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Harmonic oscillator in heat bath: Exact simulation of time-lapse-recorded data
and exact analytical benchmark statistics
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The stochastic dynamics of the damped harmonic oscillator in a heat bath is simulated with an algorithm that
is exact for time steps of arbitrary size. Exact analytical results are given for correlation functions and power
spectra in the form they acquire when computed from experimental time-lapse recordings. Three applications
are discussed: (i) The effects of finite sampling rate and time, described exactly here, are similar for other
stochastic dynamical systems—e.g., motile microorganisms and their time-lapse-recorded trajectories. (ii) The
same statistics is satisfied by any experimental system to the extent that it is interpreted as a damped harmonic
oscillator at finite temperature—such as an AFM cantilever. (iii) Three other models of fundamental interest are
limiting cases of the damped harmonic oscillator at finite temperature; it consequently bridges their differences
and describes the effects of finite sampling rate and sampling time for these models as well.
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I. INTRODUCTION

The damped harmonic oscillator in a heat bath is the
archetypical bounded Brownian dynamical system with inertia
and the simplest possible of this kind. Analytically solvable,
it offers insights that are valid also for more complex
systems. Its experimental correlation functions and power
spectra are given analytically here in the form they take
when computed from time-lapse-recorded trajectories. Such
trajectories are generated and analyzed for illustration in an
exact Monte Carlo simulation. The results differ significantly
from those derived from the standard continuous-sampling
formulation.

In mathematical terms, it is the Ornstein-Uhlenbeck (OU)
process in a Hookean force field that we treat, and the results
discussed here extend the ones given in [1,2] as well as the
free case treated by Gillespie [3]. Three classical papers on the
OU process are [4–6]. Historically, the model was prompted
by a question by Smoluchowski regarding how inertia might
modify Einstein’s theory of Brownian motion [7]. Lorentz
soon after pointed out that Ornstein’s answer to that question
was insufficient for the case of classical Brownian motion,
i.e., in a fluid of density similar to the Brownian particle [8]:
Hydrodynamical effects, entrainment and backflow, were more
important with the time resolution that was available in the first
century of Brownian motion. Inertia in classical Brownian
motion became experimentally relevant only with precision
calibration of optical tweezers [9,10] and was directly observed
only in 2005 [11,12].

The OU process remained and remains, however, an
important model for Brownian motion dominated by inertia,
such as massive particles [13–15] or AFM cantilevers [16] in
air, and for other kinds of persistent random motion, e.g., cell
migration [17–24] and commodity pricing [25]. Consequently,
the treatment given here of its experimental statistics for
time-lapse-recorded data should be useful in several ways:

(i) All experimental statistics contain effects of finite
sampling rate, finite sampling time, and finite statistics.
They do so to various degrees, but the effects are inher-
ent in measurements. We give exact analytical expressions
for these effects, for the model treated here. Statistics
for more complex systems contain the same effects qual-
itatively, and quantitatively as well, by degrees that we
estimate.

(ii) The statistics we describe below must be found for any
experimental system to the extent that system is interpreted as
a damped harmonic oscillator at finite temperature—e.g., an
AFM cantilever to be calibrated by interpretation of its thermal
power spectrum.

(iii) Three other models are limiting cases of the model
treated here:

(1) At vanishing mass, Einstein’s theory for Brownian
motion in a harmonic trap, which, e.g., is a minimal
model for the Brownian dynamics of a microsphere held
in an optical trap, with magnetic tweezers [26], or surface
tethered by DNA [27].

(2) At vanishing external force, the Ornstein-Uhlenbeck
model of free Brownian motion with inertia, which, e.g., is
a minimal model for the persistent random motion seen in
trajectories of motile cells.

(3) At vanishing mass and external force, Einstein’s
original theory for Brownian motion in a fluid at rest.
The results for the harmonic oscillator, given below, carry

over to these three models. The limits are not all obvious, but
always enlightening, hence described below.

(iv) As the model treated here bridges the differences
between the three limiting cases, the material presented here
is well suited for a pedagogical, hands-on, computer-based
introduction to the four dynamic systems covered here:
free/bound diffusion, with/without inertia, their equilibrium
behavior, correlations, and power spectra, and their transient
behavior to equilibrium.
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II. EXACT DISCRETIZED
EINSTEIN-ORNSTEIN-UHLENBECK THEORY OF

BROWNIAN MOTION IN HOOKEAN FORCE FIELD

The Einstein-Ornstein-Uhlenbeck theory for the Brownian
motion of a damped harmonic oscillator in one dimension is
simply Newton’s second law for the oscillator with a thermal
driving force, a.k.a. the Langevin equation for this system,

mẍ(t) + γ ẋ(t) + κx(t) = Ftherm(t), (1)

Ftherm(t) = (2kBT γ )1/2η(t). (2)

Here x(t) is the coordinate of the oscillator as function of
time t , m is its inertial mass, γ is its friction coefficient, κ

is Hooke’s constant, and Ftherm is the thermal force on the
oscillator. Equation (2) gives the amplitude of this thermal
noise explicitly in terms of γ , the Boltzmann energy kBT , and
η(t), which is a normalized white-noise process, i.e., the time
derivative of a Wiener process, η = dW/dt , hence

〈η(t)〉 = 0; 〈η(t)η(t)〉 = δ(t − t ′) for all t,t ′. (3)

Equation (1) can be rewritten as two coupled first-order
differential equations,

d

dt

(
x(t)
v(t)

)
= −M

(
x(t)
v(t)

)
+

√
2D

τ

(
0

η(t)

)
, (4)

where we have introduced Einstein’s relation D = kBT /γ and
the 2 × 2 matrix

M =
(

0 −1
κ
m

γ

m

)
=

(
0 −1

ω2
0

1
τ

)
. (5)

Here ω0 = √
κ/m is the cyclic frequency of the undamped

oscillator, and τ = m/γ is the characteristic time of the
exponential decrease with time that the momentum of the
particle undergoes in the absence of all but friction forces.
Below, we shall also need the cyclic frequency of the damped
oscillator, ω =

√
κ/m − γ 2/(4m2) =

√
ω2

0 − 1/(4τ 2), which
is real for less than critical damping, γ 2 < 4mκ .

Equation (4) is solved by(
x(t)
v(t)

)
=

√
2D

τ

∫ t

−∞
dt ′ e−M(t−t ′)

(
0

η(t ′)

)
, (6)

which, for arbitrary positive �t and with tj = j�t , xj = x(tj ),
and vj = v(tj ), gives us the recursive relation(

xj+1

vj+1

)
= e−M�t

(
xj

vj

)
+

(
�xj

�vj

)
, (7)

where(
�xj

�vj

)
=

√
2D

τ

∫ tj +�t

tj

dt ′ e−M(tj +�t−t ′)
(

0
η(t ′)

)
(8)

and the time-independent matrix exponential can be written

e−M�t = e− �t
2τ [cos(ω�t)I + sin(ω�t)J] (9)

with

I ≡
(

1 0
0 1

)
and J ≡

(
1

2ωτ
1
ω

−ω2
0

ω
−1
2ωτ

)
. (10)

That the matrix exponential can be written this way can be
proven in several ways. We used the algebra of Pauli matrices.
Alternatively, one may observe that the cosine and sine terms
on the right-hand side are the even and odd parts of the
left-hand side. The latter are straightforwardly, if tediously,
computed from the Taylor series for the exponential. Inserting
Eq. (9) in Eq. (8) we see that

�xj =
√

2D

ωτ

∫ tj+1

tj

dt e− tj+1−t

2τ sin(ω(tj+1 − t)) η(t), (11)

�vj = −
√

2D

2ωτ 2

∫ tj+1

tj

dt e− tj+1−t

2τ sin(ω(tj+1 − t)) η(t)

+
√

2D

τ

∫ tj+1

tj

dt e− tj+1−t

2τ cos(ω(tj+1 − t)) η(t) (12)

are two correlated random numbers from zero-mean Gaussian
distributions. They can be written as a linear combination of
two independent Gaussian variables: The four parameters that
determine this linear combination can be chosen at will, as
long as the combination has the same variance-covariance
as the two original correlated variables. This is a direct
consequence of the Gaussian distribution being completely
determined by its mean and variance-covariance. Thus, we can
write

�xj = σxx ξj , (13)

�vj = σ 2
xv/σxx ξj +

√
σ 2

vv − σ 4
xv/σ

2
xx ζj , (14)

where the σ s are elements of the variance-covariance matrix
(see below), and ξ and ζ are independent random numbers
with Gaussian distribution, unit variance, and zero mean. This
particular choice of linear combination mirrors the structure of
Eqs. (11) and (12). Using Eqs. (3), (11), and (12) we calculate
that the elements of the variance-covariance matrix are, for
ω �= 0,

σ 2
xx ≡ 〈(�xj )2〉 = D

4ω2ω2
0τ

3

(
4ω2τ 2 + e− �t

τ [cos(2ω�t)

− 2ωτ sin(2ω�t) − 4ω2
0τ

2]
)
, (15)

σ 2
vv ≡ 〈(�vj )2〉 = D

4ω2τ 3

(
4ω2τ 2 + e− �t

τ [cos(2ω�t)

+ 2ωτ sin(2ω�t) − 4ω2
0τ

2]
)
, (16)

σ 2
xv ≡ 〈�xj�vj 〉 = D

ω2τ 2
e− �t

τ sin2(ω�t). (17)

At critical damping (ω = 0) this variance-covariance simpli-
fies to

σ 2
xx ≡ 〈(�xj )2〉

= 4Dτ
(
1 − e− �t

τ [1 + �t/τ + 1
2 (�t/τ )2]

)
, (18)

σ 2
vv ≡ 〈(�vj )2〉

= D

τ

(
1 − e− �t

τ

[
1 − �t/τ + 1

2
(�t/τ )2

])
, (19)

σ 2
xv ≡ 〈�xj�vj 〉 = De− �t

τ (�t/τ )2. (20)

Figure 1 shows the simulated positions in the under-
damped, critically damped, and overdamped regimes. Note
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FIG. 1. (Color online) Positions of harmonically trapped massive
particles in a thermal bath. Three different regimes are studied by
varying the drag coefficient above and below the critical value,
where ω = 0, by an order of magnitude: Underdamped [red (gray),
γ = γ crit/10], critically damped [green (light gray), γ = γ crit, offset
by 2 nm], and overdamped [blue (dark gray), γ = 10 γ crit, offset by
4 nm]. Simulation parameters in Eq. (7): m = 1 ng, κ = 225 mg/s2,
T = 275 K, fsample = 65,536 Hz, (x(0),v(0)) = (0,0), and the same
(ξj ,ηj ) are used for the three simulations. The values for the
underdamped case are alike to those for an AFM cantilever in
water, whereas the critical and overdamped cases correspond to
the same cantilever in a more viscous environment or with a
smaller spring constant. The inset shows a magnified portion of
the trace, revealing the oscillating, critical, and random nature
of the motion, respectively. On the right, histograms show the
distribution of the position data with kBT /κ-variance Gaussians
overlaid.

that all three regimes have the same mean (zero) and
variance (kBT /κ). Only at short times, as shown in the
inset, does the difference between the three regimens reveal
itself: The position coordinate of the underdamped system
oscillates, while the position coordinate of the overdamped
system does not show discernible persistence of motion.
The position coordinate of the critically damped system
looks at times like it oscillates, but actually only displays
positively correlated random motion, as revealed by the
velocity autocorrelation function given below and shown in
Fig. 3(b).

III. MEAN-SQUARED DISPLACEMENT

When a time series of positions is examined, the first
measure applied is frequently the mean-squared displacement
(MSD). This has to do with its ease of computation, the
existence of exact analytical results for the expectation value,
and comparative robustness of the measure to experimental
measurement errors. Also, there are no discretization effects

0.1 1 10

1

10

100

Time lag (ms)

M
ea

n
sq

ua
re

d 
di

sp
la

ce
m

en
t (

nm
2 )

 

 

Underdamped, simulation
Critically damped, simulation
Overdamped, simulation
Underdamped, theory
Critically damped, theory
Overdamped, theory
Contiuous recording, theory

FIG. 2. (Color online) Mean-squared displacements for harmon-
ically trapped massive particles. Same simulation conditions as in
Fig. 1, except tmsr = 8 s. The result of the stochastic simulations
are shown in red (gray), green (light gray), and blue (dark gray).
Complementary colors [cyan (light gray), magenta (gray), and yellow
(lighter gray); see legend] show the MSD, Eq. (21), evaluated
at discrete time points with the same parameter values as in the
simulation. Thin black lines show the MSD, Eq. (21), for continuous
time. Red (gray, upper) and blue (dark gray, lower) lines show slopes
of 2 and 1, respectively. Notice how the MSDs all plateau at the same
level for time lags larger than 3 s. Only for shorter time lags do the
three regimes differ.

to worry about—the MSD for finite sampling frequency is
simply the MSD for continuous recording, evaluated at discrete
time points. More importantly, unlike the covariance and the
power spectra discussed below, the MSD is well defined even
if the process is not bounded. In the present example, both
the position and velocity processes are bounded, and we
therefore have a simple relation between the MSD and the
autocovariance:

MSD(t) ≡ 〈[x(t) − x(0)]2〉 = 2〈x2〉 − 2〈x(t)x(0)〉, (21)

where 〈x2〉 = kBT /κ; i.e., the MSD is a constant minus twice
the autocovariance of the position process (see Sec. IV). This
is illustrated in Fig. 2, where we show the MSD for the three
time series plotted in Fig. 1.

IV. COVARIANCE

The stationary-state solution given in Eq. (6) oscillates in
resonating response to the thermal noise that drives it, which
is seen by its oscillating autocovariance functions, but its
oscillations are randomly phase shifted by the same noise
that drives oscillations, which causes the exponential decay
in autocovariance functions, see below. The result is that
equal-time ensemble averages like 〈x(t)2〉 are constant in time.
This is easily proven for quadratic expressions, either directly
from the solution given in Eq. (6) or by differentiation with
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respect to time using Itō’s lemma:

d

dt

⎛
⎜⎝

〈x2〉
〈xv〉
〈v2〉

⎞
⎟⎠

=

⎛
⎜⎝

0 2 0

−ω2
0

−1
τ

1

0 −2ω2
0

−2
τ

⎞
⎟⎠

⎛
⎜⎝

〈x2〉
〈xv〉
〈v2〉

⎞
⎟⎠ +

⎛
⎝ 0

0
2D
τ 2

⎞
⎠ . (22)

As is seen by inspection, this equation has the time-
independent solution⎛

⎜⎜⎝
〈x2〉
〈xv〉
〈v2〉

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

kBT
κ

0

kBT
m

⎞
⎟⎟⎠ , (23)

in accord with the equipartition theorem. This solution is the
unique attractor for the system’s dynamics: Left to itself, any
discrepancy from this time-independent solution will decrease
to zero exponentially fast in time—possibly while oscillating
harmonically with cyclic frequency 2ω—as is seen from the
fact that the 3 × 3 matrix in Eq. (23) has eigenvalues −1/τ

and −1/τ ± i2ω, and determinant −4ω2
0/τ .

Similar reasoning [or simply multiplying Eq. (7) by
(xj ,vj ), then taking the expectation value and applying the
equipartition theorem] gives the covariances( 〈x(t)x(0)〉 〈x(t)v(0)〉

〈v(t)x(0)〉 〈v(t)v(0)〉
)

.

= D

τ
e− t

2τ

( cos ωt+ sin ωt
2ωτ

ω2
0

sin ωt
ω

− sin ωt
ω

cos ωt − sin ωt
2ωτ

)
. (24)

For ω real (underdamped system), these covariances oscillate,
we see, with amplitudes that decrease exponentially in time
with characteristic time 2τ . For ω imaginary (overdamped
system), we rewrite Eq. (24) as( 〈x(t)x(0)〉 〈x(t)v(0)〉

〈v(t)x(0)〉 〈v(t)v(0)〉
)

= D

2|ω|τ

{( 1
ω2

0τ+
1

−1 −1
τ−

)
e−t/τ− +

( −1
ω2

0τ−
−1

1 1
τ+

)
e−t/τ+

}
,

(25)

from which we see that the system decreases as a double
exponential with characteristic times τ± = 2τ/(1 ± 2τ |ω|). At
critical damping (ω = 0), the expressions for the covariances
simplify to ( 〈x(t)x(0)〉 〈x(t)v(0)〉

〈v(t)x(0)〉 〈v(t)v(0)〉
)

= D

τ
e− t

2τ

(
1+t/(2τ )

ω2
0

t

−t 1 − t/(2τ )

)
. (26)

Figure 3 illustrates these dynamics for the normalized covari-
ances, a.k.a. the correlation functions.

As is the case for the MSD, there are no discretization
effects to worry about—the covariance for finite sampling
frequency is simply the covariance for continuous recording,
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FIG. 3. (Color online) Correlation functions, Eq. (24), for mas-
sive particles in a harmonic potential, driven by thermal noise.
Color coding and simulation settings are the same as in Fig. 2: Red
(gray), green (light gray), and blue (dark gray) show the result of a
stochastic simulation; complementary colors show the covariance
(not a fit), Eq. (24), normalized and evaluated at discrete time
points; thin black lines show the covariance for continuous time
(not a fit); and dashed red (gray) lines show the enveloping expo-
nential exp(−t/(2τ )). (a) Position autocorrelations, 〈x(t)x(0)〉/〈x2〉.
(b) Velocity autocorrelations, 〈v(t)v(0)〉/〈v2〉. (c) Position-velocity
cross correlations, 〈x(t)v(0)〉/

√
〈x2〉〈v2〉. The velocity-position cross

correlation, 〈v(t)x(0)〉/
√

〈x2〉〈v2〉 (not shown), has the opposite sign
but is otherwise identical.
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FIG. 4. (Color online) Secant-velocity autocorrelation functions
for massive particles in a harmonic potential, driven by thermal noise.
Thin black lines, red (gray) dashed lines, and simulation settings are
the same as in Fig. 3(b). Additional symbols: Cyan (light gray) squares
with red (gray) borders, magenta (dark gray) squares with green
(light gray) borders, and yellow (lighter gray) squares with blue (dark
gray) borders show the autocorrelations for wj = (xj − xj−1)/�t

calculated using 〈x(t)x(0)〉 from Eq. (24). Inset shows the first 0.1 ms
on a linear time scale, revealing the very fast decay of the overdamped
oscillator and how the secant-velocity autocorrelations overestimate
the instantaneous-velocity autocorrelation decay times. As expected,
the secant velocity does a better job of estimating the instantaneous
velocity for the less damped system because of its smoother particle
trajectory.

evaluated at discrete time points. However, the given velocity
correlations, and thus also the position-velocity correlations,
are only correct for the actual, instantaneous velocities: If the
instantaneous velocity is not directly measured, but instead
estimated from measured positions as a “secant velocity”
[see Eq. (60) and Sec. VII A 1], then the corresponding
secant-velocity correlation function should be calculated from
the position covariance function given in Eq. (24). Figure 4
shows how such secant-velocity correlations deviate from the
instantaneous-velocity correlations, mainly for short time lags.

V. POWER SPECTRA

The power spectral density (PSD) of a variable x(t) or v(t)
is defined as the expectation value of the squared modulus of
its Fourier transform, with a normalization that differs between
authors. We choose one in which the power spectral density
remains constant for increasing measurement time tmsr:

P (x)(fk) ≡ 〈|x̃k|2〉/tmsr = D/(2π2)

(2πτ )2
(
f 2

k − f 2
0

)2 + f 2
k

(27)

and

P (v)(fk) ≡ 〈|ṽk|2〉/tmsr = (2πfk)2P (x)(fk)

= 2D

(2πτ )2
(
fk − f 2

0

/
fk

)2 + 1
, (28)

where 2πf0 = ω0 is the resonance frequency of the sys-
tem. Here, we use ṽk = i2πx̃k , which is an approxima-
tion that ignores contributions from the finite measurement
time.

The finite-time Fourier transform (FTFT) used above is
defined as

x̃k =
∫ tmsr

0
dt ei2πfkt x(t), fk ≡ k/tmsr, k = integer. (29)

In a similar manner we can calculate the finite-sampling-
frequency PSDs by discrete Fourier transformation (DFT) of
Eq. (7):

e−iπfk/fNyq

(
x̂k

v̂k

)
= e−M�t

(
x̂k

v̂k

)
+

(
�x̂k

�v̂k

)
, (30)

where

ẑk = �t

N∑
j=1

ei2πjk/Nzj = 2

fNyq

N∑
j=1

eiπjfk/fNyqzj , (31)

for z = x,v,�x,�v; xN+1 = x1 and vN+1 = v1;

fk = k�f = k/tmsr, (32)

k = 0,1,2, . . . ,N − 1, (33)

tmsr = N �t = N/fsample, (34)

fNyq = N

2
�f = fsample

2
, (35)

and

〈�x̂∗
k �x̂k′ 〉 = σ 2

xx 〈ξ̂ ∗
k ξ̂k′ 〉 = σ 2

xx �t tmsr δk,k′ , (36)

〈�v̂∗
k�v̂k′ 〉 = σ 2

vv �t tmsr δk,k′ , (37)

〈�x̂∗
k �v̂k′ 〉 = σ 2

xv �t tmsr δk,k′ . (38)

After isolating (x̂k,v̂k) in Eq. (30), we find( 〈|x̂k|2〉 〈x̂kv̂
∗
k 〉

〈x̂∗
k v̂k〉 〈|v̂k|2〉

)
= A−1

k

(
σ 2

xx σ 2
xv

σ 2
xv σ 2

vv

)
(A†

k)−1 tmsr�t,

(39)

where the 2 × 2 matrix and its inverse are

Ak = αkI + βJ , A−1
k = αkI − βJ

α2
k + β2

, (40)

with

αk = e−iπfk/fNyq − e− �t
2τ cos(ω�t), (41)

β = −e− �t
2τ sin(ω�t), (42)

complex scalars (β/ω is real), Hermitian conjugation denoted
by †, and complex conjugation by ∗.

For the discrete positional power spectrum we thus get (see
also Appendix A of [1])

P
(x)
k ≡ 〈|x̂k|2〉/tmsr

=
∣∣αk − β

2ωτ

∣∣2
σ 2

xx − 2 β

ω
Re

{
αk − β

2ωτ

}
σ 2

xv + β2

ω2 σ
2
vv∣∣α2

k + β2
∣∣2

fsample

(43)
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whereas the discrete velocity power spectrum is

P
(v)
k ≡ 〈|v̂k|2〉/tmsr

=
∣∣αk + β

2ωτ

∣∣2
σ 2

vv + 2ω2
0

β

ω
Re

{
αk + β

2ωτ

}
σ 2

xv + ω4
0

β2

ω2 σ
2
xx∣∣α2

k + β2
∣∣2

fsample

.

(44)

In the case of critical damping (ω = 0) we simply insert β/ω =
−e− �t

2τ �t in Eqs. (43) and (44), and use Eqs. (18), (19), and
(20) for the variance-covariances.

Figure 5 shows the power spectra that result from numerical
simulations of AFM cantilever positions and velocities using
Eq. (7) for three different drag coefficients, as well as the
corresponding analytical expressions as given in Eqs. (43)
and (44).

An alternative route to these discrete PSDs is to take the
discrete Fourier transform of the covariance function from the
previous section: Both the position and the velocity processes
are stationary (the joint probability density function for each is
independent of time), so the Wiener-Khinchin theorem applies
and the Fourier transform of the correlation function is equal to
the PSD. For vanishing spring constant κ , the position process
is unbounded (not stationary) and the covariance, as well as
the PSD, is consequently ill defined. This limit is treated in
Sec. VII A.

Note, the PSD for discretely measured (instantaneous)
velocities, Eq. (44), should not be confused with the discrete
PSD for secant velocities, Eq. (61). The latter is the correct
expression to use in experiments where the velocities are
estimated from the measured positions.

VI. VANISHING �t: THE LIMIT OF CONTINUOUS
RECORDING

As �t → 0 we find to first order in �t that the covariances
in Eqs. (15)–(20) reduce to σ 2

xx = 0, σ 2
vv = 2D�t/τ 2, and

σ 2
xv = 0. That is, �xj = 0 and �vj = σvvζj = √

2D�t/τ ζj .
In other words, the velocity process is seen to be driving the
position process.

In this limit the positional PSD takes on the familiar form
given in Eq. (27), and the velocity PSD is given in Eq. (28).
Comparing the continuous-recording PSDs, Eqs. (27) and
(28), with their discrete sampling analogues, Eqs. (43) and
(44), we see in Fig. 5(a) that they differ substantially at high
frequencies, and in Fig. 5(b) that they differ everywhere but
near f0 in the underdamped case. Thus, one should not attempt
to fit a theoretical PSD derived for “continuously recorded”
trajectories to an experimental PSD, which necessarily is
obtained with time-lapse recording. More specifically, one
should only attempt to fit it to the low-frequency part of the
experimental spectrum for positions, or account for “aliasing”
before fitting, as described, e.g., in Appendix H of [9], which
turns Eqs. (27) and (28) into Eqs. (43) and (44), respectively.

The position covariance and the MSD do not suffer from this
dichotomy. Neither of them changes its shape or form when
switching between discrete and continuous time: The discrete
versions are equal to the continuous versions, evaluated at
discrete times:

〈xjxj+�〉 = 〈x(tj )x(tj+�)〉 = 〈x(0)x(t�)〉 (45)
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FIG. 5. (Color online) Power spectra for positions and velocities
of harmonically trapped massive particles in thermal bath, normalized
by γ . The color scheme is the same as in Figs. 2 and 3: Synthetic data
are shown in red (gray), green (light gray), and blue (dark gray); the
aliased theory, Eqs. (43) and (44), is shown in complementary colors;
and the nonaliased theory, Eqs. (27) and (28), as thin black lines.
Simulation parameters are as in Fig. 1 (giving ω0 = 15 kHz) with
nwin = 32 Hann windows applied to the tmsr = 8 s long time series. (a)
Power spectra for positions. Thin blue (dark gray, lower) and red (gray,
upper) lines illustrate f −2 and f −4 behaviors, respectively. Notice the
disagreement between the nonaliased (continuous recording) theory
and data at high frequencies. (b) Power spectra for velocities. Dashed
black lines show aliased versions of Eq. (28); i.e., P (v,aliased)(f ) =∑∞

n=−∞ P (v)(f + nfsample) [9], here truncated to 201 terms. The
nonaliased theory severely underestimates the power at high and low
frequencies, and completely misses the data in the overdamped case.

and

〈(xj − xj+�)2〉 = 〈[x(tj ) − x(tj+�)]2〉 = 〈[x(0) − x(t�)]2〉,
(46)

where, in the last step, we used that the process is stationary and
the measures therefore invariant to time translations. That is,
these measures are unaffected by the unavoidable discreteness
of real-world data.
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The velocity’s covariance is also unaffected by time-lapse
recording, if we can measure the instantaneous velocity, i.e.,
the velocity vector that is tangential to the trajectory of the
position. If we cannot and time-lapse-record only positions,
we have a different situation, which is treated below.

VII. VARIOUS PHYSICAL LIMITS: A REFERENCE SET
OF FORMULAS

Three physical limiting cases are of particular interest:
(i) Vanishing spring constant, κ = 0, which is the Ornstein-
Uhlenbeck theory for Brownian motion for a free particle
with inertia; (ii) vanishing mass, m = 0, which is Einstein’s
theory for Brownian motion of a particle trapped by a Hookean
force, and a popular minimalist model of the Brownian motion
of a microsphere in an optical trap; and (iii) vanishing mass
and spring constant, which is Einstein’s theory for Brownian
motion of a free particle.

A. Vanishing spring constant: The Ornstein-Uhlenbeck process

When there is no Hookean restoring force κ = 0, Eq. (1)
describes the free diffusion of a massive particle according to
Ornstein and Uhlenbeck [4]:

mv̇(t) + γ v(t) = Ftherm(t). (47)

This velocity process is known as the Ornstein-Uhlenbeck
(OU) process [4]. When modeling other dynamical systems,
such as migrating cells, m does not refer to the physical mass of
the cell but rather its inertia to velocity changes, or persistence
of motion; likewise γ is not the friction between the cell and
substrate but describes the rate of memory loss for the velocity
process. The structure of Eqs. (7), (9), (10), (13), and (14)
remains the same; the only change is ω0 = 0 in Eq. (10),
hence ω = i/(2τ ), and the covariances, Eqs. (15), (16), and
(17), consequently reduce to

σ 2
xx = Dτ [2�t/τ − 4(1 − a) + (1 − a2)], (48)

σ 2
vv = D(1 − a2)/τ, (49)

σ 2
xv = D (1 − a)2 , (50)

where

a = e−�t/τ , τ = m/γ. (51)

For the velocity and position processes we thus find

vj+1 = avj + �vj , (52)

xj+1 = xj + τ (1 − a)vj + �xj . (53)

That is, the velocity process has reduced to a stable autoregres-
sive model of order 1, AR(1). Its time integral, the position
process, is unbounded—the particle is diffusing freely and
without limits. Exact numerical update formulas for vj and xj

have previously been given in [3]; here we rederived them for
consistency of notation.

The discrete-time positional PSD, P
(x)
k , is obtainable from

Eq. (43) with ω0 = 0 and the σ s given in Eqs. (48), (49), and
(50); the expression does not simplify significantly compared
to Eq. (43). The discrete-time velocity PSD, P

(v)
k , is much

simpler and can be derived directly from the discrete-time
velocity process, Eq. (52), or by taking the κ = 0 limit of

Eq. (44). From these discrete-time PSDs the continuous-
recording expressions, P (x)(fk) and P (v)(fk), can be obtained
by expanding to leading order in �t/τ and k/N = fk/fsample;
or they can be derived directly from the continuous-time
equation of motion Eq. (47) by Fourier transformation and, for
the positional PSD, remembering that ẋ = v. The continuous-
recording positional PSD and the two velocity PSDs then read

P (x)(fk) = D/(2π2)

(2πτ )2f 4
k + f 2

k

, (54)

P
(v)
k = σ 2

vv �t

1 + a2 − 2a cos(2πk/N )
, (55)

P (v)(fk) = 2D

1 + (2πfkτ )2
. (56)

Note that the positional PSD diverges in fk = 0 due to the
process being unbounded. This implies that we cannot use the
Wiener-Khinchin theorem to obtain the covariance by Fourier
transforming the PSDs, and vice versa. The velocity process is
bounded, however, and the velocity correlation functions are
straightforward to calculate, so we simply list the results for
the discrete and the continuous cases:

〈vivj 〉 = D

τ
e−|i−j |�t/τ , (57)

〈v(t)v(t ′)〉 = D

τ
e−|t−t ′ |/τ . (58)

As already mentioned, the time integral of the OU process
is one of the instances where the mean-squared displacement
provides a useful measure for the position process, while the
positional covariance function is ill defined. The mean-squared
displacement of the time integral of the OU process is

〈[x(t) − x(0)]2〉 = 2Dτ (t/τ + e−t/τ − 1). (59)

For t � τ this MSD increases as t2 (ballistically) and for
t � τ as t (diffusively), with an exponential crossover between
the two regimes with characteristic time τ .

1. Secant velocities

In experiments, the velocity is typically not measured
directly, but approximated from the measured positions as a
“secant velocity”:

wj = (xj − xj−1)/�t (60)

with discrete power spectral density

P
(w)
k ≡ 〈|ŵk|2〉/tmsr = 2[1 − cos(πfk/fNyq)]

(�t)2
P

(x)
k . (61)

This is a general result that follows from the definition of wj

and is independent of the dynamic model.
For the OU process, we can relate this PSD to the PSD for

the continuous velocity that it approximates, if we rewrite it as

P
(w)
k = P

(v)
k (τ/�t)2(1 − a)2 + σ 2

xx/�t

+ τ (1 − a)(〈v̂∗
k �x̂k〉 + c.c.). (62)

Here the first term is proportional to P
(v)
k , the second term

is a constant, and the last term is frequency dependent with
c.c., the complex conjugate of the other term in the bracket.
However, it is not easy to see from this expression how much
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P
(w)
k deviates from P

(v)
k . We can get a good idea about the

shape of the PSD from the autocorrelation function,

〈w2
j 〉 = 2〈v2

j 〉
(

τ

�t

)2

(�t/τ − 1 + a) (63)

≈ 〈v2
j 〉

(
1 − 1

3
�t/τ

)
, (64)

and for � > 0,

〈wjwj+�〉 = 2〈vjvj+�〉
(

τ

�t

)2

[cosh(�t/τ ) − 1] (65)

≈ 〈vjvj+�〉
(

1 + 1

12
(�t/τ )2

)
, (66)

where we used Eqs. (13), (14), (50), (53), and (57) to derive
Eqs. (63) and (65)—the latter two expressions are proportional
to the velocity autocorrelations they approximate; they only
differ by multiplicative factors that are independent of the
time lag for � > 0. To first order in �t/τ we thus have, for
� � 0,

〈wjwj+�〉 = 〈vjvj+�〉
(

1 − 1

3

�t

τ
δ0,�

)
. (67)

We now apply the Wiener-Khinchin theorem to get the PSD
as the Fourier transform of this approximated auto-correlation
function and find

P
(w)
k ≈ P

(v)
k − 1

3

(
�t

τ

)2

D. (68)

This approximation to the secant-velocity PSD, as well as
the exact expression Eq. (61), are both shown in Fig. 6,
together with numerical simulation results and the PSD of
the continuous velocity Eq. (55). Notice that even with
�t/τ = 0.27 < 1 (�t = 1/fsample and τ = m/γ ), the relative
difference between P

(v)
k and P

(w)
k is substantial for higher

frequencies. Thus, proper care should be taken if empirical
testing of a model includes the fitting of a theoretical velocity
PSD to an experimental secant-velocity PSD, even when
aliasing is properly accounted for. But, we now also know
how to do this correctly: Either add 1/3(�t/τ )2D to the
experimental secant-velocity PSD before fitting with P

(v)
k , or

fit directly using the full theoretical expression for P
(w)
k given

in Eq. (61). In cases where this corrective constant is much
smaller than the velocity PSD for all frequencies fitted, it can
obviously be ignored.

We observe that the secant velocity is the time average
of the real velocity in the time interval spanned by the
secant. Time averaging is low-pass filtering, as is well known,
see Chapter 13 in [28], and demonstrated in Fig. 6.

B. Vanishing mass: The optical trap limit

The position process in the limit of vanishing mass is
mathematically identical to the OU velocity process in the
limit of vanishing trapping force treated above. Equation (1)
reduces to

γ ẋ(t) + κx(t) = Ftherm(t) (69)
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FIG. 6. (Color online) Power spectra of velocities and secant
velocities for the OU process. Blue (dark gray): Simulated velocities,
Eq. (52). Red (gray): Secant velocities, Eq. (60), calculated from
simulated positions, Eq. (53). Yellow (lighter gray): Aliased velocity
theory, Eq. (55). Cyan (light gray, lower): Aliased secant-velocity the-
ory, Eq. (61). Black line: Approximated aliased secant-velocity
theory, Eq. (68). See legend for details. Simulation settings are given
in the caption of Fig. 7. Notice the discrepancy between the true
velocity and the estimated (secant) velocity at high frequencies.

with solution

x(t) = 1

γ

∫ t

−∞
dt ′ e−2πfc(t−t ′) Ftherm(t ′), (70)

where the corner frequency fc ≡ κ/(2πγ ) is the frequency
where P (x)(fk) = P (x)(0)/2, see below. Recycling the results
from Sec. VII A we can directly write down the autocovariance

〈x(t)x(t ′)〉 = 〈x2〉 e−2πfc |t−t ′| (71)

with 〈x2〉 = kB T /κ and the discrete update rules

xj+1 = c xj + �xj , (72)

c = exp(−κ�t/γ ), (73)

�xj =
√

(1 − c2)Dγ

κ
ξj , (74)

where ξ are uncorrelated random numbers of unit variance,
zero mean, and Gaussian distribution. Likewise, the position
PSDs for discrete sampling and continuous recording are
respectively found to be

P
(x)
k = D (1 − c2) �tγ/κ

1 + c2 − 2c cos(2πk/N )
, (75)

P (x)(fk) = D/(2π2)

fc
2 + f 2

k

. (76)

Finally, the mean-squared displacement is

〈[x(t) − x(0)]2〉 = 2Dγ/κ(1 − e−tγ /κ ), (77)

which shows an exponential crossover from linear dependence
on t to the constant value 2Dγ/κ as t � κ/γ , see Fig. 2.
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C. Vanishing mass and spring constant: Einstein’s
Brownian motion

When both m = 0 and κ = 0, Eq. (1) reduces to

γ ẋ(t) = Ftherm(t) (78)

so that

xj+1 = xj +
√

2D �t ξj , (79)

where

ξj ≡ 1√
�t

∫ tj+1

tj

dt η(t), (80)

hence

〈ξj 〉 = 0, 〈ξiξj 〉 = δi,j , (81)

and the velocity and position PSDs for discrete and continuous
sampling take on the simple forms:

P
(x)
k = D/fsample

2

2 sin2(πfk/fsample)
, (82)

P (x)(fk) = D

2π2f 2
k

, (83)

P
(v)
k = P (v)(fk) = 2D. (84)
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FIG. 7. (Color online) Power spectra of positions. Green points
(light gray): Freely diffusing massless particle (Einstein’s Brownian
motion); red points (gray): trapped massless particle (OT limit, or
OU velocity process); and blue (dark gray) points: freely diffusing
massive particles (time integral of OU process). Complementary
colors show the finite sampling frequency (aliased) theories, whereas
the continuous recording (nonaliased) theories are shown as thin
black lines. Green (light gray, upper) and blue (dark gray, lower) lines
indicate f −2 and f −4 behavior, respectively. See legend for details.
Simulation parameters: D = 0.46 μm2/s, T = 275 K, m = 1 ng,
fc = 500 Hz, fsample = 32 768 Hz, N = 131 072, and nwin = 32 Hann
windows. The simulation parameters for the OT case are those of a
1 μm diameter polystyrene sphere held in an optical trap in water at
room temperature. The parameters for Einstein’s Brownian motion
are the same, except κ = 0. For the OU process we increased the
density of the sphere roughly 2000 times, which is not a physically
realistic scenario but allows us to plot all power spectra with the same
axes.
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FIG. 8. (Color online) Mean-squared displacement for the
Ornstein-Uhlenbeck, optical-trap, and Brownian-motion limits de-
scribed in Secs. VII A, VII B and VII C. Simulation settings and
legends are the same as in Fig. 7, except green (light gray, upper) and
blue (dark gray, lower) lines show slopes of 1 and 2, respectively.

As was the case for the time integral of the OU pro-
cess, the position PSDs are singular in fk = 0 because the
process is unbounded. That is, the meaningful measure to
study is not the covariance, but rather the mean-squared
displacement

〈[x(t) − x(0)]2〉 = 2Dt, (85)

which is one of the few well-defined statistics for Einstein’s
theory of Brownian motion: Because the trajectory of positions
is a fractal, attempts at estimating the average speed of
Brownian motion from the displacement of position occurring
in a given time interval will depend on the duration, �t , of this
interval as 1/

√
�t , hence diverge when accuracy is sought

improved by reducing �t . This was not appreciated before
Einstein’s 1905 paper on the subject.

Figures 7 and 8 show the power spectra and mean-squared
displacements, respectively, obtained in numerical simulations
of free diffusion and trapped diffusion, as well as the graphs of
the corresponding analytical expressions. At short time scales,
i.e., at high frequencies in Fig. 7 and for small time lags in
Fig. 8, the thermal forces dominate and the Hookean force
has not had time to influence the motion through its constant,
but weak, confining effect. That is why the Brownian motion
(green) and optical trap (red) data collapse in this regime,
whereas the Ornstein-Uhlenbeck process (blue) differs from
the two due to inertial effects. Conversely, at long time scales,
low frequencies in Fig. 7, and large time lags in Fig. 8,
inertia plays no role, so the Ornstein-Uhlenbeck process and
Einstein’s theory of Brownian motion are indistinguishable,
whereas the Hookean force has had time to exert its confining
effect on the optical trap data.

VIII. SUMMARY AND CONCLUSIONS

We examined the dampened harmonic oscillator and three
of its physical limits: The massless case (optical trap), the free
case (the Einstein-Ornstein-Uhlenbeck theory of Brownian
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motion), and the massless free case (Einstein’s Brownian
motion). By solving the system’s dynamical equations for
an arbitrary time lapse �t , exact analytical expressions were
derived for the changes in position and velocity during
such a time lapse. With these expressions, exact simula-
tions of the dynamics are then possible—with an accuracy
that is independent of the duration of the time lapse. In
contrast, a numerical simulation, using Euler integration
or similar schemes, is exact only to first or second order
in �t [29].

We gave exact analytical expressions for power-spectral
forms, mean-squared displacements, and correlation functions
that can be fitted (see [1] before undertaking a least-squares fit)
to data obtained from time-lapse recording of a system with
dynamics similar to the dampened harmonic oscillator or one

of its three physical limits described here. The effect of finite
sampling rates (aliasing) were also discussed.

The effect on the power spectrum of velocity estimation
from position data (secant velocity) was treated for the case
of free diffusion of a massive particle. Approximate as well as
exact corrective factors and expressions were given. Through-
out, we pointed out when power spectral analysis makes
sense (bounded process) or does not, which of the statistical
measures depend on the sampling frequency, and which may
be described by the simpler continuous-time theory.
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Florin, Phys. Rev. Lett. 95, 160601 (2005).
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