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Electronic and mechanical realizations of one-way coupling in one and two dimensions
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One-way or unidirectional coupling is a striking example of how topological considerations—the parity
of an array of multistable elements combined with periodic boundary conditions—can qualitatively influence
dynamics. Here we introduce a simple electronic model of one-way coupling in one and two dimensions and
experimentally compare it to an improved mechanical model and an ideal mathematical model. In two dimensions,
computation and experiment reveal richer one-way coupling phenomenology: In media where two-way coupling
would dissipate all excitations, one-way coupling enables solitonlike waves to propagate in different directions
with different speeds.
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I. INTRODUCTION

One-way or unidirectional coupling has the notable effect
of facilitating the propagation of solitary waves or solitons
in media that would normally be dissipative. It is a recent
paradigm for the effects of topology on dynamics [1–7].
This type of coupling, described in detail below, was first
introduced by In et al. to improve the performance of fluxgate
magnetometers [1]. Recently, Lindner et al. realized a simple
mechanical model of generic one-way coupling that facilitates
the study of arrays of many elements [8].

Here we describe an even simpler physical model of
one-way coupling. Our apparatus uses common electronic
components instead of mechanical elements and readily
generalizes to two and higher dimensions. We experimentally
compare the behavior of the electronic model in one dimension
with an improved version of the mechanical model and
demonstrate their qualitatively similar dynamics.

The compact electronic array permits the experimental
exploration of two-dimensional one-way coupled arrays. We
compare the behavior of the two-dimensional arrays with pre-
dictions from theory and simulation, where soliton-antisoliton
pairs spatially separate domains of degenerate ground states.
For different initial conditions, solitons propagate at different
speeds and directions corresponding to topologically distinct
modes. Common to our ideal mathematical model and our
mechanical and electronic apparatuses is the logical idea of a
“reverser,” a kind of coupling among array elements in which
the state of one element is reversely proportional to the state
of the previous element.

II. IDEAL REVERSER ARRAY

Consider an array of bistable oscillators described by

φ′
x = φx − φ3

x − κφx−1, (1)

for x = 1,2, . . . ,N , with periodic boundary conditions φ0 =
φN , where the primes indicate differentiation with respect to
time t and κ is the coupling strength. The final term −κφx−1

in Eq. (1) is the reverser, a torque reversely proportional to the
previous oscillator’s deflection.

For two dimensions, generalize this to

φ′
x,y = φx,y − φ3

x,y − κ(φx,y−1 + φx−1,y), (2)

with periodic boundary conditions. Because each oscillator is
influenced only from below and left (on a standard Cartesian
plane), we define the coupling direction to be from bottom-left
to top-right, or v̂11 = (x̂ + ŷ)/

√
2.

The phenomenology of the one-dimensional array is well
known [5]. From random initial conditions, moving discon-
tinuities referred to as solitons separate regions of opposite
degenerate ground states in which oscillators alternate between
their two stable equilibria. These are soliton-antisoliton pairs in
the sense that a trailing soliton reverses the oscillator equilibria
left by a leading soliton, and they annihilate in pairs upon
close approach. In even arrays, annihilations result in a global
ground state of quiescent oscillators. However, in odd arrays,
one soliton is always left over, propagating endlessly in a
frustrated attempt to reach an impossible global equilibrium.
Soliton speed increases with coupling, but also depends on
noise and disorder (temporal and spatial inhomogeneity).

Here we extend these results to higher dimensions using
computer simulations. We numerically integrate Eq. (2) using
a fourth-order Runge-Kutta algorithm implemented in C/C++
with typical time steps of dt = 0.01. We check this with back-
ward differentiation formula (BDF) and Adams integrators
implemented using MATHEMATICA.

In two dimensions, periodic boundary conditions enforce
a toroidal topology. Moving discontinuities still separate
regions of degenerate ground states, but are now spatially
extended from points to lines. For small coupling κ , individual
oscillators are stuck in their own equilibria and nothing
propagates.

For intermediate coupling, topologically distinct modes
move at discretely different speeds and directions �vmn, where
m:n represents a soliton that wraps m times in the x direction
for n times in the y direction, as in Fig. 1. Symmetric
modes have m = n and asymmetric modes have m �= n. The
maximum speed v11 is only realized for solitons that propagate
in the coupling direction v̂11.
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FIG. 1. (Color online) Simulated angles φx,y (left) and angular
velocities ωx,y (right) for two-dimensional m:n modes in a 41 ×
41 array for coupling κ = 0.74; toroidal views emphasize doubly
periodic boundary conditions. Such solitons are robust with respect
to noise and disorder. Contrasting shades indicate positive or negative
values, white represents zero.

For large coupling, random initial conditions generate
additional very slow modes at large propagation angles α >

45◦ from the symmetric 1 : 1 mode that are mirror images of
the asymmetric modes. For example, the wave front of a −1 : 3
mode has the negative slope of the wave front of a 1 : 3 mode,
as shown in Fig. 2(top).

About half of randomly selected initial conditions result in
static −1 : 1 dislocations orthogonal to the fast 1 : 1 wave front,
but all others induce solitons. Almost all these solitons are in
the fast 1 : 1 mode but about 1 in 102 are in the slower ±1 : 3
and ±3 : 1 modes at angles α ≈ 27◦ and α ≈ 63◦ to either
side of the coupling direction. For sufficiently large arrays,
about 1 in 104 solitons is in the 3 : 3 mode, as summarized by
Fig. 2(bottom).

As coupling κ increases, the time to hop between sta-
ble equilibria decreases. Consequently, soliton speed vmn

increases monotonically with coupling. As the propagation
angle α from the coupling direction increases, torque on indi-
vidual oscillators decreases and is directed increasingly along
the wave front (instead of orthogonal to it). Consequently,
soliton speed vmn decreases with propagation angle α. All
modes are robust with respect to noise and disorder.

III. MECHANICAL REVERSER ARRAY

A recent paper [8] describes a mechanical apparatus built
at The College of Wooster that realizes one-way coupling
and uses it to investigate the annihilation of soliton-antisoliton
pairs. Here, we improve this device and use the improved
version as a benchmark for our electronic apparatus described
below in Sec. IV.

Like the Wooster apparatus, our device employs seesawlike
bistable oscillators consisting of inverted pendulums balanced
by restoring springs. If one seesaw rotates clockwise, a
mechanical reverser, described by Fig. 3, rotates the next
seesaw counterclockwise. The reversers direct falling water
to force adjacent seesaws into opposite equilibria, thereby
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FIG. 2. (Color online) (top) Simplest modes of a 15 × 15 array
and their propagation velocity vectors �vmn for coupling κ = 1.
(bottom) Numerically estimated steady state probabilities P for
N × N arrays starting from random initial conditions indicate relative
basin of attraction sizes for such modes.

exploiting the fact that the downward force of the water jet is
independent of the transverse force that directs it. Unlike the
Wooster device, where water weight supplements jet pressure,
our device uses jet pressure alone to torque each oscillator,
thereby more closely mimicking the −κφx−1 reverser terms in
the idealized one-dimensional array of Sec. II [9].

To test the array, we record the time to annihilation T as
a function of the initial soliton separation �N for an N = 16

FIG. 3. (Color online) Mechanical instantiation of the Eq. (1)
reverser harnesses falling water. When the previous water jet (dashed)
deflects a seesaw counterclockwise, the linked arm deflects the
next water jet clockwise (left), and vice versa (right). Shaded disks
represent fixed axles parallel to the array. Video online [9].
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FIG. 4. Experimental distribution of 150 mechanical array anni-
hilation times T in seconds for solitons initially separated by �N

oscillators in an array of length N = 16.

mechanical array, as reported in Fig. 4. As expected, the larger
the initial separations of the solitons, the longer they survive
before annihilation. While periodic boundary conditions make
�N and N − �N equivalent, asymmetries in the plot reflect
slight rotational asymmetries in the oscillators. Annihilation
time studies are difficult computationally because of the very
long transient times, but the results agree well with previous
work [8].

IV. ELECTRONIC REVERSER ARRAY

Generalizing our mechanical reverser array to study one-
way coupling dynamics in two dimensions is nontrivial.
Instead, we fabricate an electronic circuit that mimics
the mathematical reverser terms in the idealized arrays of
Sec. II and the mechanical reverser of Sec. III.

The key component is a complementary metal oxide silicon
(CMOS) inverter, which contains both an n-type and a p-type
field effect transistor. High input voltage causes current to flow
through the n-channel producing low output voltage, while low
input voltage causes current to flow through the p-channel
producing high output voltage, as in Fig. 5. The high and low
voltages correspond to the bistable states of the oscillators in
the ideal array.

Connecting an odd number of such inverters (or NOT
gates) in series with periodic boundary conditions forms a ring
oscillator. Such oscillators are well known in electrical engi-
neering [10]. For example, they often provide the frequency
standard for phase lock loop control systems, with frequencies
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FIG. 5. (Color online) Electronic instantiation of the Eq. (1)
reverser employs a CMOS inverter. High input voltage causes current
to flow through the n channel discharging the capacitor and producing
low output voltage (left), and vice versa (right). Bidirectional LEDs
visualize the currents.
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FIG. 6. Experimental distribution of 305 electronic array anni-
hilation times T in seconds for solitons initially separated by �N

oscillators in an array of length N = 24.

typically in the megahertz range. Recently, ring oscillators
have been connected by diodes to create a chaotic circuit [11].

At the nodes that connect the output of one inverter to
the input of the next inverter, we insert a capacitor in series
with bidirectional bicolored light-emitting diodes (LEDs) to
ground. A constant 16-V voltage across the inverters powers
the coupling, a 470-μF capacitance slows the solitons to 1-s
time scales, and the LEDs visualize the currents. We use the
open source analog electronic circuit simulator SPICE [12] to
vet our designs. (For our larger arrays, we generate the SPICE
code algorithmically using MATHEMATICA.)

The phenomenology of the electronic arrays resembles that
of the ideal and mechanical arrays. For example, in an array of
even length, briefly connecting two nodes, either manually or
using a simple timer circuit, creates a soliton-antisoliton pair.
We record the time to annihilation T as a function of initial
separation �N , as reported in Fig. 6. As in the mechanical
array, the larger the initial separation of the solitons, the longer
they survive before annihilation.

FIG. 7. (Color online) Inexpensive electronic 13 × 13 array of
CMOS inverters and capacitors on prototype boards (background)
facilitates exploration of one-way coupling in two dimensions.
Sequence of a soliton in a 1 : 1 mode visualized by a square grid
of LEDs on a printed circuit board (foreground).
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In two dimensions, our electronic analog of one-way
coupling features four CMOS inverters per node in a square
array with periodic boundary conditions. Note that the Eq. (2)
coupling term is proportional to the average of the below and
left oscillators. Consequently, we connect each node to CMOS
inverter outputs from the left and below and to CMOS inverter
inputs to the right and above [13]. As before, a capacitor and
an LED in series connect each node to ground. Figure 7 shows
a 13 × 13 node electronic array with 2 × 13 × 13 CMOS
inverters built on prototype boards as it sustains a soliton in a
1 : 1 mode.

To initialize the array, 2 × 13 + 1 = 27 solid state relays
controlled by a single mechanical switch isolate one 13 × 1
row. Manually closing the switch closes all the relays,
reconnects the row, and initiates either a 1 : 1 soliton or a −1 : 1
static discontinuity with approximately equal probability, in
good agreement with the Fig. 2 basin of attraction sizes.

V. CONCLUSIONS

One-way coupling is more than a mathematical curios-
ity. We have realized mechanical and electronic arrays

that are radically different instantiations of the same one-
way physics. The key feature is coupling that reverses
adjacent states. We have also demonstrated that one-way
coupling induces rich additional behavior in two dimen-
sions.

In the future, we hope to use electronic analogs of one-way
coupling in two and higher dimensions to systematically
investigate the dynamical effects of noise and disorder.
Field programmable gate arrays (FPGAs) might facilitate
realization of larger electronic analogs. Preliminary computer
simulations already suggest additional phenomena in three
dimensions.
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