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Probing structural and dynamical transitions in polymer globules by force
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The dynamics of proteins and biopolymers play a crucial role in their function. By using Brownian dynamics
we show that polymer globules, which serve as a model system for proteins, undergo a size-dependent dynamical
transition from a liquid-like state at high T to a frozen state at low T with a relaxation time that diverges at the
transition point. Furthermore, a stretch-induced melting transition is shown to be readily controlled by external
forces that exploit the polymer connectivity to modify the size of the globule. This pathway could be a general
route to enhance the rate of conformational changes in naturally occurring biopolymers.
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The dynamical properties of globular biopolymers, such
as proteins, DNA, and their aggregates, have important
consequences in the regulation of many biological functions.
For example, transitions between two distinct conformations
of a protein will be dictated by the internal barriers within
the reaction pathway [1]. On larger length scales the ability
of transcription enzymes to access a certain gene will be
regulated by the “breathing modes” of the confined DNA
in a chromosome [2,3]. If the conformational dynamics of
these globular biopolymers are somewhat altered, so will
the intrinsic time scales in which their functions occur.
Understanding the features that control the dynamics of
such processes is thus of much importance. In this Rapid
Communication we consider a homopolymer globule which
has previously served as a model system upon which more
refined models of static and conformational properties of
proteins are based, and investigate its dynamic behavior with
Brownian dynamics simulations [4,5]. Specifically, we study
the role of force and size on the characteristic reorganization
time scales of globular polymers, and elucidate principles
that govern the dynamics of collapsed biopolymers such as
chromatin, molten globule proteins, and the von Willebrand
factor [1–4,6].

The static properties of homopolymer globules have been
widely studied using computer simulations, revealing the
existence of two phases separated by a solid-liquid phase
transition [7–11]. This supplements classical theory results and
serves as the foundation for more complicated protein models
of static properties [4,5]. The ordering (or solidification)
transition has been characterized by the presence of a sharp
peak in the heat capacity, and is well described by considering
the balance between the surface energy of the globule and the
change in the bulk energy [7–9]. Rampf et al. introduced the
appropriate scaling [7]:

T ∞
M − TM = BN−1/3, (1)

where the T ∞
M is the melting phase transition temperature

for a infinitely large (bulk) system and TM is the liquid-
solid transition temperature of the finite globule. B is a
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proportionality constant and N is the number of monomers
in the chain.

The aforementioned investigations focus entirely on the
equilibrium properties of these globules [7–11] and find that
the differences in static properties such as the globule radius or
monomer density above and below TM are rather minor. Here
however we demonstrate that minute changes in the static
globular properties near TM are accompanied by enormous
changes in the dynamical properties of the system, such
as the internal relaxation time scales. In fact, by probing
the dynamical properties we locate in a direct and very
sensitive fashion the underlying equilibrium phase transitions.
Particularly, we find that the characteristic relaxation time of
the monomers in the globule increases dramatically at the
liquid-solid transition, and undergoes a drastic jump which
is dependent on the length of the polymer and the attraction
strength between monomers. Furthermore, there are important
ramifications in the overall behavior of these globules in the
context of chain pulling since small variations in size can
lead to dramatic modifications of the dynamics or function of
globular polymers. Our results thus indicate that by probing
the stretching response of single proteins or aggregates, one
can identify the force-dependent regimes or phases. Also, the
ideas presented here should be useful as a way to study the
dynamical and conformational transitions in larger aggregates
such as chromosomes, which are known to require both long
large-scale relaxation times to maintain the overall structure
while undergoing fast local rearragement to facilitate function
[3].

To start, we model our system as a homopolymer globule
and study it using Brownian dynamics simulations [12,13].
Our polymer is based on a bead-spring model and is composed
of N beads held together by harmonic potentials. The beads
further interact with the other monomers by Lennard-Jones
potentials. The position ri of bead i is determined by
integrating the discretized Langevin equation

r̃i(t̃ + �t̃) = r̃i(t̃) − �t̃(μ̃0∇riŨ [{rN }]) +
√

2�t̃μ̃0ξi, (2)

where a is the bead radius, μ0 = 1/(6πη0a) is the Stokes
mobility, η0 is the solvent viscosity, ξi is the random force
which satisfies the relationship 〈ξi(t)ξj (t ′)〉 = 2kT Iδij δ(t −
t ′), and I is the identity matrix. Values designated with
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FIG. 1. (Color online) Plots of time-correlation functions F (t̃) (a) and G(t̃) (b) for a variety of N values at ε̃ = 2.08 are shown. There
is a distinct change in the correlation dynamics as N is increased above N = 250. Both graphs are fit to double-exponential fits and the fit
parameters for (a) are shown in (c). This plot demonstrates that there is a substantial change in Ai values at N∗ ≈ 250, which is due to the
appearance of prominent relaxation modes that operate on time scales well beyond accessible simulation times.

a tilde are dimensionless, with distances normalized by a,
energies normalized by kT , and times normalized by the
characteristic diffusion time τ = a2/(μ0kT ). The potential on
the overall chain Ũ = Ũe + ŨLJ is given by two contributions,
the elastic springs connecting consecutive beads along the
chain Ũe = κ̃/2

∑N−1
i=1 (ri,i+1 − 2a)2 and the Lennard-Jones

potential ŨLJ = ε̃
∑N

i,j [(2a/rij )12 − 2(2a/rij )6] operating be-
tween all beads. Values of ε̃ > 0.41 drive the polymer chain
to undergo a coil-globule collapse transition, a process which
has been previously studied in great detail [14,15].

This simulation protocol is used over time scales of more
than 5 × 108 time steps with �t̃ = 5 × 10−4, which allows
us to characterize the globule under a number of different
conditions. N is varied between 50 and 300, ε̃ is varied between
0.8 and 4.0, and a number of different initial conformational
relaxation routes are considered. All globules, except where
noted otherwise, are prepared by relaxing the globule from
an extended chain at the ε̃ where the test will be run, and the
simulation will be analyzed from the point that the chain forms
a coherent globule.

The dynamics of the globules are characterized using two
different time-correlation functions, denoted as F (t̃) and G(t̃).
These functions are constructed from a neighbor matrix Mij

defined as

Mij =
{

1, rij < 3a and i 	= (j,j + 1,j − 1),
0, otherwise. (3)

Using this matrix the time-correlation functions are given by

F (t̃) = 1

N

N∑
i

N∑
j

Mij (t̃0)Mij (t̃0 + t̃) (4)

and

G(t̃) = 1

N

N∑
i

N∑
j

Mij (t̃0)
nt∏

k=1

Mij

(
t̃0 + kt̃

nt

)
. (5)

These correlation functions conceptually demonstrate the re-
laxation of the globule by tagging the monomers immediately
neighboring a bead of interest and tracking how they diffuse
away over time. The two functions differ in how they treat the
return of previously tagged monomers to the neighborhood

of the bead of interest, with F (t̃) allowing the monomers
to return and G(t̃) only considering monomers that have
remained neighbors for the entire time t̃ . Examples of both
functions are shown in Fig. 1, with both Figs. 1(a) and 1(b)
representing the same interaction energy ε̃ for a variety of
chain lengths N . Both functions can be well fit to a double
exponential that represents the existence of two observable
time scales, F (t̃),G(t̃) = A0 + A1e

−t̃/λ1 + A2e
−t̃/λ2 . We will

more often use F (t̃) since it decays to a value that provides
underlying clues as to the long-time behavior of the polymer
chain through the finite value of A0. A0 reflects the volume
that the initially tagged beads can explore Vav, by the relation
A0 = F (0)2[4πa3/(3Vav)], where F (0) is the initial number
of nearest neighbors and F (0)[4πa3/(3Vav)] is the fraction
of their volume to the overall Vav. At infinitely long times
all of the beads are interchangeable so Vav = 4Nπa3/(3f ),
where f is a geometric packing factor that represents the bead
density.

Figures 1(a) and 1(b) demonstrate the distinct feature that
at a critical value of N the time correlation between beads
increases drastically. This can be seen by noting that G(t̃ =
500) > 0 at large N . This is quantitatively represented in
Fig. 1(c), which plots the parameters of the double-exponential
fit. At a certain critical value of N = N∗ there is a drastic
increase in the value of A0 between N = 235 and N = 260
for this particular ε̃ = 2.08. This represents a transition in
the dynamic behavior of the globule, since according to the
relation for A0 the available volume for a bead to explore
Vav decreases significantly above N∗. This reflects the solid-
liquid transition seen in previous literature, only now it has
manifested in the dynamic behavior of the globule [7,8]. The
verification that this is indeed a transition from a low- to
high-ordered state is given in [16] through the use of radial
distribution functions.

We seek to characterize this solid-liquid transition as a
function of the globule parameters. We take the value of
F (500τ ) to be roughly analogous to A0, which is plotted as a
function of the interaction energy ε̃ for a variety of N values.
The results are plotted in Fig. 2 and demonstrate a marked
increase in the F (500τ ) at some critical interaction energy ε̃∗.
As a verification of the strong N dependence seen in Fig. 1,
it is clear that the value of ε̃∗ is a function of N . The data in
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FIG. 2. (Color online) Plot of the ε̃ dependence of F (500τ ) for
a variety of N values. The value of F (500τ ) approximates A0 and
displays the same drastic increase in value at a critical value of ε̃∗.
We indicate the location of ε̃∗ for each N with arrows corresponding
to the point F (500τ ) ≈ 5. ε̃∗ is clearly a function of N , and the
inset maps the transition on the ε̃–N plane. Gratifyingly the resulting
globule solid-liquid transition curve corresponds well to the scaling
introduced by Rampf shown in Eq. (1) [7]. Red traces represent
the trajectory of the globule as it shrinks due to the pulling that is
demonstrated in Fig. 3. The red “× ”s represent the apparent solid-
liquid transition seen in these simulations, which directly corresponds
to the transition seen in quiescent globules.

Figs. 1(c) and 2 can be combined to produce a phase diagram
that maps out the structure of the polymer globule as a function
of N and ε̃ (which is shown in the inset of Fig. 2). We can
fit this plot to Eq. (1) using the relationship T ∼ ε̃−1 and the
parameters ε̃−1

M,∞ = 0.82 and B = 1.65 [7]. This fit is shown in
the inset of Figure 2 as a blue line that is in excellent agreement
with the simulation data (black points).

The transition also manifests itself in the nonequilibrium
dynamics of the globule, which has important ramifications in
the response of the globules to external stimuli. Here we use the
example of pulling the ends of a stable globule to demonstrate
this effect. In these simulations, we use a pulling protocol very
similar to Alexander-Katz et al. [12]. We begin with a fully
extended chain with the ends connected to springs that strongly
fix the ends to the desired extension. This adds another poten-
tial Ũf = κ̃/2[(r0 + r∗)2 + (rN − r∗)2] that supplements the
previously indicated potential through which the simulation is
run. The extension L of the chain is controlled by fixing the
value of r∗ = x̂L/2 such that the tethers are located on the x

axis. The tethers at the ends of the chain are allowed to relax
from L = Na to L = 0.2Na with a velocity ṽ = vτ/a, and
the chain is then pulled from this conformation at the same ṽ.

We measure the force f̃ required to extend the chain
at velocity ṽ = 0.001 as the chain is extended from the
relaxed L̃ = L/(2Na) = 0.1 to the fully extended L̃ = 1
conformation. Typical traces are averaged over 20 runs and are
shown in Fig. 3 for the case of N = 300 at ε̃ = 2.08, 2.50, and
2.91. We considered a relaxation protocol where the chain was
allowed to relax from an extended state to an extension length
of L̃ = 0.1, and then the interaction energy of the globule
was lowered to ε̃ = 0.8 to allow rapid reorganization of the

FIG. 3. (Top panel) Force f̃ vs extension L̃ plots for an annealed
globule of N = 300, with ε̃ = 2.08, 2.50, 2.91 (solid, dashed, dotted
lines, respectively) and ṽ = 0.001. The curve at ε̃ = 2.08 demon-
strates only the features of a liquid globule, while the curves at
ε̃ = 2.50 and 2.91 initially demonstrate the response characteristic of
a solid globule. Upon passing the transition points shown in the Fig. 2
inset (indicated in this figure by the arrows), the pulling response
reverts to liquid-like behavior. This transition is also seen in direct
measurements of the globule reorganization dynamics by plotting
F (50τ,L̃) vs L̃, which demonstrates a similar transition that is also
indicated by arrows.

structure for 500τ . The desired ε̃ was reapplied, and the chain
was pulled from this structure.

In the averaged force extension traces given in Fig. 3 there
are three distinct regimes. The regime close to full extension
is universal and represents the rapid increase in force as the
polymer approaches full extension (L̃ ≈ 1). Before the onset
of this behavior, there is a low-force regime that represents
the unwinding of a liquid globule. This regime encompasses
the entirety of the subfull extension regime for polymers that
are collapsed at low values of ε̃, such as the trace for ε̃ =
2.08 in the top panel of Fig. 3. At higher values of ε̃ a third
regime appears at low extension. Extension in this regime
requires much higher forces, and corresponds to the presence
of the solid-globule phase. Larger forces are necessary due
to the slow dynamics of rearrangement, which in the liquid
globule allow the globule to respond to the application of
force. These regimes are general characteristics that do not
greatly depend on pulling protocol [17]. The transition from the
high-force to low-force regimes correspond to the solid-liquid
transition characterized in quiescent globules, and is indicated
by arrows in Fig. 3. The inset of Fig. 2 demonstrates, via
the red arrows, the traces shown in Fig. 3 in N–ε̃ space. The
point at which the transition from the high-force to low-force
regime occurs is indicated with a red “×”. To further reinforce
the connection between the dynamical changes in a quiescent
globule and a pulled globule we consider a local F (t̃ ,L̃) that
describes the relaxation of the globule at a given extension L̃
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during the pulling process. We show curves of F (t̃ ,L̃) in [16],
and can compare the function F (t̃ = 50τ,L̃) to the pulling
traces as indicated in the lower panel of Fig. 3. The transition
to much lower values of F (t̃ = 50τ,L̃) at low L̃ indicates a
change in globule relaxation dynamics that corresponds well
with the transition in force-extension behavior (as indicated
by the arrows in Fig. 3). Clearly the dynamics of the quiescent
globule describe well the response of the globule to external
forces.

This investigation has demonstrated that there is a pro-
nounced change in the relaxation dynamics of a homopolymer
globule due to the appearance of a liquid-solid transition,
which depends on the interaction energy ε̃ and the size N of
the polymer globule. These dynamical regimes can be readily
accessed upon the application of pulling forces, which utilize
chain connectivity to drive this dynamic transition. We expect
that our predictions of globule pulling behavior, which is based
on simulation data, could be experimentally verified using
laser traps or Atomic Force Microscopy experiments such as
those already widely used in the study of single biological

molecules [18,19]. The manipulation of polymer globules is
a key motif in the regulation of biological molecules, and
thus these dynamical transitions might play a crucial role in
regulating biological function. For example, similar models
have been successful in predicting force-based conformational
changes in the von Willebrand factor, with this transition
providing a possible explanation for sudden changes in scaling
behavior [6,13]. Also, chromatin is known for the coexistence
of multiple relaxation time scales, and it is believed that this
broad spectrum is due to the activity of remodeling proteins
that pull on different parts of the fiber similar to our pulling
protocols [3]. The model and conceptual framework developed
here can qualitatively explain the appearance of such disparate
time scales, which to our knowledge was not previously
understood.
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