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Dynamics of the Blume-Capel model with quenched diluted single-ion anisotropy in the
neighborhood of equilibrium states
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The relaxation dynamics of a Blume-Capel model with a quenched diluted crystal field is formulated by a
method combining the statistical equilibrium theory and the thermodynamics of linear irreversible processes.
Using a mean-field approximation for the magnetic Gibbs free-energy production, a generalized force and a
current are defined within the irreversible thermodynamics. Next the kinetic equation for the magnetization
is obtained within linear response theory. Finally, the temperature dependence of the relaxation time in the
neighborhood of the phase-transition points is obtained by solving the kinetic equation of the magnetization.
We find that the relaxation time of the order parameter diverges near the critical and multicritical points, which
corresponds to the familiar critical slowing down. On the other hand, it displays different behavior at the first-order
phase transitions. It has a jump discontinuity at the first-order phase-transition temperatures. Moreover, the
z dynamic critical exponent is calculated and compared with the z values obtained for a diverse class of systems,
and good agreement is found with our results.
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I. INTRODUCTION

Investigation of the effect of disorder on various kinds of
condensed matter orderings remains an open field of inquiry
[1]. Random field effects on magnetic systems have been
systematically studied, not only for their theoretical interests
but also for their experimental realization implications [2].
Long-range order under random fields has been addressed
within a variety of theoretical studies: the domain energy
argument of Imry and Ma, renormalization-group treatment of
domain interfaces [3], supersymmetry identifications [4], and
perturbative expansions about the upper critical dimension [5].
In addition, it has been shown that the long-range order
can be deduced from strong-coupling rescaling behavior [6].
It is a well-known fact that the degree to which quenched
randomness affects the nature of a phase transition varies.
For instance, in low dimensions random fields can alto-
gether eliminate the phase transitions [6–8] and otherwise
affects the numerical values of the critical exponents [5].
Especially for the case of a spin-1 Blume Emery Griffiths
model [9] that exhibits multicritical behavior, it has been
shown by renormalization group arguments that first-order
transitions are replaced by continuous transition, and conse-
quently tricritical points and critical endpoints are depressed
in temperature, and a finite amount of disorder will suppress
them [10]. We notice that the simplest model exhibiting a
tricritical phase diagram in the absence of randomness is
the Blume-Capel model [11]. It is a regular spin-1 Ising
model, which was first used to model 3He–4He mixtures, and
it plays a fundamental role in the multicritical phenomena
associated with various physical systems, such as metalic
alloys [12], liquid crystals [13], polymeric systems [14], and
proteins [15].

The most interesting feature of the model is the existence
of a tricritical point in the phase diagram represented in
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the plane of temperature versus crystal field. This phase
diagram was first calculated within mean-field theory [11] and
confirmed by Monte Carlo simulations [16]. The model has
inspired a range methodologies to be applied to investigate
the effect of crystal field disorder on the multicritical phase
diagram of the Blume-Capel model, e.g., effective field
theory [17] and the mean-field approach [18,19], as well
as by introducing an external random field [20]. Recently
Salmon and Tapia have studied the multicritical behavior of
the Blume-Capel model with infinite-range interactions by
introducing quenched disorder in the crystal field �i , which is
represented by a superposition of two Gaussian distributions
[21]. On the other hand, the nonequilibrium behavior of the
system has not been as thoroughly investigated because dy-
namical models of critical phenomena are of more speculative
nature.

To the best of our knowledge, dynamics of the spin-1
Blume-Capel model with quenched diluted single ion
anisotropy in the neighborhood of equilibrium states has not
been studied by the methods of irreversible thermodynamics.
In this paper, a method combining the statistical equilibrium
theory of cooperative phenomena and the thermodynamics of
linear irreversible processes is carried out for the Blume-Capel
model under a two-valued random crystal field. This type of
calculation was first performed for an AB-type alloy by Tanaka
et al. [22] and AB-type ferromagnetic and antiferromagnetic
Ising model by Barry [23] and Barry and Harrington [24].
Erdem and Keskin and co-workers investigated the dynamical
behavior of the Blume-Emery-Griffiths model extensively
[25,26]. Whereas Keskin and Canko has worked on the
relaxation phenomena in spin-3/2 Ising system with bilinear
and biquadratic interactions [27]. Gulpinar et al. investigated
the relaxations dynamics of iron group dihalides with the same
method [28].

Recently, the application of relaxation theory to a diverse
class of systems has attracted much attention: Dziarmaga
reviewed the dynamics of a quantum phase transition and re-
laxation to a steady state [29]; Etzkorn et al. performed in-field
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relaxation measurements of the spin glasses [30]; Atsarkin
et al. investigated the spin relaxation in La1−xCaxMnO3 [31];
a theoretical study of the relaxation processes of the two-
dimensional XY model has been performed by Lei and Zheng
[32]; and a relaxation analysis of a quasi-one-dimensional
frustrated XY model was made by Nogawa and Nemoto
[33]. Additional applications of relaxation theory includes the
relaxation theory of the antiferromagnetic Ising model on a tri-
angular lattice [34], the relaxation process in the photoinduced
neutral-ionic paraelectric-ferroelectric phase transition of
tetrathiafulvalene-pchloranil [35], and the magnetic relaxation
in antiferromagnetic nanoparticles [36]; and the relaxation pro-
cesses in PbSe quantum dots of different sizes have been also
investigated [37].

The paper is organized as follows: In Sec. II, we give a
brief description of the model and its equilibrium properties
within the framework of a mean-field approximation. In
Sec. III, we obtain the magnetic Gibbs free-energy production
for the Blume-Capel model with quenched diluted crystal field.
Next we analyze, in Sec. IV, the relaxation behavior of the
system near the critical and multicritical points. Finally, a
summary and discussion of the results are given in the last
section.

II. THE MODEL AND THE STATIC PROPERTIES IN THE
MEAN-FIELD APPROXIMATION

The Hamiltonian of the system is given by

Ĥ = −J
∑
〈i,j〉

SizSjz +
∑

i

DiS
2
iz, (1)

where the local spin variables Si are restricted to taking
the values ±1,0. The first term describes the ferromagnetic
coupling (J > 0) between neighboring spins i and j. The
second term describes the single-ion anisotropy. Finally Di

is a two-valued random crystal field distributed according to
the probability distribution

F (Di) = pδ(Di − D) + (1 − p)δ(Di). (2)

In order to obtain the equilibrium properties of the model,
we first have to calculate the magnetic Gibbs free energy
following the definition given in Refs. [38,39]. Letting U ,
T , S, H , m, and N be spin-system configurational interaction
energy, temperature, entropy, external magnetic field, mag-
netic moment, and number of spins, respectively, the magnetic
Gibbs potential, Gmagnetic = U − T S − HNm, can be written
in the mean-field approximation for a given value of the
magnetization m as

Gmagnetic = NzJ

2
m2

+NkBT

∫
ln

[
1 − cosh

(
Jzm
T

)
2cosh

(
Jzm
T

) + exp
(

Di

T

)
]

×F (Di)dDi − NHm. (3)

Here kB is Boltzmann constant [18]. In addition, it is
convenient to introduce the reduced quantities

θ = T

zJ
, d = D

zJ
, h = H

zJ
. (4)

Finally, by use of Eq. (2), the magnetic Gibbs potential can
be written as

Gmagnetic = NzJ

(
m2

2
+ pd − hm − θ

{
pln

[
2cosh

(
m

θ

)

+ exp

(
d

θ

)]
+ (1 − p) ln

[
2cosh

(
m

θ

)
+ 1

]})
.

(5)

The equilibrium condition, δGmagnetic = 0, results in the
following transcendental equation for the h = 0 case:

m0 =2 sinh
(m0

θ

){
p

2 cosh
(

m0
θ

) + exp
(

d
θ

)+ (1 − p)

2 cosh
(

m0
θ

) +1

}
.

(6)

The equilibrium phase diagrams of this system were studied
extensively by Benyoussef et al. within the mean-field theory,
and it was found that the spin-1 Blume-Capel model, with
quenched diluted single-ion anisotropy, exhibits three kinds of
phase diagrams in the (θ,d) plane depending on the value of
p [18]. For the interval (0.945 � p � 1), the phase diagram
is identical to that of Blume-Capel model with homogenous
crystal field; see Fig. 1(a). The ordered phase is separated from
the disordered phase by a critical line. The transition along this
line is of second order up to a tricritical point. At the tricritical
point the transition becomes first order. This first-order part
reaches the θ = 0 axis at d = 1/2p. For (0.926 � p �
0.945), the system still exhibits a tricritical behavior, but in
this case the second-order transition line has a re-entrant part.
Whereas the first-order line separates the ferromagnetic and the
paramagnetic phases and reaches the θ = 0 axis at d = 1/2p.
In fact, this line also exhibits a re-entrant part. The two types of
transitions are connected by a tricritical point; see Fig. 1(b). As
one increases the concentration of vacancies in the crystal field,
the phase diagram changes in nature: For ( 8

9 � p < 0.926),
the transitions between the ferromagnetic and paramagnetic
phases are of first order at low temperatures and strong crystal
fields, while it is of second order at higher temperatures.
In addition the second-order transition line has a re-entrant
part. A portion of the second-order transition line is masked
by a first-order transition line. This situation gives rise to a
critical endpoint (CEP) where the second-order line meets two
first-order lines; one of them, immersed in the ordered phase,
ends at a bicritical endpoint (BCP); see Fig. 1(c). Finally,
for (p < 8

9 ), which is the threshold value of the nonzero
crystal field concentration, the first-order phase transitions are
totally eliminated, and all phase transitions are second order.
Moreover, the ferromagnetic phase is stable for an infinitely
large value of d at temperatures lower than θ0 = 2

3 (1 − p).
The phase diagram given in Fig. 1(d) represents the case for
p = 0.4.
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(a) (b)

(c) (d)

FIG. 1. (Color online) Mean-field phase diagram of the Blume-Capel model with quenched diluted single-ion anisotropy for (a) p = 0.98,
(b) p = 0.93, (c) p = 0.90, and (d) p = 0.4. The dotted lines denote the coexistence curve and solid lines denote the λ line.

III. GIBBS POTENTIAL PRODUCTION FOR THE SPIN-1
BLUME-CAPEL MODEL WITH A RANDOM CRYSTAL

FIELD IN A MAGNETIC FIELD

In order to study the relaxation of the magnetization to
equilibrium in the spin-1 Blume-Capel model with quenched
diluted single-ion anisotropy we assume a small uniform,
external field is applied along the z axis only for a short
while, which removes the system slightly from equilibrium,
and we study the how rapidly the system relaxes back to
thermal equilibrium. Throughout this study the external field
will always be assumed to be sufficiently small to allow
the spin system to be in the neighborhood of equilibrium.
Consequently here we study only the final stage of the
approach to equilibrium. In the case of the existence of a
small deviation of the magnetic field from its equilibrium
value (δH = H − H0), the system will be removed slightly
from equilibrium and a finite magnetic Gibbs free-energy
production (�G) will arise:

�G = G(m,T ,H ) − G(0)(m0,T ,H0)

= 1
2 [a(m − m0)2 − 2b(H − H0)(m − m0)

+ c(H − H0)2 + 2d(H − H0)]. (7)

Here G(0) is the equilibrium value of the free energy for the
case m = m0,H = H0 = 0, and G(m,T ,H ) is the free energy

in the neighborhood of equilibrium; the coefficients a–d are
given as follows:

a =
(

∂2G
∂m2

)
eq

,

a = zJ

(
1 − θ

{
− 4p

[
sinh

(
m
θ

)]2

θ2
[
2 cosh

(
m
θ

) + e
d
θ

]2

+ 2p cosh
(

m
θ

)
θ2

[
2 cosh

(
m
θ

) + e
d
θ

] + 2(1 − p) cosh
(

m
θ

)
θ2

[
2 cosh

(
m
θ

) + 1
]

− 4(1 − p)
[

sinh
(

m
θ

)]2

θ2
[
2 cosh

(
m
θ

) + 1
]2

})
,

b = −
(

∂2G
∂H∂m

)
eq

= NzJ,

c =
(

∂2G
∂H 2

)
eq

= 0,

d =
(

∂G
∂H

)
eq

= NzJm0. (8)

IV. DERIVATION OF THE KINETIC EQUATION AND THE
RELAXATION TIME FOR THE MAGNETIZATION

In the theory of irreversible thermodynamics, the
time derivative of the ferromagnetic order parameter
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(magnetization) is treated as the generalized flux (current)
conjugate to its appropriate generalized force. One obtains
the generalized force Xm conjugate to the current ṁ by
differentiating �G with respect to (m − m0):

Xm = ∂�G
∂(m − m0)

= a(m − m0) − b(H − H0). (9)

In addition, the linear relations between the currents and
forces may be expressed in terms of the phenomenological
rate coefficient (Lmm):

ṁ = LmmXm. (10)

Before starting the investigation of the longitudinal re-
laxation induced by the magnetic field, we emphasize the
following preliminary remarks concerning our method. The
Hamiltonian of the Blume-Capel model with a quenched
diluted single-ion anisotropy is given by Eq. (1), where Slz

is the longitudinal component of the spin-1 Ising (S = 1) spin
angular momentum operator Sl . This Hamiltonian does not
admit longitudinal relaxation since the equation of motion for
〈Slz〉 vanishes identically:

d〈Slz〉
dt

=
∫ (

J

ih̄

∑
〈i,j〉

〈[SizSjz,Slz]〉 +
∑

i

Di

〈[
S2

iz,Slz

]〉)

×F (Di)dDi = 0, (11)

where 〈...〉 signifies the appropriate ensemble average,
2πh̄ is Planck’s constant, and [SizSjz,Slz] and [S2

iz,Slz]
denote the vanishing commutators SizSjzSlz − SlzSizSjz and

S2
izSlz − SlzS2

iz, respectively. Therefore other operator quanti-
ties should be added to the Blume-Capel Hamiltonian, which
does not commute with Slz, which will ensure transitions
within the spin system and thereby allow longitudinal relax-
ation. It is well known that longitudinal relaxation is closely
related to the spin-lattice relaxation time so that these added
operator quantities should contain some kind of spin-lattice
coupling, e.g., the frequently designated T1 appearing in
the longitudinal Bloch equation representation of spin-lattice
relaxation in solids [23]. As discussed above, the method in
the present paper contains the theory of irreversible processes,
which is a phenomenological theory: The explicit form of
the required operators will not be represented, but instead
their effect will be embedded in the phenomenological rate
coefficient Lmm, which itself must be obtained either in
principle by a more powerful method or in practice by fit
with the experimental data.

In order to obtain the relaxation time of the mag-
netization, one should consider the corresponding ho-
mogenous equation corresponding to the equilibrium value
of the external field, i.e., H = H0 = 0, where Eq. (10)
becomes

ṁ = aLmm(m − m0). (12)

The linearized equations of motions are obtained by using
relations (9) in Eq. (10) and solved by assuming the following
form for the solution (m − m0 � e− t

τ ). Thus, one obtains the
relaxation time as τ = − 1

aLmm
. If one inserts the first equation

of Eq. (7) into Eq. (12), the relaxation time can be written as
follows:

τ (θ ) = −
1

zJLmm(
1 − θ

{
− 4p

[
sinh( m0

θ )
]2

θ2
[

2 cosh
(

m0
θ

)
+e

d
θ

]2 + 2p cosh
(

m0
θ

)
θ2

[
2 cosh

(
m0
θ

)
+e

d
θ

] + 2(1−p) cosh
(

m0
θ

)
θ2

[
2 cosh

(
m0
θ

)
+1

] − 4(1−p)
[

sinh
(

m0
θ

)]2

θ2
[

2 cosh
(

m0
θ

)
+1

]2

}) . (13)

The behavior of the relaxation time near the phase-transition
points can be obtained analytically from the critical exponents.
It is a well-known fact that various thermodynamic functions
represents singular behavior as one approaches the critical
point. Therefore it is convenient to introduce an expansion
parameter, which is a measure of the distance from the critical

point:
ε = θ − θc, (14)

where θc is the reduced critical temperature. In the neigh-
borhood of the critical point the relaxation time of the
Blume-Capel Model with quench diluted crystal field, namely,
Eq. (13), can be written in the form

τ (ε) = − 1

zJLmm

(
1 − (θc − ε)

{
−

4p
[
sinh

(
m0

θc−ε

)]2

(θc − ε)2
[
2 cosh

(
m0

θc−ε

) + e
d

θc−ε

]2
+

2p cosh
(

m0
θc−ε

)
(θc − ε)2

[
2 cosh

(
m0

θc−ε

) + e
d

θc−ε

]

+
2(1 − p) cosh

(
m0

θc−ε

)
(θc − ε)2

[
2 cosh

(
m0

θc−ε

) + 1
] −

4(1 − p)
[

sinh
(

m0
θc−ε

)]2

(θc − ε)2
[
2 cosh

(
m0

θc−ε

) + 1
]2

})
. (15)
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The equilibrium values of the order parameter appearing in
Eq. (15) can be expressed in the vicinity of θc by

m0(ε) ∼ (ε)1/2, (16)

where the system undergoes a second-order phase transition,
and here the ∼ sign indicates that m0(ε) represents only the
asymptotic behavior of the function m0(ε) as ε → 0. More
generally one might expect m(ε) = A|ε|λ(1 + bελ1 + · · ·),
where λ1 > 0. On the other hand, for p > 8

9 the system
undergoes a first-order phase transition at low temperatures,
and in the vicinity of this transition the magnetization vanishes
at θc as

m0(ε) ∼ (−ε)1/2. (17)

Only in the range (0.926 � p � 1) is the ordered phase
separated from the disordered phase by a critical line, part
of which is of second order up to a tricritical point where the
junction with the first-order part takes place:

m0(ε) ∼ (−ε)1/4. (18)

On the other hand, in the case of ( 8
9 � p < 0.926), the phase

diagram is rather different. The tricritical point decomposes
into a CEP and a BCP. At both points the magnetization
scales as

m0(ε) ∼ (ε)1/2. (19)

The critical exponent τ (ε) for the function is defined as

λ = lim
ε→0

ln|τ (ε)|
ln|ε| . (20)

This definition is valid for all values of λ, where the negative
values correspond to the divergence of the relaxation times
τ (ε) as ε goes to zero, and the positive values correspond to
logarithmic divergence, cusps, or jump singularities [40]. On
the other hand, in order to distinguish a cusp from a logarithmic
divergence, another type of critical exponent, λ

′
, is introduced.

To find the exponent λ
′

that describes the singular parts of τ

with a cusplike singularity, we first find the smallest integer k

for which the derivative ∂kτ
∂(ε)k = τ (k) diverge as ε → 0:

λ
′ = k + lim

ε→0

ln|τ (ε)|
ln|ε| . (21)

The behavior of the relaxation time τ as a function of
the reduced temperature is shown in Figs. 2(a)–2(f) for
several values of the amplitude of the reduced crystal field.
Figs. 2(a)–2(c) correspond to temperature dependence of τ

near the second-order phase-transition temperature, first-order
phase-transition temperature, and tricritical point, respectively,
for p = 0.98. Figure 2(d) represents the reduced temperature
dependence of the relaxation time at the tricritical point for
p = 0.93. Finally, Figs. 2(e) and 2(f) show the behavior of
the magnetization relaxation time at double CEP and CEP,
respectively, for p = 0.90. In these figures, the curves are
labeled with the various values of the kinetic rate coefficient
(Lmm). The vertical dotted lines refer to the phase-transition
temperatures for each value of the reduced crystal field.

One can see from Fig. 2(a) that τ grows rapidly with increas-
ing temperature and diverges as the temperature approaches
the second-order phase-transition point. In accordance with

this behavior, the critical exponent of τ is found to be
λc = −1.0 for all values of the parameters. We should
note that the analysis used in this paper is identical to
Landau-Ginzburg kinetic theory of phase transitions of a
spatially homogenous system. As is discussed extensively in
Ref. [41], the case of spatially inhomogeneous medium where
m − m0 = δm(t,r), the Landau-Ginzburg kinetic theory of
phase transitions reveals the fact that the relaxation time
becomes finite for θ = θc for components with k �= 0. Here
k is the Fourier transform of the spatial variable r. On the
other hand, the renormalization-group formalism has proved
to be very useful in calculating not only the static behavior
but also the dynamic scaling. By making use of this method,
Halperin et al. found the critical-point singularity of the
linear dynamic response of various models [42]. The linear
response theory, however, describes the reaction of a system
to an infinitesimal external disturbance, while in experiments
and computer simulations it is often much easier to deal
with nonlinear-response situations, since it is much easier to
investigate the response of the system to finite changes in the
thermodynamic variables. A natural question is whether the
critical-point singularity of the linear and nonlinear responses
is the same. The answer is yes for ergodic systems, which
reach equilibrium independently of the initial conditions [43].
The assumption that the initial and intermediate stages of
the relaxation do not affect the divergence of the relaxation
time (motivated by the observation that the critical fluctuations
appear only very close to equilibrium) led to the expectation
that in ergodic systems τnl and τ l diverge with same critical
exponent. This view seemed to be supported by Monte Carlo
calculations [44] and high-temperature series expansion of the
two-dimensional one-spin flip kinetic Ising model [45]. Later
Koch et al. presented field-theoretic arguments by making
use of the Langevin equation for the one-component field
ϕ(r,t) as well as numerical studies of finite-size effects on the
exponential relaxation times τ1 and τ2 of the order parameter
and the square of the order parameter near the critical point
of three-dimensional Ising-like systems [46]. The diverging
behavior of the relaxation time and corresponding slowing
down of the dynamics of the system in the neighborhood of
phase transitions has been a subject of experimental research
for quite a long time. In 1958, Chase et al. reported that liquid
helium exhibits a temperature dependence of the relaxation
time consistent with the scaling relation (θ − θc)−1 [47].
Later Naya and Sakai presented an analysis of the critical
dynamics of the polyorientational phase transition, which is
an extension of the statistical equilibrium theory in random-
phase approximation [48]. In addition, Schuller et al. have
shown that the relaxation time of the superconducting order
parameter diverges close to the transition temperature [49], in
accordance with the theoretical prediction of several authors
[50]. Recently, Sperkach et al. measured the temperature
dependence of acoustical relaxation times in the vicinity
of a nematic-isotropic phase-transition point in 5CB liquid
crystal [51]. Comparing Fig. 2(a) and Fig. 5 of Ref. [51] one
can observe the similarity between the temperature-dependent
behavior of the low-frequency relaxation time of the 5CB
liquid crystal and the Blume-Capel model with random
single-ion anisotropy. Moreover, very recently, Ahart et al.
reported that a critical slowing down of the central peak,
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(a) (b)

(c) (d)

(e) (f)

FIG. 2. (Color online) (a) Relaxation time τ as a function of the temperature in the neighborhood of a critical point for p = 0.98, (b) a
first-order phase transition for p = 0.98, (c) the tricritical point for p = 0.98, (d) the tricritical point for p = 0.93, (e) the BCP for p = 0.90,
and (f) the CEP for p = 0.90. The number accompanying each curve denotes the value of the kinetic rate coefficient (Lmm), and the vertical
dotted lines represent the phase-transition temperatures.

a feature of order-disorder ferroelectric phase transitions of
Pb(Sc0.5Nb0.5)O0.5 nano-crystals, is observed near θc [52].

The behavior of τ near the tricritical point for p = 0.98,
where the phase diagram is identical to the pure Blume-
Capel model, is plotted in Fig. 2(d). One can see from
this figure that the relaxation time increases rapidly with
increasing temperature and diverges at the tricritical point
as in the second-order case. Our analysis in the mean-field
approximation has given the tricritical exponent as λtcp =
−1.0. As is discussed above, the system changes its behavior
near the tricritical point for the interval (0.926 � p � 0.945),
where the second-order transition line has a re-entrant part.
One can explicitly see this phenomena in Fig. 2(d). Here
τ diverges at the tricritical point as well as at the critical
point, which is located at higher temperature with same critical

indices λtcp = λc = −1.0. In Figs. 2(e) and 2(f), variation of
τ with temperature for the reduced crystal field amplitude
values corresponding to CEP and DCP has been illustrated for
p = 0.90. The important feature of the system for d = ddcp

is the existence of a first-order phase transition at lower
temperatures and a second-order phase transition at higher
temperature regime. This situation could easily be seen in the
phase diagrams given in Fig. 1(c) and Fig. 3 in Ref [18].
We should stress that τ has a jump discontinuity at the
first-order transition point just below the θdcp, but there is
no noncritical peak in this case. For d = dcep CEP takes
place in the low-temperature region in the ordered phase,
and there is a second-order phase transition taking place in
the high-temperature regime. In order to reveal the behavior
at CEP, we have given the temperature dependence of the
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relaxation time only in a narrow temperature range in the
neighborhood of θcep in Fig. 2(f). In these multicritical points
τ diverges with the following exponents: λdcp = λcep = −1.0.
The Blume-Emery-Griffiths model is investigated for CEP in
Ref. [53]. Later, Gulpinar et al. studied the metamagnetic Ising
model for both CEP and DCP [28]. In agreement with the
results of the present work, it is observed in Refs. [28,53] that
one of the relaxation times exhibits a divergence in the vicinity
of CEP and DCP. Consequently, the Blume-Capel model with
random single-ion isotropy exhibits critical slowing down
at the critical, tricritical, critical end, and double critical
endpoints.

Unlike the typical critical slowing down behavior of
the second-order phase transitions, systems exhibit different
relaxation characteristics in the neighborhood of first-order
transitions. For instance, it has been reported by Collins and
Teh that the rate of disordering of a nickel-manganese alloy
showed “critical slowing down” as if the transition were of
higher order than first [54]. While various crystallographically
identical transformations have been shown to be first order
[55]. Beers and Guttman conjectured that a system that
has a first-order phase transition can show critical slowing
down, if at or near a virtual transition point where the order
parameter vanishes in the metastable order phase. Apparently,
the temperature of this virtual transition is only a little higher
than the actual limit of stability of the ordered phase relative to
the disordered state [56]. Meanwhile, a detailed investigation
of the phase transitions in proton-conducting Cs3(HSO4)2

single crystals by observation of 1H and 133Cs spin-lattice
relaxations reveals the fact that abrupt changes in relaxation
times are associated with structural phase transitions [57]. It
can be seen from Fig. 7 of Ref. [57] that the temperature
dependence of the spin-lattice relaxation time for 133Cs in
this single crystal has jump discontinuities at the first-order
phase-transition temperatures. In accordance with this result
we have observed a jump discontinuity at all of the first-order
phase-transition points with (λt = λ′

t = 0.0) and an anomalous
peak at higher temperatures [see Fig. 2(b) as well as Fig. 2(d)
and 2(e)].

On the other hand, by making use of the scaling form of the
relaxation time we can determine the dynamic critical expo-
nent z. Since τ ∼ ξz, where ξ and z are the correlation length
and dynamical exponent, respectively, hence τ ∼ |θc − θ |−zν

[58]. According to our mean-field calculations, the dynamic
critical exponent of the Blume-Capel model with random
single-ion isotropy is z = 2 at the critical, critical endpoint, and
double critical endpoints as well as tricritical point, whereas
z = 0 for first-order critical transition points. If we compare
our z values with the ones obtained for various systems by
experimental and theoretical means, one can see that they are
in good agreement with each other. Goswami has calculated
the critical and tricritical dynamical critical exponents as
zc = ztcp = 2 of a weakly interacting Fermi-Bose mixture in an
approximation scheme that is based on an approximate form of

the effective, low-momentum boson Hamiltonian derived in a
previous paper and the Landau theory equation of state [59]. In
addition, the dynamical exponent has been calculated by using
damage spreading and heat bath dynamics and found to be
2.172 for two-dimensional and 2.0324 for three-dimensional
spin-1/2 Ising models [60]; by using Monte Carlo simulations
z was found to be 2.62(7) for a random-field Ising model;
by using the Pade-Borel summation technique z was found to
be 2.017 for two- and three-dimensional spin systems [61]; by
using the Chisholm-Borel resummation technique z was found
to be 2.012 for three-dimensional magnets with quenched
extended defects [62]. In addition, z was found to be 2.18(1)
for Fe0.9Zn0.1F2, and 2.1(1) for FeFl2 [63].

V. SUMMARY AND DISCUSSIONS

In this paper, we have investigated the relaxation phe-
nomena of the Blume-Capel model with quenched diluted
single-ion anisotropy via a theory combining equilibrium
statistical mechanics and irreversible thermodynamics. For
this aim, we derived the mean-field Gibbs free energy of
the system and represented the phase diagrams for various
values of the nonzero crystal field concentration (p). Next we
have calculated the Gibbs free-energy production produced
in the irreversible process. Then the time derivative of the
magnetization is treated as flux conjugate to its appropriate
forces in the sense of the theory of irreversible thermodynamics
[64]. The kinetic equation is obtained by introducing a
phenomenological kinetic coefficient in which the effect of
the operators that cause longitudinal relaxation is included.
From the solution of the kinetic equation near the equilibrium
states, a relaxation time, which describes the nonequilibrium
behavior in the cooperative system, is obtained. In order to in-
vestigate the critical behavior of the relaxation phenomena, the
temperature dependence of the relaxation time is determined
in the neighborhood of the phase-transition points. The results
can be summarized as follows: (τ ) grows drastically with
increasing temperature and tends to infinity near the second-
and the higher-order phase-transition points as (θc − θ )−1, but
a jump discontinuity (λ = 0.0) is observed for the first-order
behavior of τ . The findings are in accordance with the results
obtained by Erdem and Keskin for the relaxation dynamics
of the Blume-Emery-Griffiths model [26] and with the z
values obtained in different systems, experimentally [60,63]
and theoretically [59,61].
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