. (7)

After decimation,

A′ =

⎛
⎜⎝

κ ′
k τ ′

0 λ′
1

τ ′
0 κ ′

1 τ ′
0

λ′
1 τ ′

0 κ̃2

⎞
⎟⎠ = A − BD−1BT. (8)

After simplification, we find that

κ ′
k = κk+1 − τ 2

0 κ1

κ2
1 − τ 2

1

, (9)

⇓

λ1

κk

κ1

κ̃2

τ0 τ0w τ0

τ1

λ2

λ1

κ1

κk+1

κ1

κ2 κ3

λ1

τ0 τ0 τ0 τ0 τ0w

FIG. 4. (Color online) Decimation of a block in the RG. The two
sites with on-site energy κ1 with a connecting bond of strength τ1 are
decimated.

κ ′
1 = κ2 − 2τ 2

0

κ1 + τ1
, (10)

κ̃2 = κ3 − τ 2
0 κ1

κ2
1 − τ 2

1

, (11)

τ ′
0 = λ1 − τ 2

0

κ1 + τ1
, (12)

λ′
1 = λ2 + τ 2

0 τ1

κ2
1 − τ 2

1

. (13)

Here, the primed and unprimed quantities represent the first
and the zeroth level, respectively, in the RG recursion. Notice
that the decimation of sites connected to site 4 [the rightmost
site in Fig. 4(a)] is not complete yet and therefore its on-site
energy will be modified further when we decimate the odd
sites of the next block which contains sites 4, 5, 6, 7, and 8.

After the decimation of the next block we get

κ ′
2 = κ̃2 − τ 2

0 κ1

κ2
1 − τ 2

1

= κ3 − 2τ 2
0 κ1

κ2
1 − τ 2

1

. (14)

Continuing the decimation block by block in this way, we find
that

κ ′
i = κi+1 − 2τ 2

0 κ1

κ2
1 − τ 2

1

for ∀i ∈ {2, . . . ,k}, (15)

τ ′
i = τi+1 ∀i � 1, (16)

λ′
i = λi+1 ∀i � 2. (17)
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At first it appears that there are a lot of RG variables to worry
about. However most of these RG variables are interdependent.
It can be deduced from Eqs. (9), (15), (16), and (17) that

τ
(m)
1 = τm+1, (18)

λ
(m)
2 = λm+2, (19)

and that the on-site energy parameter of the even sites is related
to those of the odd sites as

κ
(m)
i = κ

(m)
1 + κm+i − κm+1 − 2

(
λ

(m)
1 − λm+1

)
for

∀i ∈ {2, . . . ,k − m}, (20)

and that specifically for a linear geometry, the on-site energy
parameter of the end sites

κ
(m)
k+1−m = κk+1 + (

κ
(m)
2 − κm+2

)
/2 for

∀m ∈ {0, . . . ,k − 2}. (21)

Thus we are left with just three independent RG variables
which are κ

(m)
1 , τ

(m)
0 , and λ

(m)
1 governed by the RG equations

κ
(m+1)
1 = κ

(m)
1 + κm+2 − κm+1 − 2

(
λ

(m)
1 − λm+1

) − 2
[
τ

(m)
0

]2

κ
(m)
1 +τm+1

∀m ∈ {0, . . . ,k − 2}, (22)

τ
(m+1)
0 = λ

(m)
1 −

[
τ

(m)
0

]2

κ
(m)
1 + τm+1

∀m ∈ {0, . . . ,k − 1},

(23)

λ
(m+1)
1 = λm+2 +

[
τ

(m)
0

]2
τm+1[

κ
(m)
1

]2 − τ 2
m+1

∀m ∈ {0, . . . ,k − 1}.

(24)

IV. ANALYSIS OF THE RG EQUATIONS

A. One-dimensional lattice (HN2)

It will prove helpful to demonstrate the general set of
recursions [Eqs. (22), (23), and (24)] by way of the one-
dimensional (d = 1) ring of N = 2k sites. For consistency
we call this the HN2 network, or Hanoi network with 2 bonds
per site (with additional bonds for the input/output leads in
the ring geometry). We can employ the recursions to explore
the transmission through a d = 1 ring of N = 2k sites. The
energy scale chosen throughout is such that the (uniform)
transmissivity for each bond has a unit weight. With that, we
obtain the initial conditions

κ
(0)
i = E, (i � 1), τ

(0)
0 = −1,

(25)
τ

(0)
i = 0, (i � 1), λ

(0)
i = 0, (i � 1).

Equations (22), (23), and (24) simplify to

κm+1 = κm − 2τ 2
m

κm

, τm+1 = − τ 2
m

κm

, (26)

where κm ≡ κ
(m)
i and τi = λi ≡ 0 for all i � 1 and τm ≡ τ

(m)
0 .

These nonlinear recursions are easily solved by defining

2 1 1 2

5

5

HN2

FIG. 5. (Color online) Plot of κ (10) in Eq. (26) as a function of its
initial condition κ (0) = E. Even at this small order, the function varies
extremely rapidly, such that its (green-shaded) line completely covers
the shown domain. Thus, for −2 � E � 2, κ (m) for any sufficiently
large m is a random function. Correspondingly, the transmission
spectrum is dense, with full transmission close to any input energy E

such that particles do not localize.

sm = −κm/τm for which sm+1 = s2
m − 2, obtained by mutually

dividing both equations in Eqs. (26). Formally, the solution is

sm = 2 cos

[
2m arccos

(
κ (0)

2τ (0)

)]
= 2T2m

(
κ (0)

2τ (0)

)
, (27)

where Tn(x) refers to the nth Chebyshev polynomial of the
first kind [38]. Inserting into Eqs. (26) and applying the initial
conditions in Eqs. (25) generates the results

τ (m) = −
m−1∏
i=0

1

si

, κ (m) = sm

m−1∏
i=0

1

si

, (28)

where the last equality emerges under reordering factors in the
products.

Equation (B9) in Appendix B shows that the transmission
amplitude t is directly proportional to τ (k). Clearly, if there is
no transmission on any bond, i.e., τ (k) = 0, for a given input
energy E, there can be no transmission through the network
itself, no matter what happens on the sites. But instead of
plotting τ (k), it will prove more instructive to plot κ (k). It is
easy to see from Eqs. (28) that κ (k) varies rapidly whenever
τ (k) does, but that κ (k) varies smoothly whenever τ (k) vanishes.
In the following, we will see that this behavior remains true for
HN3 and HN5, in which case the variation of κ (k) with κ (0) = E

provides more information beyond the mere vanishing of τ (k).
We have evolved the RG recursion in (26) for the initial

conditions in (25) and plotted κ (k=10) as a function of κ (0) = E

in Fig. 5. Even at that system size, N = 2k = 1024, delocalized
states completely cover the domain −2 � E � 2.

B. Case HN3

Again, we can employ the RG Eqs. (22), (23), and (24)
for transmission through HN3 consisting of a ring of N =
2k sites, as in Fig. 1. Since all initial diagonal entries are
identical, the hierarchy for the κi collapses and we retain only

041106-4



QUANTUM TRANSPORT THROUGH HIERARCHICAL STRUCTURES PHYSICAL REVIEW E 83, 041106 (2011)

2 1 1 2 3

6

4

2

2

4

6
HN3

FIG. 6. (Color online) Plot of κ200 in Eq. (29) as a function of its
initial condition κ0 = E. Bands of localized and delocalized states
intermix. Correspondingly, there are localization-delocalization tran-
sitions already before the addition of any additional randomness in
HN3, merely as a function of the input energy E. On the horizontal
axis, we have marked the solutions E(i)

s of Eq. (36) for s = 1
(red dots), s = 2 (blue dots), and s = 6 (small black dots). The
accumulation of the latter demonstrates (even for such a small value
of s) that the band gaps are associated with the absence of such
solutions. While the solutions for s = 1 happen to be interior to the
bands, some of those for s = 2 appear to mark the band edges, in
particular the one at E = E

(2)
2 = −0.637875.

two nontrivial relations, one for κ1 and one for all other κi ≡
κ2 for all i � 2. Here, all τi are nonzero, encompassing the
backbone links (i = 0) and all levels of long-range links (i �
1). But it remains τi ≡ −1 for i � 1 at any step m of the
RG, in particular, τ

(m)
1 ≡ −1 throughout; only the backbone

τ0 renormalizes nontrivially. Although all links of type λi are
initially absent in this network, the details of the RG calculation
show that under renormalization terms of type λ1 emerge while
those for λi for i � 2 remain zero at any step. Thus, we obtain
far more elaborate RG recursion equations compared to those
of HN2. Abbreviating κm ≡ κ

(m)
1 , τm ≡ τ

(m)
0 , and λm = λ

(m)
1 ,

Eqs. (22), (23), and (24) and their initial conditions reduce to

κm+1 = κm − 2λm − 2τ 2
m

κm − 1
, (κ0 = E),

τm+1 = λm − τ 2
m

κm − 1
, (τ0 = −1), (29)

λm+1 = − τ 2
m

κ2
m − 1

, (λ0 = 0).

We have evolved the RG recursion in (29) and plotted κk=200

as a function of κ0 = E in Fig. 6. Even at that enormous (and
definitely asymptotic) system size, N = 2200 ≈ 1070, domains
of localized states remain asymptotically inside the physically
relevant domain of −2 � E � 2. For comparison, the radius
of the visible universe is only about 1040 fm.

In the next subsection, we will explore the asymptotic prop-
erties of these recursions for large m. We will find domains in E

of stationary solutions, which are particular for HN3, and show
that the special points where this analysis fails correspond to
transitions between localized and delocalized behavior.

1. Analysis of the steady state

We can analyze the absorbing steady state, which is the
unique feature of HN3 (in contrast to HN2 and HN5) leading
to band gaps, as follows. Numerical trails show that the RG
recursions in Eq. (29) reach a steady state for certain initial
conditions E when for all m larger than some m0 it is

1 � λm � τ 2
m

κm − 1
, (m → ∞). (30)

The leading contribution for κm in Eq. (29) then suggests

κm+1 ∼ κm ∼ κ∞, (31)

which is a constant that is difficult to derive from the initial
conditions, κ0 = E, unfortunately.

From the recursion for τm in Eq. (29), we further obtain

τm+1 ∼ λm ∼ − τ 2
m−1

κ2∞ − 1
. (32)

This second-order difference equation has two solutions, of
which we discard the oscillatory one, to get for large m > m0

τm ∼ − (
κ2

∞ − 1
)

exp{−C
√

2m},
λm ∼ − (

κ2
∞ − 1

)
exp{−C

√
2m+1},

where C > 0 is another undetermined constant that depends
on E. Using the recursion for κm in Eq. (29) to next-to-leading
order yields

κm+1 ∼ κm − 2λm, (33)

∼ κm + 2(κ2
∞ − 1) exp{−C

√
2m+1}, (34)

which, when summed from a m > m0 to ∞, results in

κm ∼ κ∞ − 2
(
κ2

∞ − 1
)

exp{−C
√

2m+1}, (35)

where we have kept only the first term in the sum, as the
summand is exponentially decaying.

The consequences of this analysis are quite dramatic. If
such a steady-state solution is reached, both transmission
rates τ and λ vanish, only leaving a finite on-site energy
κ∞. Hence, there cannot be any transmission through the
network when such a state is reached, and gaps emerge in
the transmission spectrum. Since the system size is given by
N = 2m, this result implies that finite-size corrections scale
with exp{−C

√
2N}, i.e., finite-size corrections decay rapidly

with a stretched exponential. Note that there are no steady-state
solutions that cross κ∞ = ±1 (dashed lines in Fig. 6), where
the correction in Eq. (35) would break down. Instead, the
approach of κ∞ → ±1 frequently appears to be associated
with the emergence of a band edge between localized and
delocalized states.

2. Band-edge analysis

The nontrivial band structure warrants further investigation.
In particular, we can associate such band edges with initial
conditions E = E(i)

s for which there exists an m = s such that

κs

(
E(i)

s

) = −1, (36)

a singular point in the recursion for λs+1. [Interestingly, any
singularity at κm = +1 appears to be benign in that it does not
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affect the continuity in κm as a function of E for m → ∞; it
afflicts each quantity in Eqs. (29) simultaneously, leading to a
divergence in κm+1, τm+1, and λm+1 just so that κm+2 ≈ κm−1,
τm+2 ≈ τm−1, λm+2 ≈ λm−1.] In Fig. 6, we have also marked
the real solutions E(i)

s of Eq. (36) for s = 1, 2, and 6. Clearly,
those solutions strongly correlate with the bands, and there
appear to be none within the gaps (although we have not been
able to prove this conjecture). But while those solutions for
s = 1, E

(1,2)
1 = ±√

3, are located well within some band (as
are those for s = 6), the four real solutions of Eq. (36) for
s = 2 satisfy the quartic equation

0 = 1 − 2E − 6E2 + E4 (37)

and appear to all be associated with some more or less
significant band edge, see blue dots in Fig. 6. We can
speculate that there is a whole hierarchy of transitions, each
associated with one of the solutions E(i)

m , which may become
dense on certain intervals. While we do not know what
determines those intervals precisely, we can analyze the
behavior in the neighborhood of Eq. (36). We observe that the
recursions in Eq. (29) possess stable steady-state solutions for
large m characterized by τm ∼ λm → 0, i.e., vanishing bond
strength between input and output. These solutions prevail
in the observed band gaps, which accordingly correspond to
localized states. It seems that the reason for the persistence of
gaps derives from that stability: Band gaps emerge whenever
the steady state is reached before Eq. (36) can be satisfied. For
instance, in the case of HN5 below, any putative steady-state
solution proves unstable for sufficiently large m such that any
band gaps are transitory only, see Fig. 9.

For the analysis of the recursion Eq. (29), we assume that
for some m = s, we reach

κs ∼ −1 + ε, (ε � 1), (38)

where ε = ε(E) may be of either sign, depending on �E =
E − E(i)

s . Generically, ε ∝ �E, see Sec. IV B 3 below. As-
suming that τs,λs � 1/ε leads to

κs+1 ∼ −1 − 2λs + τ 2
s + O(ε),

τs+1 ∼ λs + τ 2
s

2
+ O(ε), (39)

λs+1 ∼ τ 2
s

2ε
+ τ 2

s

4
+ O(ε),

which leaves only λs+1 singular. After one more recursion step,
we get instead

κs+2 ∼ −τ 2
s

ε
+ 2 + 6λs + 2λ2

s − 2τ 2
s − 5λsτ

2
s

−2 − 2λs + τ 2
s

+ O(ε),

τs+2 ∼ τ 2
s

2ε
+ 2λ2

s + τ 2
s + 3λsτ

2
s

4 + 4λs − 2τ 2
s

+ O(ε), (40)

λs+2 ∼ O(1).

At this point, Eq. (29) decouples to leading order, as
λs+2+i+1 ∼ −τ 2

s+2+i/κ
2
s+2+i ∼ −1/4 remains of order O(1)

while both κs+2+i and τs+2+i are of order O(1/ε), and we get
for some i � 0

κs+2+i+1 ∼κs+2+i − 2τ 2
s+2+i

κs+2+i

, τs+2+i+1 ∼− τ 2
s+2+i

κs+2+i

. (41)

These are exactly the same recursions we obtained in Eq. (26)
for HN2, with the solution in Eq. (27):

κs+2+i

2τs+2+i

∼ −T2i

(
− κs+2

2τs+2

)
, (42)

where from Eq. (40) we have

κs+2

2τs+2
∼ −1 + A

ε

τ 2
s

, (43)

A = 2 + 6λs − 3τ 2
s − 8λsτ

2
s

2 + 2λs − τ 2
s

. (44)

With that inserted into Eq. (42), we can deduce

κs+2+i

2τs+2+i

∼ −T2i

(
1 − A

ε

τ 2
s

)
,

∼ 1 − A
ε

τ 2
s

T ′
2i (1) , (45)

∼ 1 − 22iA
ε

τ 2
s

,

since T ′
n(x) = nUn−1(x) and Un−1(1) = n, referring to the

Chebyshev polynomial of the second kind, Un(x) [38]. With
the exponential growth in i of the correction amplitude in the
asymptotic expansion in Eq. (45), the expansion breaks down
at some i ∼ i0 such that the correction itself becomes of O(1),
i.e.,

i0 ∼ 1

2
log2

(
τ 2
s

|Aε|
)

. (46)

For i > i0, according to the first line of Eq. (45) the ratio
κs+2+i/τs+2+i either rises or falls exponentially, depending on
whether Aε < 0 or Aε > 0, respectively. In the latter case, κ

becomes less relevant and the bonds τ and λ determine the
future evolution in m, leading again to the chaotic behavior
in κm observed within the bands in Fig. 6. On the other hand,
if Aε > 0, the on-site energies κ dominate exponentially over
the couplings τ and λ, evolving toward an absorbing steady
state on the band-gap side of the transition.

3. Scaling relation for κ∞(E)

As mentioned in Sec. IV B 1, we cannot generally predict
the dependence of the asymptotic behavior on the initial
condition E. But we can use the analysis of that section at
least to determine the behavior of κ∞(E) on the approach to
those band edges where it diverges.

It is easy to show, using just the singular terms for κ and τ

in Eq. (40) inserted into the recursions in Eq. (41), that both
simultaneously decay exponentially with i at least while i � i0

from Eq. (46),

κs+2+i ∼ − τ 2
s

2iε
+ O(1),

(47)

τs+2+i ∼ τ 2
s

2i+1ε
+ O(1).

At i ∼ i0 there is a crossover beyond which for all i > i0

it is τs+2+i → 0 and a saturated value of κs+2+i → κ∞ is
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FIG. 7. (Color online) Plot of 1/κ∞ as a function of
√

E − E
(i)
s

for E → E(i)
s to test Eq. (49). Here, E

(2)
2 = −0.637875, marked as

the second blue dot from the left in Fig. 6.

reached. We can obtain the dominant asymptotic behavior at
the crossover from

κ∞ ∼ κs+2+i0 ∼ − τ 2
s

ε

√
τ 2
s

|Aε|
,

(48)

∼ −
√

|A| τ 2
s

sgn (ε)

|ε| 1
2

.

We can further establish a (generic) relation between ε and

�E ∼ E − E(i)
s

by extending the discussion of Eq. (36) in Sec. IV B 2. We set

−1 + ε (�E) ∼ κs

(
E(i)

s + �E
)
,

∼ κs

(
E(i)

s

) + κ ′
s

(
E(i)

s

)
�E,

∼ −1 + κ ′
s

(
E(i)

s

)
�E,

since κs → −1 is a regular limit for �E → 0, as Eq. (37), for
example, suggests. Hence,

ε (�E) ∼ κ ′
s

(
E(i)

s

)
�E,

and we conclude

κ∞ ∼ −
√

|A|τ 2
s∣∣κ ′

s

(
E

(i)
s

)∣∣ sgn
(
κ ′

s

(
E(i)

s

)
�E

)
|�E| 1

2

(49)

with �E → 0. In Fig. 7 we have tested the asymptotic relation
1/κ∞ ∼ √|�E| in the band gap near E(2)

s = −0.637875 . . . ,
a solution of Eq. (37) marked blue in Fig. 6.

C. Interpolation between HN2 and HN3

It proves fruitful to consider an interpolation between the
case of HN2 in Sec. IV A and HN3 in Sec. IV B in terms of
a one-parameter family of models. To wit, we can accomplish
such an interpolation by weighting the transmission along
the small-world links (see red-shaded links in Fig. 3) by a
factor of y relative to that of the backbone links (see black
links in Fig. 3). Clearly, more generally, hierarchy and/or
distance-dependent weights could be introduced as well. For
y = 0, small-world links are nonexistent, and we have the
linear lattice HN2. Although still mostly delocalized, the states

of the systems immediately change behavior when y > 0, and
we find localized states which expand their domain toward
y = 1, corresponding to HN3, and continue to do so until at
about y = 4 no transmission is possible any longer: The more
we weight small-world links here, which classically would
expedite transport [39], the less quantum transport is possible!
In the next section we will see that even more small-world
links, as in HN5, can lead to more transmission again. Hence,
the detailed structure of the links matter.

To explore this y family of models, we have to generalize
Eq. (29) appropriately:

κm+1 = κm − 2λm − 2τ 2
m

κm − y
, (κ0 = E),

τm+1 = λm − τ 2
m

κm − y
, (τ0 = −1), (50)

λm+1 = − y τ 2
m

κ2
m − y2

, (λ0 = 0),

since for all non-backbone links in Eqs. (22), (23), and (24)
it is τ

(0)
i�1 = y τ

(0)
0 , i.e., τ

(m)
i�1 = −y at every RG-step. Note that

these equations reduce to Eqs. (26) for y = 0 (with all λi ≡ 0)
and to Eq. (29) for y = 1.

In Fig. 8 we map out the state of Eq. (50) after the 1000th
iteration based on whether a steady state has been reached or
not, depending on the incoming energy E and the relative
weight y. For any y > 0, the ability to transmit has a
strong chaotic dependence on these parameters, and ceases
completely for y > 4. Even within domains of apparent trans-
mission there are often subdomains where no transmission is
possible, and it is not clear whether true conduction bands exist.
Since in this model the long-range links are not connected to
each other except through the backbone, one may speculate
that even at high weight these links merely lead to localized
resonances that interfere with transport along the backbone
instead of conveying it. (A similar confinement effect was
observed for the RG applied to random walks on HN3 in
Ref. [40].)

It is straightforward to generalize the discussion for HN3
in Sec. IV B to this model. In particular, for the band-edge
analysis we have to generalize Eq. (36) to read

κs

(
E(i)

s

) = −y. (51)

For s = 0,1,2, and 3, the numerical solutions E(i)
s (y) are also

plotted as lines in Fig. 8. The result underlines the contention
made before for HN3 that the transitions between transmission
and localization are closely associated with these singular
points of Eq. (50). For instance, the big blue-shaded dots in
Fig. 6 correspond here to the intersection of the simple-dashed
line for s = 2 with the dotted horizontal line along y = 1
(i.e., HN3). Dominant features emerge, such as the line
κ0 = E = −y. Other interesting points become apparent, for
instance, the one at y = −E = 1/

√
2. While there is otherwise

no apparent relation to solutions of κs = +y, it should be noted
that its s = 0 case does produce a distinct feature in the line
E = y.
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FIG. 8. (Color online) Plot of the state of Eq. (50) after 1000
iterations for initial energies κ0 = E and the interpolation parameter
y (the resolution is 0.001 in each direction). Shaded points have not,
or not yet, converged to a steady state; i.e., those values possess
nonzero transmission. At y = 0, corresponding to HN2, the system
transmits for any input energy, −2 � E � 2. As soon as y > 0, bands
of localized states emerge (especially at E = 0), and the remaining
transmitting states exhibit a chaotic dependence on the parameters.
At y = 1, the case of HN3 marked by a dotted horizontal line, only
a few nonlocalized states remain, and the further strengthening of
small-world links diminish transmission even more, such that it ceases
completely for y > 4. Any band of transmitting states appears to
be accompanied by solutions of Eq. (51), which here are drawn as
curves for the lowest orders of the recursion only, s = 0,1,2, and
3 corresponding respectively to dot-dot-dashed, dot-dashed, dashed,
and solid curves.

D. Case HN5

In close correspondence with the treatment in Sec. IV B, we
can employ the RG in Eqs. (22), (23), and (24) for transmission
through HN5 consisting of a ring of N = 2k sites. The sole
difference with Sec. IV B is that all links of type λi are
initially present in this network. Yet, the details of the RG
calculation in Sec. III show that under renormalization only
links of type λ1 renormalize while those λi for i � 2 remain
unrenormalized at any step. The diagonal elements are again
hierarchy independent, κ

(0)
i ≡ E, while the recursion for λ

changes. Abbreviating κ ≡ κ1, τ ≡ τ0, and λ = λ1, Eqs. (22),
(23), and (24) and their initial conditions reduce to

κm+1 = κm − 2λm − 2 − 2
τ 2
m

κm − 1
, (κ0 = E),

τm+1 = λm − τ 2
m

κm − 1
, (τ0 = −1), (52)

λm+1 = 1 − τ 2
m

κ2
m − 1

, (λ0 = −1).

We have evolved the RG recursion in Eq. (52) and plotted
κ (k=10) as a function of κ (0) = E in Fig. 9. At that (definitely not
asymptotic) system size, N = 210 ≈ 103, domains of localized
states remain which will disappear asymptotically, as for the

4 2 2 4

5

5

HN5

FIG. 9. (Color online) Plot of κ (10) in Eqs. (52) for HN5 as a
function of its initial condition κ (0) = E. Bands of localized and
delocalized states intermix, but those localized intervals disappear
asymptotically.

case of HN2 in Fig. 5. Unlike for HN3, there are no steady-
state solutions for Eq. (52) that could signal localization. It
is interesting to analyze the cause of this behavior. Since the
λ links (green shaded in Fig. 2) are an original feature of the
network, the RG recursion in Eq. (52) for λm obtains a constant
offset preventing λm, and hence τm, from vanishing. Unlike
for HN3, these small-world links allow perpetual transmission
within a given level of the hierarchy, instead of interfering
with other paths, and transmission is enhanced. In fact, we
have studied also an interpolation between HN3 and HN5
by attaching a relative weight y to these λ links in HN5,
relative to the otherwise uniform links present in HN3. Thus,
for y = 0 HN3 is obtained, and for y = 1 we get HN5. Yet,
we find that for any y > 0, this model eventually behaves
like HN5, with unfettered transmission throughout the energy
spectrum.

V. SUMMARY AND DISCUSSION

We have devised a decimation RG procedure within the
matrix methodology of Ref. [16] to obtain transmission of
quantum electrons through networks within the tight-binding
model approximation. This decimation RG procedure of
Appendix A can in principle be implemented for any network,
in that Eq. (A1) with n + m sites is reduced to Eq. (A7) with
n sites. For general networks the bookkeeping required could
become prohibitive. However, we find the RG equations well
suited to the networks we have chosen to analyze, namely,
the hierarchical networks called HN3 (Hanoi network with
3 bonds per site) and HN5 (Hanoi network with an average
of 5 bonds per site). This is because the RG can proceed
block-wise, as depicted in Fig. 4. We have analyzed both the
ring geometry (Fig. 1) and the linear geometry (Figs. 1 and
3) of these networks, with the only difference being the last
steps of the RG (Appendix B). We have also analyzed how
the transmission for the linear lattice (which we label HN2)
changes with the strength of the small-world-type bonds added
to form HN3 (Fig. 8).

The Hanoi networks are hierarchical models that provide
an intermediary between regular lattices and lattices that have
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random small-world bonds placed on regular lattices. Since
the small-world-type bonds in the Hanoi networks provide
shortcuts between sites, one might expect intuitively that they
should provide extra paths for transmission. However, because
of the hierarchical nature of the networks, the networks no
longer possess translational symmetry. This broken symmetry
is seen by the incoming quantum electrons and can lead to
Anderson-type localization. For the HN3 network with vari-
able strength y for the small-world-type bonds, we find that the
more we weight the small-world links, which classically would
expedite transport [39], the less quantum transport is possible
(Fig. 8). Furthermore, we find that HN3 has band edges at
particular energies E of the incoming electrons, between band
gaps with near-zero transmission and regions of extended wave
functions and transmission near unity. The network HN5 adds
still more small-world-type bonds to HN3, but we find that
for any nonzero strength of these additional bonds the band
edges seen in HN3 disappear and approximately unfettered
transmission is seen for large enough lattices for any energy
of the incoming electrons. Thus the hierarchical nature of
these lattices leads to very interesting transmission properties.
For these hierarchical lattices, the metal-insulator transitions
depend on quantities other than just the embedding dimension.
Similar effects have been seen for critical phenomena in hierar-
chical lattices, but only where translational symmetry is broken
[20,29–32].

Since the HN3 and HN5 networks are planar (see for
example Fig. 3), experimental realizations of these networks
should be possible to construct using etching techniques. These
experiments would lead to very interesting device physics,
in particular at the energy-dependent band edges we have
analyzed for HN3.
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APPENDIX A: GENERAL MATRIX FORMULATION
OF THE RG

As in Ref. [16], a “blob” of atoms in the tight-binding
approximation is considered to be connected to two semi-
infinite leads. Each semi-infinite lead is considered to be a
linear arrangement of tight-binding sites with on-site energy
0 and a hopping parameter of −1 (setting the energy scale).
The incoming (outgoing) lead is connected to the “blob” sites
by a vector of hopping parameters �w (respectively, �u). The
Schrödinger equation for the infinite system, H∞ �� = E ��,
must be solved with the appropriate boundary conditions.
The ansatz made [16] is that the wave function at every site
in the in-coming lead has the form ψm−1 = eimq + re−imq

with m = −∞, · · · , − 2, − 1,0, and the outgoing lead has
the wave function ψm+1 = teimq with m = 0,1,2, · · · ,∞. The
wave vector q is related to the energy of the incoming electron
by E = 2 cos(q). The reflection probability is R = |r|2 and
the transmission probability is T = |t |2. With this ansatz, the

required solution of the infinite matrix Schödinger equation
reduces to the solution of a finite matrix equation of dimension
two larger than the number of sites in the blob. Unlike Ref. [16],
we assume no direct hopping between the leads, i.e., no
shortcut path around the blob.

Consider the case with n + m sites in the blob. We specialize
to the case where all hopping parameters (τ or λ) and
on-site energies (convoluted with E to give κ) are real. The
(n + m + 2) × (n + m + 2) matrix to solve for the transmis-
sion T = |t |2 is [16,17]⎛

⎜⎜⎜⎜⎝
ξ �wT �wT

d 0

�w A B �u
�wd BT D �ud

0 �uT �uT
d ξ

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1 + r

�ψ
�ψd

t

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

2i�(ξ )

�0n

�0m

0

⎞
⎟⎟⎟⎟⎠ (A1)

with �(ξ ) the imaginary part of the complex function ξ , and
the definition

ξ = eiq − E = −E

2
+ i

√
4 − E2

2
. (A2)

The matrix A is of size n × n and includes all interactions
between the n sites that will remain after the RG. The matrix
D is of size m × m and includes all interactions between the
m sites that will be decimated by the RG. The matrix B is
of size n × m and includes all interactions between the the n

sites that will remain and the m sites that will be decimated.
The matrices A and D are both symmetric matrices, while in
general B is not symmetric. The vectors �w, �u, �ψ , and �0n are
all of length n, while the vectors �wd , �ud , �ψd , and �0m are all of
length m.

Multiplying out the two middle rows gives the equations

(1 + r) �w + A �ψ + B �ψd + t �u = �0n (A3)

and

(1 + r) �wd + BT �ψ + D �ψd + t �ud = �0m. (A4)

Solve Eq. (A4) for ψd to give

�ψd = −D−1[(1 + r) �wd + BT �ψ + t �ud ]. (A5)

Substituting �ψd into Eq. (A3) and collecting terms allows the
equation to be rewritten as

[ �w − BD−1 �wd ](1 + r) + [A − BD−1BT] �ψ
+ [�u − BD−1 �ud ]t = �0n. (A6)

Note that since D is symmetric, so is D−1. We can also
substitute �ψd from Eq. (A3) in for expressions obtained from
multiplying out the top and bottom rows of Eq. (A1). This
gives that the matrix equation⎛

⎜⎜⎝
ξ − �wT

d D−1 �wd �wT − �wT
d D−1BT − �wT

d D−1 �ud

�w − BD−1 �wd A − BD−1BT �u − BD−1 �ud

− �wT
d D−1 �ud �uT − �uT

d D−1BT ξ − �uT
d D−1 �ud

⎞
⎟⎟⎠

×
⎛
⎝ 1 + r

�ψ
t

⎞
⎠ =

⎛
⎜⎝

2i�(ξ )

�0n

0

⎞
⎟⎠ (A7)
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has the same solutions for r , t , and �ψ as does Eq. (A1). For the
cases in this paper we will not have interactions between the
input site and output site and the m sites to be decimated, so
both �wd and �ud will be zero and the (n + 2) × (n + 2) matrix
equation to solve for t becomes

⎛
⎜⎝

ξ �wT 0

�w A − BD−1BT �u
0 �uT ξ

⎞
⎟⎠

⎛
⎜⎝

1 + r

�ψ
t

⎞
⎟⎠ =

⎛
⎜⎝

2i�(ξ )

�0n

0

⎞
⎟⎠. (A8)

This completes the decimation RG of the m sites.

APPENDIX B: TRANSMISSION FROM SMALL
RENORMALIZED LATTICES

Equations (20)–(24) can be used to construct the m = k − 2
state shown at the top of Fig. 10. The subsequent RG steps
require use of these equations with care.

1. Linear geometry

For the linear geometry (left side of Fig. 10), for the m =
k − 1 RG step we proceed as follows. Using the right-hand
side of Eq. (20) with i = 2 we calculate

κ̃
(k−1)
2 = κ

(k−1)
1 + κk+1 − κk − 2

(
λ

(k−1)
1 − λk

)
(B1)

and then substitute κ
(k−1)
2 by κ̃

(k−1)
2 in the right-hand side of

Eq. (21) to get

κ
(k−1)
2 = κk+1 + λk − λ

(k−1)
1 + 1

2

[
κ

(k−1)
1 − κk

]
. (B2)

This completes the m = k − 1 RG step. Now for m = k, we
proceed in a similar way. Using the right-hand side of Eq. (22)
with m = k − 1 and τk = 0, we calculate

κ̃
(k)
1 = κ

(k−1)
1 + κk+1 − κk − 2

(
λ

(k−1)
1 − λk

) − 2
[
τ

(k−1)
0

]2

κ
(k−1)
1

(B3)

and then with m = k, i = 2, λk+1 = 0 and substituting κ
(k)
1 by

κ̃
(k)
1 in the right-hand side of Eq. (20), we calculate

κ̃
(k)
2 = κ̃

(k)
1 + κk+2 − κk+1 − 2λ

(k)
1 . (B4)

Substituting m = k − 1 in Eq. (24) gives λ
(k)
1 = 0. Finally,

with m = k and substituting κ
(k)
2 by κ̃

(k)
2 in the right-hand side

of Eq. (21), we get

κ
(k)
1 = κk+1 + λk − λ

(k−1)
1 −

[
τ

(k−1)
0

]2

κ
(k−1)
1

+ 1

2

[
κ

(k−1)
1 − κk

]

= κk+1 + λk + τ
(k)
0 − 2λ

(k−1)
1 + 1

2

[
κ

(k−1)
1 − κk

]
. (B5)

After performing k RG steps, we are left with just 1 +
2k−k = 2 sites with an on-site energy corresponding to κ

(k)
1

and an interaction of τ
(k)
0 between them. One site is connected

⇓

λ1

κ2

κ1

κ2

τ0 τ0w u

τ1

λ2

λ1

κ1

κ3

κ1

κ2 κ3

λ1

τ0 τ0 τ0 τ0 uw

⇓

Linear geometry Ring geometry

m = k − 2

m = k − 1

κ2 κ2

κ1

κ1

τ1

λ1

λ1

2τ0κ1 κ1

⇓

κ1 κ1

w uτ0 m = k

τ0 τ0

τ0τ0

u

u

w

w

FIG. 10. (Color online) The last steps in the RG for the linear (left) and the ring (right) geometries. In both cases one is left with only two
sites connected to the external leads. Note that for clarity we have dropped the superscripts that denote the RG number on all variables.
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to the input by w while the other is connected to the output by
u. In order to decimate these two sites, we have

A =
(

ξ 0

0 ξ

)
, D =

(
κ

(k)
1 τ

(k)
0

τ
(k)
0 κ

(k)
1

)
, B =

(
w 0

0 u

)
, (B6)

A′ = A − BD−1BT =
(

ξ − κ
(k)
1 β/γ βτ

(k)
0

βτ
(k)
0 ξ − κ

(k)
1 βγ

)
, (B7)

where β = wu/([κ (k)
1 ]2 − [τ (k)

0 ]2) and γ = u/w. Thus after
decimating all N = 1 + 2k sites, we have(

ξ − κ
(k)
1 β/γ βτ

(k)
0

βτ
(k)
0 ξ − κ

(k)
1 βγ

)(
1 + r

t

)
=

(
2i�(ξ )

0

)
. (B8)

From the above matrix equation by taking the inverse of the
2 × 2 matrix,(

1 + r

t

)
= 2i�(ξ )(

ξ − κ
(k)
1 β/γ

)(
ξ − κ

(k)
1 βγ

) − β2
[
τ

(k)
0

]2

×
(

ξ − κ
(k)
1 βγ

−βτ
(k)
0

)
. (B9)

Thus we have found the transmission T = |t |2.
Now using Eq. (A5) we can calculate the wave functions

associated with the various sites. For simplicity we take w = u.
To find the wave function associated with the highest level sites
(i = k + 1), we start with the m = k RG step given in Fig. 10.
Here, for Eq. (A5), ψ = 0, wd = ( w

0 ), and ud = ( 0
w ) whereas

the D and B matrices are given by Eq. (7). Making these
substitutions, we get

ψk+1 = −w[
κ

(k)
1

]2 − [
τ

(k)
0

]2

(
(1 + r)κ (k)

1 − tτ
(k)
0

tκ
(k)
1 − (1 + r)τ (k)

0

)
. (B10)

Next we can find the wave function associated with the
immediate lower level site (i = k). Here, for Eq. (A5), ψ =
ψk+1, wd = 0 = ud , D = κ

(k−1)
1 , and B = τ

(k−1)
0 ( 1

1 ). Making
these substitutions, we get

ψk = τ
(k−1)
0 w(1 + r + t)

κ
(k−1)
1

[
κ

(k)
1 + τ

(k)
0

] . (B11)

We can continue in this manner, in principle, to find the wave
function of all the levels below. However the calculations get
very tedious and the expressions very complicated below i = k

and therefore are not given explicitly.

2. Ring geometry

Next consider the ring geometry (right side of Fig. 10). We
perform k − 1 RG steps to be left with 2k−(k−1) = 2 sites. Site
1 is the nearest neighbor of site 0 and site 2. This makes the
interaction between the two sites to be 2τ

(k−1)
0 . This adds a

factor of 2λ
(k−1)
1 to the on-site energy of site 0. Thus the on-

site energy of the even site 0 corresponds to (κk−1 − 2lk−1) +
2lk−1 = κk−1. The decimation of these two sites is similar to
the case of the linear geometry, except that we need to replace
κ

(k)
1 by κ

(k−1)
1 and τ

(k)
0 by 2τ

(k−1)
0 . So β = wu/([κ (k−1)

1 ]2 −
4[τ (k−1)

0 ]2) and(
1 + r

t

)
= 2i�(ξ )(

ξ − κ
(k−1)
1 β/γ

)(
ξ − κ

(k−1)
1 βγ

) − 4β2
[
τ

(k−1)
0

]2

×
(

ξ − κ
(k−1)
1 βγ

−2βτ
(k−1)
0

)
. (B12)

This completes the RG, giving the transmission T = |t |2.
To find the wave functions here, we start at the m = k −

1 RG step and proceed as we did in the case of the linear
geometry. We find that

ψk = −w[
κ

(k−1)
1

]2 − 4
[
τ

(k−1)
0

]2

(
(1 + r)κ (k−1)

1 − 2tτ
(k−1)
0

tκ
(k−1)
1 − 2(1 + r)τ (k−1)

0

)

(B13)

and

ψk−1 = τ
(k−2)
0 w(1 + r + t)[

κ
(k−2)
1 + τ

(k−2)
1

][
κ

(k−1)
1 + 2τ

(k−1)
0

](
1

1

)
. (B14)

Notice that the two i = k − 1 sites are symmetric. There-
fore the wave functions obtained above for the two sites are
identical, as expected. Again the wave function expressions for
the lower i sites become complicated upon further iteration of
this methodology.
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